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Abstract

Conventional multi-task Bayesian compressive sensing methods, which compute the sparse representations of

signals with a group sparse pattern, generally ignore the inner sparse structures of signals and/or their statistical

correlations. These structures are naturally exhibited among clustered tasks with different sparse patterns. In this paper,

a novel structured and clustered multi-task compressive sensing framework based on a hierarchical Bayesian model is

proposed to exploit the inner sparse pattern and the statistical dependence between tasks. This is achieved by adopting a

signal model that exploits the spike-and-slab priors and the Dirichlet Process priors. The former encode sparse patterns

of the signals and are further generalized by imposing the Gaussian process for modeling inner structures. The Dirichlet

Process priors, on the other hand, imposed on the support reveal the clustering mechanisms among tasks. In so doing,

these priors provide a new means to simultaneously infer the clusters and perform compressive sensing inversion,

yielding enhanced sparse reconstruction performance. A new inference scheme based on expectation propagation is

derived to approximate the posterior distribution for simplifying the computation and deriving analytical expression.

Experimental results verify the performance superiorities of the proposed algorithm over existing state-of-the-art

methods.
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I. INTRODUCTION

Compressive sensing (CS) has become a powerful technique for high precision sparse signal recovery using a 

small number of measurements [1]. CS and sparse signal reconstruction have been widely used in many applications, 

such as radar imaging [2]–[4], direction-of-arrival (DOA) estimation [5]–[7], radio astronomy [8]–[10], and time-

frequency analysis [11]–[13].

A typical single-task CS model addresses the problem of finding the sparse solution of xxx ∈ R K in the following 

linear inversion problem

yyy = DDDxxx+ εεε, (1)

where yyy ∈ RP denotes the measurement vector, DDD ∈ RP×K is a known sensing matrix, and εεε is an unknown

additive zero-mean Gaussian noise vector. We are mainly interested in the sparse recovery problem that deals with

the ill-posed regime with P � K. The sparse recovery problem can be formulated in an l0-regularized form

min
xxx

‖xxx‖0

s.t. ‖DDDxxx− yyy‖22 ≤ σ, (2)

where ‖ · ‖0 denotes the canonical l0 sparsity metric, i.e., the number of nonzero elements in a vector, and σ is a

scalar to be determined by the input signal-to-noise ratio (SNR). Inference is in general intractable for this NP-hard

problem. A feasible way is using l1 norm in lieu of the l0 norm. The l1 regularization minimizes the residual sum

of squares subject to an l1 penalty on the solution expressed as

x̂xx = argmin
xxx

{
‖yyy − DxDxDx‖22 + α‖xxx‖1

}
, (3)

where α is an elastic scalar which is used to balance the least square term and the l1-norm term in Eq. (3).

This classic framework is also referred to as LASSO and has been the driver for several CS inversion algorithms,

including linear programming [14] and greedy (constructive) algorithm [15], [16].

A Bayesian compressive sensing (BCS) methodology is proposed in [17] by imposing an independent and

identically distributed (i.i.d.) Laplace prior distribution on the desired solution xxx which is proved to be equivalent

to the sparsity regularization term in Eq. (3). However, unlike the regularization technique that aims to find a point

estimate of the underlying solution, the Bayesian formulation strives to obtain the full posterior distribution of

the desired solution xxx. The latter provides probabilistic prediction solutions and leads to determination of model

complexity using the observed data alone. There have been numerous algorithms developed to perform posterior

inference of the BCS methods, such as the variational Bayesian (VB) analysis which performs inference of the

posterior distribution [18]. Reference [19] proposed an inference scheme based on Markov chain Monte Carlo

(MCMC) to approximate the posterior for clustered structured sparse signals.

The above techniques, however, typically perform separate inversions independent of other tasks, thus ignoring

the statistical structures that naturally exist in real-world signals. Such dependence is especially exhibited when

measurements are acquired from the same physical phenomena. Examples include magnetic resonance imaging

(MRI) when repeated images are taken from the same diagnostic object [20] and face recognition where a person’s
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face is captured from different look directions and illumination conditions [21]. Multi-task CS provides a framework

that utilizes the statistical structures present in the different measurements with the aim to achieve significant

reduction in the number of measurements required for sparse reconstruction [20].

In this paper, we consider multi-task CS problems that generalizes Eq. (1) as

yi = Dixi + εi, i ∈ {1, · · · ,M}, (4)

where yi ∈ RP denotes the measurement vector in the ith task, xxxi ∈ RK is the corresponding sparse solution,

εi is an unknown zero-mean Gaussian noise vector, and Di ∈ RP×K is the ith sensing dictionary matrix with

P � K. In Eq. (4), xi, i = 1, ...,M can possess different forms of joint sparsity or statistical sparsity structures

that enable recover {xi}Mi=1 of the sparse signals together with fewer observations compared to solving each of

the M tasks in Eq. (1) separately. Various algorithms have been developed to perform joint signal reconstructions 

by exploiting the statistical correlations among tasks [20], [22]. These conventional multi-task models generally 

assume the sparse vectors {xi}iM=1 to have identical or similar support, i.e., the respective positions of the non-zero 

entries are identical or similar across tasks. However, tasks are typically grouped into several clusters with different 

statistical correlations within each cluster [23]. As such, jointly reconstructing the signals from different clusters 

would lead to severe performance degradations. On the other hand, structured sparsity is a generalization of simple 

sparsity and seeks to exploit the fact that the sparsity pattern of each signal contains a richer structure than a simple 

pattern, e.g., the block sparsity [24] and the tree structure [25].

Towards enhanced signal reconstruction performance, we seek to combine the above two approaches to specifically 

deal with tasks that exhibit both structured and clustered patterns. In particular, the sparsity structures of the tasks are 

augmented with latent multivariate variables and the clustered mechanism is implemented with nonparametric tech-

niques. Application of such approach includes image denoising [26], DOA estimation [7], and electroencephalogram 

(EEG) source localization [27].

A. Related Work

A large body of research has been dedicated to enhance the sparse signal reconstruction performance by exploiting

the underlying statistical relationships within and between signals. Reference [28] generalizes the model for the

selection of group variables to propose group LASSO by selecting or dropping an entire group of predictors

depending on the trade-off parameter. From a probabilistic perspective, the hierarchical Bayesian framework provides

effective representations to model both the individuality and the statistical dependence of different signals. The multi-

task compressive sensing (MT-CS) algorithm [20] exploits a hierarchical model with a shared gamma distribution

prior to characterize the statistic information of different tasks. It incorporates an empirical Bayesian procedure for

fast point estimation of hyper-parameters and full posterior density function inference for each task. This approach

is further generalized in [22] to recover complex signals, defining the complex multi-task Bayesian compressive

sensing (CMT-BCS) approach. The structured spike-and-slab prior [29] imposes a spatial Gaussian distribution with

a standard normal cumulative distribution function (CDF) on the support vector to encode the structure of a sparse

pattern using generic covariance functions. It generalizes the model to multi-measurement vector (MMV) problems
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by imposing a transformed Gaussian process on the spike-and-slab probabilities to incorporate both spatial and 

temporal structure information of different tasks [30]. A MT-CS algorithm proposed in [31] exploits the intra-group 

correlation and the continuous structure using two Toeplitz matrices.

Although the above strategies have successfully utilized the structures within or between signals to improve the 

reconstruction performance, they stop short in accounting for the prior knowledge associated with the different group 

structures. To avoid the complex hierarchical model and guarantee the sparsity of the results, a ‘semi-Bayesian’ 

strategy based on a simple empirical prior is proposed in [32], where the central mechanisms of clustered sparse 

estimation are revealed using rigorous properties of the cost function. However, this approach requires that the cluster 

structure, i.e., the upper bound on the number of clusters, L, to be set appropriately based on prior knowledge. In 

the parametric modeling, nevertheless, the true number of clusters is difficult t o estimate i n advance.

