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ABSTRACT

The coprime sampling scheme allows signal frequency estimation through two sub-Nyquist samplers where the
down-sampling rates M and N are coprime integers. By considering the difference set of this pair of O(M +N)
physical samples, O(MN) consecutive virtual samples can be generated. In this paper, a generalized coprime
sampling technique is proposed by using O(M + pN) samples to generate O(pMN) virtual samples, where p is
an integer argument. As such, the existing coprime sampling techniques are represented as a special case of a
much broader and generalized scheme. The analytical expressions of the number of virtual samples, frequency
resolution and the corresponding latency time are derived. The effectiveness of the proposed technique is verified
using simulation results.
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1. INTRODUCTION

Spectrum estimation is an important area that finds variety of applications in sensing, surveillance, and com-
munications [1–3]. It is well known that the spectrum of a signal can be uniquely determined if the sampling
rate satisfies the Nyquist theorem. However, as the growing demand for higher signal bandwidth, the Nyquist
sampling requirement puts enormous demands on sensors, instruments and measurement devices, e.g., the analog
to digital converter (ADC).

To solve that problem, frequency determination using sparse sampling has received rapidly increasing interest.
In particular, sampling of a signal using multiple samples with sub-Nyquist sampling rates is proposed in [4, 5].
Among a number of techniques that are available for sparse sampling, coprime sampling is very attractive because
it enables a systematical design capability and degree-of-freedom (DOF) analysis [6–9]. Coprime sampling was
first used for identifying deterministic sinusoids in noise [6]. Then, the corresponding robust version was proposed
in [7] because of the inevitable presence of noise. However, such algorithms require a large number of samplers
to identify multiple frequencies. The wide sense stationary (WSS) scenarios were discussed in [8]. Only two
mutually coprime samplers are used with sample respective intervals of MTs and NTs, where M and N are
coprime integers representing down-sampling rates, and Ts is the original sampling interval, which is determined
by the spectrum bandwidth Bs. A larger positive semi-definite matrix with all correlation lags from −MN to
MN can be obtained, based on the difference set between 2N samples from the former sampler and M samples
from the latter sampler. Then the spectrum can be estimated with a resolution proportional to 2π/(MNTs)
by directly applying subspace-based technique, e.g., MUSIC [10]. As a result, it allows for identification up to
MN frequencies. The multidimensional coprime sensing was then extended from the previous implementations
to acquire densely sampled domain in [9]. In this case, the number of detectable frequencies and frequency
resolution of such those technique increase as M and N increase. However, it should be noted that the latency
time, which is determined by the data updating cycle, also significantly increases.

In this paper, a generalized coprime sampling technique for WSS signals is proposed by using a longer time
period used for correlation entry estimation. The generalized coprime concept was initially proposed in the
context of array configurations for direction-of-arrival estimation [11, 12]. In this paper, we extend the result
to the time domain. In particular, we introduce an integer factor p, such that pN samples in the first sampler,
in lieu of 2N , are used to estimate correlation entries. As such, the existing coprime sampling technique is
represented as a special case of p = 2. It is shown that the use of a large value of p enables improved frequency
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resolution and estimation performance. We derive the expressions of frequency resolution and the latency time
for quantitative evaluation, comparison, and optimal design, with respect to integer factor p. The effectiveness
of the proposed technique is verified using simulation results.

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices). In particular, IN
denotes the N ×N identity matrix. (.)∗ implies complex conjugation, whereas (.)T and (.)H respectively denote
the transpose and conjugate transpose of a matrix or a vector. E(.) is the statistical expectation operator.

2. THEORY AND PROPERTIES FOR COPRIME SAMPLING

As illustrated in Fig. 1, there are two sets of uniformly spaced samples of the input WSS signal X(t) using two
samplers, with sampling intervals MTs and NTs, respectively. Ts is a unit sampling interval that satisfies the
Nyquist theorem. Denote x[n] as the discretized waveforms of X(nTs). Then, the two sampled stream outputs
can be expressed as

x1[n1] = x[Mn1] = X(Mn1Ts),

x2[n2] = x[Nn2] = X(Nn2Ts). (1)

For non-negative integer l, there are no overlapping entries between such two sets other than x[MNl].
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Figure 1: Coprime sampling structure.

The correlation between the two sample sets, i.e., E [x1[n1]x∗2[n2]], yields the (n1,n2)th entry in the covariance
matrix with the lag

k = Mn1 −Nn2. (2)

It has been demonstrated in [8] that, due to the coprimality of M and N , we can always find n1 and n2 in the
range 0 ≤ n1 ≤ 2N − 1 and 0 ≤ n2 ≤ M − 1, for any integer k in the range 0 ≤ k ≤ MN − 1. The lags will
also occupy the range −MN + 1 ≤ k ≤ 0 but with some missing entries. The correlation at these missing lags,
however, can be obtained from the symmetric positive counterparts through conjugation. As such, we can obtain
the correlation entries R(k), for k = −MN + 1, . . . ,MN − 1. In practice, the expectation is approximated by
sample average. Since Eqn. (2) can be rewritten as k = M(n1 +Nl)−N(n2 +Ml) for any integer l, the following
full-rank Toeplitz correlation matrix can be estimated as

Rest =


Rest(0) Rest(−1) . . . Rest(−MN + 1)
Rest(1) Rest(0) . . . Rest(−MN + 2)

...
... . . .

...
Rest(MN − 1) Rest(MN − 2) . . . Rest(0)

 , (3)

with the lag k coefficient expressed as

Rest(k) =


1

L

L−1∑
l=0

x[M(n1 +Nl)]x∗[N(n2 +Ml)], k ∈ [0,MN − 1],

R∗
est(−k), k ∈ [−MN + 1, 0),

(4)

where n1 ∈ [0, 2N − 1], n2 ∈ [0,M − 1], and L is the number of time domain blocks used in averaging. The
matrix can then be used to estimate the spectrum using discrete Fourier transform (DFT) or subspace-based



techniques. It is noted that the spectrum with bandwidth Bs can be entirely identified since the covariance
matrix Rest contains all lags with a sampling rate fs = 1/Ts. In addition, while there are some values out of the
range [−MN,MN ], only the consecutive lags range in Eqn. (2) can be used to estimate the correlations, since
the eigen-decomposition operation will be performed with respect to the toeplitz matrix Rest. Such a technique,
which uses 2N samples in x1[n] and M samples in x2[n] to generate correlation entries, is described in [8] and
is referred to as conventional coprime sampling in this paper. For better illustrative purpose, the following
properties are summarized.

A. The maximum sampling rate of the two samplers is the larger value of fs/M and fs/N .

B. This technique can estimate up to MN frequencies in the spectrum, with a frequency resolution propor-
tional to fs/(MN).

C. The latency time Tl, which is defined as the time to collect samples, is the larger value of sampling time
with respect to the two samplers, expressed as

Tl = [M(2N − 1) +MN(L− 1)]Ts = [MNL+M(N − 1)]Ts. (5)

3. GENERALIZED COPRIME SAMPLING

Based on the properties in the previous section, the spectrum can be estimated using the coprime sampling