Fortunately, this problem can be tackled from a nonparametric Bayesian approach, which utilizes a model with 

an unbounded complexity, i.e., L → ∞. A nonparametric model in the context of the Dirichlet process (DP) can 

be employed to automatically infer the actual number of clusters that best describes the data. A DP is a probability 

distribution whose realizations are a set of probability distributions. Samples drawn from a DP are usually discrete 

and have clustering property. A widely employed metaphor for the DP is based on the so-called Chinese restaurant 

process [33]. At each step of generating data points, the DP can either assign a data point to a previously-generated 

cluster or can start a new cluster. More importantly, the number of clusters grows automatically as new data points 

arrive. Unlike a finite p arametric m odel, t he n umber o f c lusters i n t he D P c an b e a utomatically i nferred f rom the 

data set. A number of solutions have been developed to modeling the clustering mechanism with DP. Reference 

[34] uses a hierarchical DP to handle a clustering problem involving multiple groups of data, where each group of 

data is modeled with a mixture of components and an inference procedure based on Gibbs sampling is adopted. In 

a MT-CS framework, DP priors are employed on the variance of Gaussian priors to reveal the sharing mechanisms 

as well as perform CS inversion simultaneously [23]. A mean-field v ariational a pproximation p rocedure i s then 

adopted to infer the clusters of signals and perform the sparse inversion. Although these MT-CS methods have set 

foot in the cluster learning, the hierarchical model is either too complex or the underlying mechanics are not clearly 

analyzed.

The choice of sparsity-promoting prior plays a crucial role in the BCS methods. These methods with appropriate 

priors would offer improved reconstruction results with noise robustness. A non-exhaustive list of sparsity-promoting 

priors includes the Laplace prior [17], the automatic relevance determination prior [35], and the spike-and-slab prior 

[36]. Particularly, the spike-and-slab prior (also called the Bernoulli-Gaussian prior) has recently become increasingly 

popular. It takes the following form

xi ∼ (1− zi)δ(xi) + ziN (xi|0, τ0), (5)

where xi is the ith element of xxx, δ(·) denotes a Dirac delta distribution concentrated at zero (spike), N (·) denotes

a Gaussian distribution (slab), and τ0 is the variance scalar. zi is referred to as the support of xi, which is a binary

variable determining the sparse level or the sparse pattern of xxx. When zi 6= 0, the corresponding xi is active, i.e.,
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xi 6= 0. On the other hand, when zi = 0, the corresponding element xi is inactive, i.e., xi = 0. This prior is the

starting point of our work.

Our work is closely related to the work [7] and [23]. Reference [23] proposed a method which employs the DP

prior over the latent parametric space to model the clustering characteristic. Reference [7] applies this model to

DOA estimation and extends to the off-grid problem in integrated and separated manners. However, the structured

information within each task was not considered therein. In our work, the a priori knowledge of the structure is

injected into the model using generic covariance functions rather than independent probability distributions, and

an expectation propagation framework with structured spike-and-slab priors is proposed. The comparisons between

the proposed approach and the above existing methods are provided in order to highlight the offering of the former

and show its performance superiority.

B. Contributions

The main novelty of this paper lies in the exploitation of both the clustering mechanisms among tasks with various

sparsity patterns and the structured patterns of inner signals. We propose a novel MT-CS technique based on the

structured Gaussian process and DP priors. This technique enhances sparse signal constructions by automatically

learning and inferring the structure and clustering of the tasks in a hierarchical Bayesian framework. The spike-

and-slab priors are first generalized to encode the sparse pattern of each task and induce the relationships among

the tasks. A Gaussian process is then introduced to facilitate the sparsity and smooth structure properties of the

tasks. Motivated by the nonparametric clustering technique in the mixture learning model [37], the DP priors are

then introduced to learn the clustering mechanisms among tasks. A stick-breaking construction is used to describe

the DP. A novel inference algorithm based on expectation propagation (EP) is used to perform the approximate

posterior inference induced by the extended spike-and-slab priors and DP priors. Furthermore, the Woodbury identity

is employed to significantly accelerate the inversion of the involved high-dimensional matrices. Considering that the

hierarchical Bayesian model allows the estimation of the posterior and the clustering parameters in an unsupervised

manner, the proposed algorithm is capable of automatically inferring the sparsity pattern and learning the clustering

structure across tasks without requiring the knowledge of the sparsity and the number of clusters in advance.

C. Structure of the Paper

The remainder of the paper is organized as follows. In Section II, the generalized spike-and-slab priors incor-

porating the Gaussian process are described. An approach to impose the DP to encode the clustering structure is

then illustrated. After introducing the generative model, an algorithm based on the EP framework is proposed. The

basics of EP are reviewed and the proposed algorithm, termed EP based Structured BCS (EP-SBCS), is described

in Section III. Section IV demonstrates simulation and experimental results.

D. Notations

We use lower-case (upper-case) bold characters to denote vectors (matrices). f(w|a, b) is the conditional prob-

ability distribution function (pdf) of variable w depending on a and b. N (w|a, b) denotes that random variable w
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follows a Gaussian distribution with mean a and variance b. Bern(z|π) denotes that variable z follows a Bernoulli

distribution with probability of p(z = 1) = π. Beta(x|a, b) means that variable x follows a beta distribution

parameterized by a and b. Multi (x|βββ) denotes a multinomial distribution with the probability vector of βββ. δ (·)

is the Dirac delta function, and (·)T denotes the transpose of a matrix or vector. IIIk denotes the K ×K identity

matrix. | · | denotes the cardinality of a set. Q\i = Q/qi denotes the distribution function Q except the function qi,

and \(i) represents the removal of the ith function from the joint distribution function.

II. THE PROPOSED MODEL

A. Generative Model

This subsection describes the proposed generative model. In general, the measurement vectors follow a Gaussian

distribution with the following likelihood function

YYY |XXX,σ0 ∼
M∏
i=1

N (DDDixxxi, σ
2
0IIIK), (6)

where YYY = [yyy1, · · · , yyyi, · · · , yyyM ] ∈ RP×M is a measurement data matrix consisting of M tasks collected by each

measurement vector described in Eq. (4), XXX = [xxx1, · · · ,xxxi, · · · ,xxxM ] ∈ RK×M denotes the M -task sparse matrix

to be reconstructed, and σ2
0 represents the noise variance.

To encourage sparsity, spike-and-slab priors are imposed on each task and take the following form

xxxi|zzzi ∼
K∏
j=1

[(1− zji)δ(xji) + zjiN (xji|0, τ0)], (7)

where xji is the jth element of signal vector xxxi. As stated in Eq. (5), zzzi is the support or sparse pattern of task xxxi

which follows Bernoulli distribution and zji is the jth element of zzzi. It is important to note that the factorization

form of Eq. (7) implies that the variables xji and xmi in the ith task are assumed to be independent for m 6= j.

That is, the number of active variables follows a binomial distribution and hence the marginal probability for xji

and xmi to be jointly active is given by the product p(xji 6= 0, xmi 6= 0) = p(xji 6= 0)p(xmi 6= 0). In practice,

however, the signals may exhibit correlated statistical relationships or structures within each task. Herein, we extend

the conventional spike-and-slab priors to model such structure information by introducing the Gaussian process.

The Bernoulli distribution is first imposed on the sparse pattern zi,

zzzi|πππi ∼
K∏
j=1

Bern(zji|φ(πji)), (8)

where πji is the probability weight parameter with p (zji = 1) = φ(πji), φ(·) : R → (0, 1) is the normal CDF,

which squeezes πji into the unit interval and thereby φ(πji) represents the probability of zji = 1. The Gaussian

distribution is then placed on the parameter vector πi = [π1i, · · · , πKi]T and is expressed as

πi ∼ G0 = N (πi|aaa0,ΣΣΣ0). (9)
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The marginal prior distribution of zzzi can be computed after integrating out πππi using the following formula

p(zji = 1) =

∫
p(zji|πji)p(πji)dπji

=

∫
Bern(zji|φ(πji))N (πji|aj0,Σ0,jj)dπji

= φ

(
aj0√

1 + Σ0,jj

)
, (10)

where aj0 is the jth element of aaaj0, Σ0,jj is the jth diagonal element of ΣΣΣ0. The latent variable zzzi controls the

structure of the sparsity pattern of each task. From Eq. (10), it can be seen that, when aj0 = 0, the prior belief of

xji being active is unbiased since p(zji = 1) = 0.5, whereas xji is biased towards being inactive when aj0 < 0 and

vice versa. If it is known a priori that xji is more likely to be active than xmi, then we can encode this information

by assigning the prior mean of πππ such that πji > πmi. The prior probability of two variables being joint active is

given by

p(zji = 1, zmi = 1) =

∫
p(zji|πji)p(zmi|πmi)p(πππi)dπππi

=

∫
φ(πji)φ(πmi)N (πππi|aaa0,ΣΣΣ0)dπππi. (11)

From Eq. (11), the marginal probability of xji and xmi being jointly active are controlled by the covariance matrix 

ΣΣΣ0 rather than being independent as in the conventional spike-and-slab priors. In practice, the a priori knowledge 

of sparsity correlation within the signal can be encoded by choosing different forms of generic kernel functions 

for ΣΣΣ0, such as the squared exponential kernel [29] and the nearest neighbors-type kernels [30]. Using this model, 

the expected degree of sparsity of each task is modeled by aaa0 and ΣΣΣ0 which control the prior correlation of the 

support. In conventional MT-CS, all binary variable vectors are i.i.d. drawn from the Bernoulli distribution with 

identical weight parameter vector πππ, i.e., πππi = πππ for i = 1, ..., M . It encourages consistent sparse patterns across 

tasks with the shared πππ. The effectiveness of this hierarchical model is proved in [38] where the underlying signal 

XXX is extracted from nature images.

The conventional MT-CS assumes that all M tasks are clustered in a single class, i.e., all tasks hold the same 

probability to exhibit the same sparse pattern. However, in practice, these tasks may often be clustered into different 

sets of tasks and, as a result, data sharing is appropriate only within each cluster, rather than a single mechanism is 

shared across all tasks [23]. In this case, the most challenging issue is to determine the appropriate number of clusters 

that best describes the underlying signals. For this purpose, the DP provides a popular and effective nonparametric 

probabilistic structure that forms clusters by assuming an infinite number of components and automatically learn the 

actual number of clusters. In this paper, we exploit the fact that tasks belonging to the same cluster share identical 

sparse pattern, and a hierarchical probability framework with DP priors is used to carry out task clustering. By 

employing DP on sparse pattern parameters πi described in the next subsection, the proposed model encourages 

sharing of information within each cluster, yielding an effective means to simultaneously cluster tasks and reconstruct 

the sparse signals.
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B. Dirichlet Process for Multi-Task CS Formulation

A DP denoted as DP (λ, G0) is parameterized by a positive scaling parameter λ and a base non-atomic probability

distribution G0 [39]. An explicit and intuitive way of constructively forming a DP, called stick-breaking, is provided

by Sethuraman [40], which is formulated as,

vl ∼ Beta (1, λ) , (12)

πl
i.i.d.∼ G0, (13)

βl = vl
∏l−1
h=1 (1− vh), (14)

G =
∑∞
l=1 βlδ(πl), (15)

where βl is the length of the lth fraction break from a ‘stick’ of original one, whereas the fraction of the rest of

the stick broken off on break l is vl. It can also be viewed that the random measure G is a discrete distribution

with the probability βl being equal to πl drawn from G0. It is found that
∑∞
l=1 βl = 1. In order to satisfy the

properties of incorporating sparsity structure mentioned above, we set G0 = N (πππi|aaa0,ΣΣΣ0). Therefore, the binary

variable vectors can be generated using the following steps:

1. Draw vl|λ ∼ Beta (1, λ) , l = {1, 2, ...};

2. Draw πl|G0
i.i.d.∼ G0, l = {1, 2, ...};

3. For the ith task:

a. Draw ci ∼ Multi (β1, β2, ...), where βl = vl
∏l−1
h=1 (1− vh),

b. Draw zzzi|ci, {πππl}l=1,2... ∼
∏K
j=1 Bern (πjci),

where ci is an indicator variable which denotes the label of ith cluster. ci ∼ Multi (β1, β2, ...) implies that random

variable ci follows a discrete distribution with probability of p(ci = l) = βl. This Dirichlet process mixture (DPM)

model on the sparse pattern {zi}∞l=1 can be viewed as the limit of a normal parametric finite Bernoulli mixture

model with L components with L→∞ [41],

p
(
zi|{vl}Ll=1, {πππl}Ll=1

)
=

L∑
l=1

βl

K∏
j=1

Bern (zji|πjl). (16)

It was shown that the number of components typically used to model M signals is independent of L and is

approximately O(λ logM) [39]. Hence, considering the computational efficiency, the above infinite DPM is usually

truncated into a finite number of components with sufficiently large L proportional to the logarithm of the number

of data points, which can be initialized as follows:

vL = 1; βl = 0, l > L;
L∑
l=1

βl = 1. (17)

The posterior distribution automatically infers and learns the number of clusters based on the data, which is

determined by how many elements of βl are of a significant value [37]. Therefore, the generative model of the
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Figure 1. The probabilistic graphical model of the proposed sparse Bayesian framework. The red node represents the known observations and

blue nodes represent unknown hidden variables. Black nodes are the hyper-parameters. The edges denote possible dependence, and plates denote

replications.

structured MT-CS with DP priors can be summarized as following:

yi = DDDixxxi + εεεi,

xi|zi ∼
∏K
j=1 [(1− zji) δ (xji) + zjiN (xji|0, τ0)],

zi|ci, {πl}l=1,2...L ∼
∏K
j=1 Bern (φ(πjci)),

ci ∼ Multi (β1, β2, ..., βL) ,

πi ∼ G =
∑∞
l=1 βlδ (πl), (18)

βl = vl
∏l−1
h=1 (1− vh),

vh ∼ Beta (1, λ) ,

πl ∼ G0 = N (πππl|aaa0,ΣΣΣ0).

The corresponding graphical model of the above equations is shown in Fig.1.

III. POSTERIOR DISTRIBUTION INFERENCE BASED ON EXPECTATION PROPAGATION METHOD

In this section, the posterior of the proposed hierarchical model is derived firstly and the framework of the

application of the expectation propagation method is demonstrated in Section III-A. Detailed iteration criteria and

formulations are computed in Section III-B, Section III-C and Section III-D. Finally, the reduction of computational

complexity and update techniques are described in Section III-E. The entire procedure is summarized in Algorithm

1. Fundamental to the development of the analysis in this section is using key existing algorithms which include

Gibbs sampler, variational Baysian (VB), and expectation propagation (EP). Gibbs sampler is a Markov chain

Monte Carlo (MCMC) algorithm for obtaining a sequence of observations which are approximated from a specified

multivariate probability distribution [38]. Unlike Monte Carlo technique, which provides a numerical approximation

to the exact posterior using a set of samples, variational Bayes provides a locally-optimal, exact analytical solution
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to an approximation of the posterior [23]. EP is shown to be an effective method for approximate inference in a

linear model with spike-and-slab priors and provides a better approximation of the posterior for the spike-and-slab

model [42]. Therefore, we propose a novel algorithm based on expectation propagation to carry out the approximate

inference of the posterior distribution in the proposed hierarchical Bayesian framework.

A. The Expectation Propagation Approximation

A brief summary of the expectation propagation is presented in [42]. According to Bayes’ rule, the full posterior

pdf of the proposed generative model can be formulated as

f (HHH|Y, rY, rY, r) =
f (YYY |HHH) f (HHH|rrr)∫
f (YYY |HHH) f (HHH|rrr) dHHH

∝
M∏
i=1

f(yi|xi)
M∏
i=1

f(xi|zi)
M∏
i=1

f(zi|Π, c)
M∏
l=1

f(ci|v)

L∏
l=1

f(vl)

L∏
l=1

f(πl),

where r = {σ0, τ0, aaa0,ΣΣΣ0, λ, L} is the set of hyper-parameters, H = {X,ZZZ,ΠΠΠ, c,v} is the set of all latent vari-

ables withZZZ = [zzz1, · · · , zzzi, · · · , zzzM ] ∈ RK×M ,ΠΠΠ = [πππ1, · · · ,πππi, · · · ,πππL] ∈ RK×L, and v = [v1, · · · , vl, · · · , vL]T .

We omit all the dependence of hyper-parameters in Eq. (19) for simplicity. It is observed that the posterior density

can be decomposed into three terms, i.e., fa for a = 1, 2, 3, and each of the three terms can be further decomposed

as follows,

f1(XXX) =

M∏
i=1

f1i(xi) =

M∏
i=1

N
(
yi|DDDixi, σ

2
0III
)
, (19)

f2(XXX,ZZZ) =

M∏
i=1

f2i (xi, zi) =

M∏
i=1

K∏
j=1

f2i,j (xji, zji) =

M∏
i=1

K∏
j=1

((1− zji) δ (xji) + zjiN (xji|0, τ0)), (20)

f3(ZZZ,ccc,vvv,ΠΠΠ) =

M∏
i=1

f3i (zi, ci,v,ΠΠΠ) =

M∏
i=1

Bern (zi|πci)
L∏
l=1

(1− vl)I[ci>l]v
cli
l

L∏
l=1

Beta(vl|1, λ)

L∏
l=1

N (πl|aaa0,ΣΣΣ0),

(21)

where I[·] is an indicator function such that if the condition is true, I = 1, else I = 0 and cli = 1 if ci = l else

equals to 0. The idea is then to approximate each term in the true posterior density, i.e., fa, by simpler terms, i.e.,

qa, for a = 1, 2, 3. The EP framework provides flexibility in the choice of the approximating factors. This choice

is a trade-off between analytical tractability and sufficient flexibility for capturing the important characteristics of

the true density. It is observed that each f1i term only depends on xxxi, f2i only depends on xi and zi, whereas f3i

June 15, 2022 DRAFT



11

depends on zi, ci, v and Π . We choose q1i, q2i and q3i of the following form,

q1i(xxxi) = N (xxxi|mmmi1,ΣΣΣi1), (22)

q2i (xi, zi) =

K∏
j=1

q2i,j (xji, zji)

=

K∏
j=1

N (xji|mji2,Σi2,jj) Bern (zji|µji2) = N (xi|mi2,Σi2)

K∏
j=1

Bern (zji|µji2), (23)

q3i (zi, ci,v,ΠΠΠ)

=

K∏
j=1

Bern (zji|µji3)

L∏
l=1

Beta (vl|gil, hil)
L∏
l=1

K∏
j=1

N (πjl|ajil, Bil,jj)Multi (ci |w1i, , .., wLi )

=

K∏
j=1

Bern (zji|µji3)

L∏
l=1

Beta (vl|gil, hil)
L∏
l=1

N (πππl|aaail,BBBil)Multi (ci |w1i, , .., wLi ) . (24)

where mi2 = [m1i2,m2i2, ...,mKi2]
T , Σi2 = diag (Σi2,11,Σi2,22, ...,Σi2,KK) , aaail = [a1il, a2il, ..., aKil]

T , and

Bil = diag (Bil,11, Bil,22, ..., Bil,KK). Then the resulting global approximation Q(HHH) becomes

Q(H) =
1

ZEP

M∏
i=1

q1iq2iq3i ∝
M∏
i=1

(N (xxxi|mi,ΣΣΣi)

K∏
j=1

Bern (zji|µji)Multi(ci))
L∏
l=1

Beta(vl|gl, hl)
L∏
l=1

N (πl|aaal,BBBl),

(25)

where

Σ−1i =
(
Σ−1i1 + Σ−1i2

)−1
, (26)

mi = Σi

(
Σ−1i1 mi1 + Σ−1i2 mi2

)
, (27)

µji =
(

(1−µji2)(1−µji3)
µji2µji3

+ 1
)−1

, (28)

gl =
∑M
i=1 gil −M, (29)

hl =
∑M
i=1 hil −M, (30)

BBBl =
(∑M

i=1BBB
−1
il

)−1
, (31)

aaal = BBBl

(∑M
i=1BBB

−1
il aaail

)
, (32)

and ZEP is the normalization constant which can be computed by ZEP =
∫ ∏M

i=1 q1iq2iq3idHHH .

B. Estimating Parameters for q1i

The estimation procedure for q1i(xxxi) depends on the choice of observation model in Eq. (6), where it is the

Gaussian noise model. Thus, f1i is already in the exponential family for all M tasks and therefore needs not to be

approximated by EP. Consider the quadratic form in the exponent of the Gaussian distribution q1i(xxxi) and f1i(xxxi),

f1i(xxxi) : − 1

2σ2
0

xxxTi DDD
T
i DDDixxxi +

1

σ2
0

xxxTi DDD
T
i yyyi + const, (33)

q1i(xxxi) : −1

2
xxxTi ΣΣΣ−1i1 xxxi + xxxTi ΣΣΣ−1i1 mmmi1 + const. (34)
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The parameters for q1i are determined by completing the square between f1i(xxxi) and q1i(xxxi) using the following

relations

Σ−1i1 =
1

σ2
0

DDDT
i DDDi, (35)

mi1 =
1

σ2
0

Σi1DDD
T
i yi. (36)

In this paper, the noise variance is assumed to be constant for all tasks for simplicity.

C. Estimating Parameters for q2i

According to Eq. (23), the term q2i is factorized over j, which implies that we only need to update the parameters

underlying each pair of xji and zji sequentially and iteratively. Consider the update of the jth term of the ith

task q2i,j(xji, zji), the first step is to compute the marginal cavity distribution by removing the contribution of

q2i,j(xji, zji) from the global distribution Q(HHH)

Q\2i,j(xji, zji) =
Q(xji, zji)

q2i,j(xji, zji)
= N (xji|m\2i,jji ,Σ

\2i,j
i,jj )Bern(zji|µ\2i,jji ). (37)

Note that Q(HHH) is the product of distributions from exponential family. The parameters of the cavity distribution

can be obtained by computing the differences of natural parameters, which can be expressed as

Σ
\2i,j
i,jj = (Σ−1i,jj − Σ−1i2,jj)

−1, (38)

m
\2i,j
ji = Σ

\2i,j
i,jj (mjiΣ

−1
i,jj −mji2Σ−1i2,jj), (39)

µ
\2i,j
ji =

(
(1−µji)µji2

(1−µji2)µji
+ 1
)−1

= µji3. (40)

Since µji2 and µji3 are the only two parameters contributing to the distribution over zji, the cavity parameter for

zji in q2i,j simply equals to µji3 and equals to µji2 in q3i,j . The next step is to form the tilted distribution

∼
Q(xji, zji) =

1

Z2i,j
Q\2i,j(xji, zji)f2i,j(xji, zji), (41)

where Z2i,j is the normalization constant given by

Z2i,j =
∑
zji

∫
Q\2i,j(xji, zji)f2i,j(xji, zji)dxji

= µ
\2i,j
ji N

(
0|m\2i,jji , Σ

\2i,j
i,jj + τ0

)
+ (1− µ\2i,jji )N

(
0|m\2i,jji , Σ

\2i,j
i,jj

)
. (42)

Then the KL divergence between the titled distribution Eq. (41) and Qnew(HHH), w.r.t. Qnew(HHH), is minimized to

obtain the revised parameters for q(xji, zji). For distributions from the exponential family, minimizing this form
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of KL divergence amounts to matching moment between the tilted distribution and Qnew(HHH). The first and second

moments of xji w.r.t. the titled distribution are given by

X1 =
∑
zji

∫
xji

1

Z2i,j
Q\2i,j(xji, zji)f2i,j(xji, zji)dxji

=
1

Z2i,j
µ
\2i,j
ji N

(
0|m\2i,jji ,Σ

\2i,j
i,jj + τ0

) τ0m
\2i,j
ji

Σ
\2i,j
i,jj + τ0

, (43)

X2 =
∑
zji

∫
x2ji

1

Z2i,j
Q\2i,j(xji, zji)f2i,j(xji, zji)dxji

=
1

Z2i,j
µ
\2i,j
ji N

(
0|m\2i,jji ,Σ

\2i,j
i,jj + τ0

) τ0Σ
\2i,j
i,jj

Σ
\2i,j
i,jj + τ0

+

(
τ0m

\2i,j
ji

Σ
\2i,j
i,jj + τ0

)2
 , (44)

and the first moment of zji is given by

Z1 =
∑
zji

∫
zji

1

Z2i,j
Q\2i,j(xji, zji)f2i,j(xji, zji)dxji

=
1

Z2i,j
µ
\2i,j
ji N

(
0|m\2i,jji , Σ

\2i,j
i,jj + τ0

)
. (45)

Alternatively, the moments can be obtained by computing the partial derivatives of the log normalizer of the tilted

distribution [37]. Hence, the revised parameters for Qnew(xji, zji) can be computed using the following formula

mnew
ji = X1, (46)

Σnew
i,jj = X2 −mnew2

ji , (47)

µnew
ji = Z1. (48)

Once Qnew(xji, zji) is obtained, the new update of site distribution for q2i,j(xji, zji) can be computed using the

following

qnew
2i,j(xji, zji) =

Qnew(xji, zji)

Q\2i,j(xji, zji)
= N (xji|mnew

ji2 ,Σ
new
i2,jj)Bern(zji|µnew

ji2 ). (49)

The parameters mnew
ji2 , Σnew

i2,jj , and µnew
ji2 of the new site distribution qnew

2i,j(xji, zji) can be obtained by computing the

differences of natural parameters in the same manner as for the cavity distribution in Eq. (38)-Eq. (40)

Σnew
i2,jj = (Σnew−1

i,jj − Σ
\2i,j−1
i,jj )−1, (50)

mnew
ji2 = Σnew

i2,jj(m
new
ji Σnew−1

i,jj −m\2i,jji Σ
\2i,j
i,jj ), (51)

µnew
ji2 =

(
(1−µnew

ji )µ\2i,jji(
1−µ\2i,jji

)
µnew
ji

+ 1

)−1
. (52)

D. Estimating Parameters for q3i

The procedure for updating q3i(zi, ci,v,π) is completely analogously to that for q2i(xxxi, zzzi). The first step is

to remove it from the global distribution Q(HHH) to compute the cavity distribution Q\3i(vvv,ΠΠΠ,ccc,zzzi), where the
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corresponding parameters can be obtained by computing the differences of natural parameters using the following

formula

BBB
\3i
l = (BBB−1l −BBB

−1
il )−1, (53)

aaa
\3i
l = BBB

\3i
l (BBB−1l aaal −BBB−1il aaail), (54)

g
\3i
l = gl − gil + 1, (55)

h
\3i
l = hl − hil + 1, (56)

µ
\3i
ji =

(
(1−µji)µji3

(1−µji3)µji
+ 1
)−1

= µji2, (57)

and the tilted distribution is

∼
Q(HHH) =

1

Z3i
Q\3i(vvv,ΠΠΠ,ccc,zzzi)f3i(zi, ci,v,ΠΠΠ), (58)

where the normalization constant is given by

Z3i =
∑
zzzi

∫
Q\3i(vvv,ΠΠΠ,ccc,zzzi)f3i(zi, ci,v,ΠΠΠ)dcccdvvvdΠΠΠ

=

L∑
l=1

g
\3i
l

g
\3i
l + h

\3i
l

l−1∏
s=1

(
1− g

\3i
s

g
\3i
s + h

\3i
s

)

·
K∏
j=1

φ(
a
\3i
jl√

1 +B
\3i
l,jj

)µ
\3i
ji + (1− φ(

a
\3i
jl√

1 +B
\3i
l,jj

))(1− µ\3iji )

 . (59)

Analogously, the first and second moments of πjl can be computed as

X1 =
∑
zzzi

∫
πjl

1

Z3i
Q\3i(vvv,ΠΠΠ,ccc,zzzi)f3i(zi, ci,v,ΠΠΠ)dcccdvvvdΠΠΠ

=
1

Z3i

g
\3i
l

g
\3i
l + h

\3i
l

l−1∏
s=1

(
1− g

\3i
s

g
\3i
s + h

\3i
s

)

·
(
µ
\3i
ji ejl + (1− µ\3iji )(a

\3i
jl − ejl)

) K∏
j′=1,j′ 6=j

(
µ
\3i
j′i ρj′l + (1− µ\3ij′i )(1− ρj′l)

)

+
1

Z3i

L∑
l′=1,l′ 6=l

g
\3i
l′

g
\3i
l′ + h

\3i
l′

l′−1∏
s=1

(
1− g

\3i
s

g
\3i
s + h

\3i
s

)
a
\3i
jl

K∏
j=1

(
µ
\3i
ji ρjl′ + (1− µ\3iji )(1− ρjl′)

)
, (60)

and

X2 =
∑
zzzi

∫
π2
jl

1

Z3i
Q\3if3i(zi, ci,v,ΠΠΠ)dcccdvvvdΠΠΠ

=
1

Z3i

g
\3i
l

g
\3i
l + h

\3i
l

l−1∏
s=1

(
1− g

\3i
s

g
\3i
s + h

\3i
s

)
·
(
µ
\3i
ji ujl + (1− µ\3iji )(a

\3i 2
j′l +B

\3i
l,jj − ujl)

)

·
K∏

j′=1,j′ 6=j

(
µ
\3i
j′i ρj′l + (1− µ\3ij′i )(1− ρj′l)

)
+

1

Z3i

L∑
l′=1,l′ 6=l

g
\3i
l′

g
\3i
l′ + h

\3i
l′

l′−1∏
s=1

(
1− g

\3i
s

g
\3i
s + h

\3i
s

)

·(a\3i 2
j′l +B

\3i
l,jj)

K∏
j=1

(
µ
\3i
ji ρjl′ + (1− µ\3iji )(1− ρjl′)

)
, (61)

June 15, 2022 DRAFT



15

where

ejl =

∫
πjlN

(
πjl|a\3ijl , B

\3i
l,jj

)
φ(πjl)dπjl = φ

 a
\3i
jl√

1 +B
\3i
l,jj

 a
\3i
jl +

B
\3i
l,jjN (rjl|0, 1)√

1 +B
\3i
l,jj

(62)

ujl =

∫
π2
jlN (πjl|a\3ijl , B

\3i
l,jj)φ(πjl)dπjl = 2a

\3i
jl ejl + φ(rjl)[B

\3i
l,jj − (a

\3i
jl )2]−

(B
\3i
l,jj)

2rjlN(rjl|0, 1)

1 +B
\3i
l,jj

(63)

ρjl = φ(rjl) (64)

rjl =
a
\3i
jl√

1 +B
\3i
l,jj

. (65)

The first moment of zji and cli w.r.t. the titled distribution Eq. (58) is computed using

Z1 =
∑
zzzi

∫
Zjl

1

Z3i
Q\3if3i(zi, ci,v,ΠΠΠ)dcccdvvvdΠΠΠ

=
L∑
l=1

g
\3i
l

g
\3i
l + h

\3i
l

l−1∏
s=1

(
1− g

\3i
s

g
\3i
s + h

\3i
s

)
K∏
j=1

φ(
a
\3i
jl√

1 +B
\3i
l,jj

)µ
\3i
ji , (66)

C1l =
∑
zzzi

∫
cil

1

Z3i
Q\3if3i(zi, ci,v,ΠΠΠ)dcccdvvvdΠΠΠ

=
g
\3i
l

g
\3i
l + h

\3i
l

l−1∏
s=1

(
1− g

\3i
s

g
\3i
s + h

\3i
s

)

×
K∏
j=1

φ(
a
\3i
jl√

1 +B
\3i
l,jj

)µ
\3i
ji + (1− φ(

a
\3i
jl√

1 +B
\3i
l,jj

))(1− µ\3iji )

 . (67)

Consider that vvv follows the Beta distribution, computing the moments of natural parameters w.r.t.
∼
Q(HHH) directly is

extremely complex. Alternatively, we compute the partial derivatives of lnZ3i to obtain the natural moments using

the following formula

∇
g
\3i
l

lnZ3i =
1

Z3i

∫
∂Q\3i(HHH)

∂g
\3i
l

f3i(zi, ci,v,ΠΠΠ)dHHH

=

∫ ∼
Q(HHH)

Beta(vl|g\3il , h
\3i
l )

∂Beta(vl|g\3il , h
\3i
l )

∂g
\3i
l

dHHH

=

∫ ∼
Q(HHH)

(
ln(vl) + Ψ(g

\3i
l + h

\3i
l )− Ψ(g

\3i
l )
)
dHHH

= E∼
Q(HHH)

(ln(vl)) + Ψ(g
\3i
l + h

\3i
l )− Ψ(g

\3i
l ), (68)

and

∇
h
\3i
l

lnZ3i =
1

Z3i

∫
∂Q\3i(HHH)

∂h
\3i
l

f3i(zi, ci,v,ΠΠΠ)dHHH

= E∼
Q(HHH)

(ln(1− vl)) + Ψ(g
\3i
l + h

\3i
l )− Ψ(g

\3i
l ), (69)

where Ψ(x) = d lnΓ (x)
dx denotes the digamma function. The moment matching for vl can be expressed as

Ef(vl) (ln (vl)) = Eqnew(vl) (ln (vl)) , (70)

Ef(vl) (ln (1− vl)) = Eqnew(vl) (ln (1− vl)) . (71)
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Note that the left hand side terms of Eqs. (68)-(69) can be computed analytically from Eq. (59). Combined with

Eqs. (70)-(71), the expectations of the approximate posterior distribution Qnew(HHH) are matched to that of the titled

distribution
∼
Q(HHH) as

µnew
ji = Z1, (72)

wnew
li = C1l∑L

l=1(C1l)
, (73)

anew
jl = X1, (74)

Bnew
l,jj = X2 − anew2

jl , (75)

Ψ(gnew
l )− Ψ(gnew

l + hnew
l ) + Ψ(g

\3i
l + h

\3i
l )− Ψ(g

\3i
l ) = ∇

g
\3i
l

lnZ3i, (76)

Ψ(hnew
l )− Ψ(gnew

l + hnew
l ) + Ψ(h

\3i
l + g

\3i
l )− Ψ(h

\3i
l ) = ∇

h
\3i
l

lnZ3i. (77)

Note that resolving Eqs. (76)-(77) requires inverting of Ψ function and thus, there exists no general closed form

solutions. Motivated by [43], a numerical fixed-pointed iteration is adopted to find the solutions for anew
jl , b

new
jl , g

new
l

and hnew
l in our work, which takes the following form

gnew new
l = Ψ−1(Ψ(gnew old

l + hnew old
l ) +∇

g
\3i
l

lnZ3i + Ψ(g
\3i
l )− Ψ(g

\3i
l + h

\3i
l )), (78)

hnew new
l = Ψ−1(Ψ(gnew old

l + hnew old
l ) +∇

h
\3i
l

lnZ3i + Ψ(h
\3i
l )− Ψ(g

\3i
l + h

\3i
l )), (79)

where Ψ−1 denotes the inversion of function Ψ . [43] also provides a generalized Newton-Raphson iteration method,

which does not require inverting Ψ function or the Hessian matrix explicitly. Once Qnew(HHH) is obtained, similar to

Eqs. (53) - (57), the parameters for the new site distribution take the following form

µnew
ji3 =

(
(1−µnew

ji )µ\3iji(
1−µ\3iji

)
µnew
ji

+ 1

)−1
, (80)

aaanew
il = BBBnew

il (BBBnew −1
l aaanew

l −BBB\3i −1l aaa
\3i
l ), (81)

BBBnew
il = (BBBnew −1

l −BBB\3i −1l )−1, (82)

gnew
il = gnew

l − g\3il + 1, (83)

hnew
il = hnew

l − h\3il + 1. (84)

E. Reduction of Computational Complexity

The inversion of the K × K dimensional covariance matrix in Eq. (26) renders computational complexity of

O
(
K3
)
, which is extremely high when its dimension K is large. Observing that Σi1 is low rank and Σi2 is

diagonal, the Woodbury matrix identity can be applied to Eq. (26) to get:

Σi = Σi2 −Σi2D
T
i

(
σ2
0I +DiΣi2D

T
i

)−1
Di. (85)

For P � K, the complexity scales as O(PK2) which reduces the complexity by K/P compare to that when

performing inversion directly.
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Algorithm 1 EP-based Structured BCS
1: Set truncation level L

2: Initialize all the approximation terms qai, a = 1, 2, 3, i = 1, 2, ...,M

3: Pre-compute mmmi1, ΣΣΣi1 by Eqs. (35)-(36), i = 1, 2, ...,M

4: repeat

5: for the ith task do

6: for each q2i,j do

7: Compute cavity Q\2i,j ∝ Q
q2i,j

by Eqs. (38)

-(40)

8: Minimize: KL
(
f2i,jQ

\2i,j ||Qnew
)

w.r.t. Qnew by Eq. (46)-(48)

9: Compute: q2i,j ∝ Qnew

Q\2i,j
to update mji2,

Σi2,jj , µji2 by Eqs. (50)-(52)

10: end for

11: Compute cavity Q\3i ∝ Q
q3i

by Eqs. (53)-(57)

12: Minimize: KL
(
f3iQ

\3i||Qnew
)

w.r.t. Qnew

by Eqs. (72)-(77)

13: Compute: q3i ∝ Qnew

Q\3i
to update aaail,BBBil, gil,

hil, µji3, wli by Eqs. (80)-(84)

14: end for

15: Update joint approximation parameters mi,Σi,µji,

aaal,BBBl, gl, hl, wli by Eqs. (26)-(32)

16: until Convergence criterion is reached

The site approximation is updated in a sequential manner in the conventional EP framework, i.e., refining a single

f2i,j or f3i at a time. This means that we need to update global approximation every time a site approximation

is refined, which lacks computational efficiency and is unnecessary. Parallel update scheme is adopted in this

work to reduce the computational complexity. In essence, all the site approximations of the form f2i,j or f3i, for

i = 1, 2, ...,M , j = 1, 2, ...,K, are first updated and then the global joint approximation is updated. This can be

interpreted as a particular scheduling of message from a message passing perspective [44]. The entire approximation

procedure, referred to as the EP-based structured Bayesian compressive sensing (EP-SBCS) method, is summarized

in Algorithm 1.

IV. SIMULATION AND EXPERIMENT RESULTS

In this section, experiments using both synthetic data and real data sets are conducted to investigate and verify

the effectiveness of the proposed method. Three competing state-of-the-art methods, namely, MT-CS [20], multi-

task adaptive matching pursuit (MT-AMP) [45], and WBDOA [7], are considered for performance comparisons.
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Figure 2. Reconstruction result examples of one task profiles.

The normalized root mean square error (NMSE) ||xx̂x − xxx||2/||xxx||2 is used as the performance index. The number of 

components is typically independent of L and is approximately O(λ log M) [39], and thus the stick-breaking 

truncation level is assumed to be L = 10 for all the experiments due to the consideration of the computational 

efficiency, and the scalar λ = K/(K − 1) is used according to the choice guidance [38]. All experimental results were 

obtained by averaging 100 trials conducted on a 2.80 GHz PC using Python3.

A. One-Dimensional Synthetic Data

In this simulation, the sensing dictionary matrices are i.i.d. and drawn from the Gaussian distribution with zero

mean and unit variance, and the length of the sparse vectors is K = 128. The number of non-zero elements of

each task is 20, and their coefficients are randomly drawn from N (0, 1). We generate sparse vector templates from
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Figure 3. Performance comparison. (a) NMSE versus the number of measurements. (b) NMSE versus SNR.
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Figure 4. Cluster accuracies versus the number of measurements.

five clusters with different sparse patterns, and 10 observed measurement data in each cluster corresponding to

10 tasks. Accordingly, the total number of tasks is 50. We take a specific data generation mechanism to ensure

that tasks within the same cluster are highly correlated and any two tasks from different clusters exhibit entirely

different sparseness patterns. That is, locations of 20 non-zero elements are chosen using squared exponential kernel

ΣΣΣ0 i,j = 25exp(−||i− j||22/(2× 1002)) and entirely different for each template. For each cluster, the 10 observed

measurements are generated by randomly selecting two non-zero elements from the associated template and setting

the coefficients to zero, and randomly selecting two zero-amplitude points in the template and setting them to

be non-zero. The ith sensing matrix DDDi is generated by following Gaussian distribution N (0, 1). Without loss of

generality, additive noise is considered with an input SNR of 20 dB. Both MT-CS and MT-AMP methods are able

to reconstruct the sparse signals by exploiting the global sharing mechanism for all tasks. However, it is unfair

to compare their performance when directly applied over all tasks data. This would lead to rapid performance

degradation due to inappropriate sparse pattern sharing across clusters. Therefore, we in advance manually group

these 50 tasks into 5 correctly formed clusters. The above two methods are then carried out over tasks within the

same cluster one at a time. Five clusters of tasks are reconstructed respectively and the average NMSE of 5 clusters

is used for performance comparison.

Fig. 2 demonstrates examples of the reconstruction results of one task profile when P = 60 and the reconstruction
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Figure 5. Reconstructed images from MNIST data set. (a) Origin, (b) EP-SBCS, (c) MT-AMP, (d) WBDOA, (e) MT-CS. Digits below the

figure denotes the task index.

NMSE performances are indicated above each subplot. The full performance versus the number of measurements

and the input SNR is shown in Figs. 3(a)–(b), respectively. It is observed that the reconstructed NMSE generally

decreases with the increased measurements, and the proposed method has the lowest NMSE across all the level of

measurements in Fig. 3(a), compared to those in WBDOA, MT-CS, and MT-AMP. This is despite the fact that in

the latter two methods, the tasks are grouped manually. Fig. 3(b) shows the performance comparisons versus the

input SNR with P = 70. It is clear that the NMSE decreases with the increased SNR, and the NMSE obtained by

the proposed method is lower than those obtained from the other three methods, and thus is more robust to noise.

These results verify the benefit of the generalized spike-and-slab priors with exploiting statistical relations within

and between tasks.

Fig. 4 shows the clustering accuracy of both the proposed EP-SBCS and the WBDOA method versus the number

of measurements. It is evident that the clustering accuracy improves with the increased number of measurements with

the proposed method offering higher accuracy than WBDOA. The lower NMSE offered by our algorithm implies a

positive relationship between clustering accuracy and sparse reconstruction precision. That is a high classification

accuracy leads to a high reconstruction precision. The clustering accuracy of the proposed method increases up to

100% when P ≥ 65 measurements are used. It can be concluded that the proposed method can infer the clusters

and perform CS inversion simultaneously, and shows clear superiorities over the MT-CS, MT-AMP, and WBDOA

methods.

B. Real Image Recovery

In the following set of experiments, the performance of EP-SBCS is compared to the other three methods on

two example problems that involve 2D images.
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Figure 6. Probability heatmap results of clustering for MNIST data set. (a) EP-SBCS. (b) WBDOA.

Table I

PERFORMANCE OF RECONSTRUCTED MNIST IMAGES.

NMSE Time(s)

Task 1 Task 2 Task 3 Taks 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Average

EP-SBCS 0.0015 0.0012 0.0013 0.0011 0.0012 0.0014 0.0010 0.0011 0.0012 0.0019 0.0020 0.0020 1.1080

MT-AMP 0.0457 0.0426 0.0389 0.0267 0.0176 0.0460 0.0334 0.0217 0.0795 0.0738 0.0928 0.0947 1.2401

WBDOA 0.0624 0.0698 0.0729 0.0474 0.0176 0.0436 0.0585 0.0649 0.0845 0.0709 0.0894 0.0935 1.7031

MT-CS 0.0688 0.0446 0.0414 0.0411 0.0611 0.0871 0.0612 0.0179 0.0976 0.0770 0.1121 0.1149 0.7031

1) Handwritten Digit Images: In the following experiment, the real data of handwritten digit images from the

MNIST data set [46] are used for performance comparison. The reconstructed results using 12 tasks from 3 different

digit clusters are shown in Fig. 5. All of the samples are of size 28× 28. Since gray values of most pixels in each

image are zero (black), each image is naturally sparse. We simply reshape each image into a spare vector xxxi of

size 784× 1. It is observed that sparse patterns of the same digits are highly similar, whereas different digits have

different sparse patterns. The experiment hyper-parameters settings, the sensing matrices, and observation vectors

are constructed in the same manner as in the first set of examples. Following a similar processing, both MT-CS

and MT-AMP methods are used to recover sparse signals over the same digits, which are manually classified as

one cluster in advance. Herein, the number of measurements is set as P = 400 and the input SNR is 20 dB. The

reconstructed results are shown in Fig. 5 and the full performance comparison between them is summarized in Table

I. Comparing to those images reconstructed by the WBDOA, MT-CS, and MT-AMP methods, the images recovered

by the proposed EP-SBCS are closest to the original images and have the lowest NMSE. This was enabled by

exploiting the structured and clustered statistical correlations within clusters.

It is observed that the reconstruction results vary from images of different digits. Generally, images of digit

1 have the best reconstruction performance, whereas digit 5 is the poorest, which is more obvious for WBDOA,

MT-CS, and MT-AMP. This is caused by different sparsity levels of the images corresponding to the different digits.

The average sparsity level of the images of digit 1, digit 0, and digit 5 is 0.06, 0.13, and 0.20, respectively, and

the reconstructed results naturally degrade as the sparsity level increases. Furthermore, considering the negligible

change of performance of the EP-SBCS for the images corresponding to the different digits, we can conclude that
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Table II

PERFORMANCE OF RECONSTRUCTED VIDEO IMAGES.

NMSE Time(s)

Task 1 Task 2 Task 3 Taks 4 Task 5 Task 6 Task 7 Task 8 Task 9 Average

Linear 0.0511 0.0517 0.0512 0.0611 0.0699 0.0650 0.1540 0.1450 0.1519 0.0090

EP-SBCS 0.0570 0.0580 0.0574 0.0752 0.0815 0.0799 0.1551 0.1499 0.1598 64.4526

MT-AMP 0.0611 0.0616 0.0617 0.0768 0.0866 0.0910 0.1623 0.1554 0.1627 70.1541

WBDOA 0.0650 0.0644 0.0637 0.0775 0.0867 0.0819 0.1629 0.1562 0.1629 81.5942

MT-CS 0.0624 0.0638 0.0617 0.0818 0.0990 0.0923 0.1619 0.1560 0.1627 31.1561

（a）

（b）

（c）

（d）

（e）

1 2 3 4 5 6 7 8 9

Figure 7. Reconstructed images from video images. (a) Linear, (b) EP-SBCS, (c) MT-AMP, (d) MT-CS, (e)WBDOA. Digits below the figure

denotes the task index.

the proposed method converges faster and is more stable under different situations. Finally, Figs. 6(a)–(b) show the

probability heatmap results of clustering in the proposed method and the WBDOA method respectively. While both

methods are capable to automatically and correctly cluster all tasks, the proposed method offers lower NMSE than

the WBDOA method, as shown in Table I.

2) Still Images from Video Sequence: In this example, experiments on 9 snapshots of 3 different scenes are used

for performance comparison, and thus 9 tasks in total are considered. The first three snapshots, which correspond

to computer scenes, are referred to task 1 to task 3; the three snapshots in the mall scenes are regarded as task

4 to task 6; and the remaining three snapshots are considered to be task 7 to task 9. The same stick-breaking

truncation level of L = 10 is assumed. All the images are of size 240× 256 and the sensing matrix is constructed

in the same manner as in the above simulation experiments. A hybrid CS scheme [20] for image reconstruction is

considered here, with a coarsest scale j0 = 3 and a finest scale j1 = 6 on the “Daubechies 8” wavelets. Coarse scale
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Figure 8. Probability heatmap results of clustering for video images. (a) EP-SBCS. (b) WBDOA.

coefficients denote the j20 wavelet transform coefficients in the upper-left square and fine-scale coefficients denote

the upper-left j21 − j20 coefficients except coarse-scale coefficients. Only fine-scale coefficients are reconstructed

with no compression applied in the coarse scale, i.e., coarse scale coefficients a re r etained. T he reconstructed 

images using linear reconstruction with all 4096 measurements are shown in Fig. 7(a) which is the best possible 

performance. Figs. 7(b)–(e) show the reconstructed results for the EP-SBCS, MT-AMP, WBDOA, and MT-CS, 

respectively, where the number of measurements is P = 1717 for each task. Note that both MT-AMP and MT-CS 

methods are used to recover images over the same scene classified m anually a s o ne c luster i n a dvance. Table II 

shows the full performance comparison. Again, the proposed EP-SBCS method reduces the reconstruction error 

compared to the other three methods shown in Table II, which is consistent with the conclusions drawn from the 

previous examples. Fig. 8(a) shows the probability heatmap for EP-SBCS in which all snapshots are clustered 

correctly according to different scenes. The probability heatmap for WBDOA is shown in Fig. 8(b), where tasks 

4–6 and 7–9 are clustered into one class. Therefore, the WBDOA method leads to a larger NMSE than that of the 

proposed EP-SBCS method due to the incorrect clustering, as evident in Table II.

3) Face Image Sequences: In this example, more realistic scenario is used for the performance comparisons. 

Unlike the still image based experiments above from the diverse scenes above, we take the face image sequences 

from the extended Yale Face Database B into consideration [47], [48]. 9 images of the identical human subject under 

different illumination conditions are used. All the images are cropped to size 168 × 192 and the original images are 

shown as Figs. 9(a). The stick-breaking truncation level L = 10 is still assumed. Note that all images are captured 

from the same subject and highly correlated, and thus both MT-AMP and MT-CS method are used to recover 

images by sharing the identical sparse pattern across all the tasks. Figs. 9(b)–(e) show the reconstructed results for 

the EP-SBCS, MT-AMP, WBDOA, and MT-CS methods, respectively. Their full performances are shown in Table 

III. It is found that the proposed EP-SBCS method has the lowest NMSE across all the tasks, compared to the other 

three methods shown in Table III, which is consistent with the conclusions drawn from the previous examples. 

Fig. 10(a) shows the probability heatmap for the EP-SBCS method, and it is observed that the proposed method 

classifies images into three classes. It is reasonable that tasks 1–4 are clustered into one class due to relatively bright 

illumination conditions, and the tasks 7–9 are also classified into one class due to their dark illumination conditions.
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1 2 3 4 5 6 7 8 9

Figure 9. Reconstructed images from face image sequences. (a) Origin, (b) EP-SBCS, (c) MT-AMP, (d) WBDOA, (e)MT-CS. Digits below the 

figure denotes the task index.

However, it seems that the WBDOA method recovers images by sharing the identical sparse pattern across images, 

and the probability heatmap in the shown in Fig. 10(b). The reason could be that all the tasks are highly correlated,

and thus are classified into one class in the WBDOA method. Therefore, the proposed EP-SBCS method leads to

a smaller NMSE than that of WBDOA method due to the appropriate structure clustering, as evident in Table III.

Table III

PERFORMANCE OF RECONSTRUCTED FACE IMAGE SEQUENCE.

NMSE Time(s)

Task 1 Task 2 Task 3 Taks 4 Task 5 Task 6 Task 7 Task 8 Task 9 Average

EP-SBCS 0.0669 0.0554 0.0506 0.0382 0.0415 0.0499 0.0406 0.0401 0.0406 33.6842

MT-AMP 0.0684 0.0711 0.0697 0.0718 0.0636 0.0727 0.0594 0.0526 0.0589 46.7693

WBDOA 0.1965 0.1955 0.1943 0.1860 0.1907 0.1834 0.1724 0.1836 0.1698 67.9951

MT-CS 0.2324 0.2513 0.2471 0.2525 0.2490 0.2423 0.2591 0.2560 0.2572 20.7707

V. CONCLUSION

This paper developed a hierarchical Bayesian framework to analyze the problem of simultaneously inferring

both the underlying structures and clusters of multiple related signals, leading to enhanced sparse reconstruction

performance. Specifically, by using Gaussian process, spike-and-slab priors were extended to encode the inner

statistical correlation within each task. To model the clustering mechanisms among tasks, the DP priors were

employed on the support of each task. This represents a nonparametric approach where the number of clusters

is not set a priori but is rather inferred from the data set. Within this framework, an inference algorithm based

on the expectation propagation scheme was developed which re-estimates each factor with the remaining of other
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Figure 10. Probability heatmap results of clustering for face image sequences. (a) EP-SBCS. (b) WBDOA.

factors sequentially and iteratively. By applying the EP framework, the approximate full posterior of the hierarchical

Bayesian model with spike-and-slab priors became analytically tractable and retained the sufficient complexity to

capture the critical characteristics of the true density. This EP-based algorithm was compared with the state-of-the-

art algorithms including MT-AMP, MT-CS, and WBDOA methods, and improved reconstruction performance for

multi-task problems was verified. The advantages of the proposed algorithm were more pronounced in recovering

multiple tasks with different sparse patterns. The proposed method automatically clustered signals accounting for the

statistical correlations inherent to multi-task learning, regardless of whether these correlations were within individual

tasks or across tasks of each cluster. In so doing, it reduced the number of measurements required for any task and

improved the accuracy of the reconstructed signals.
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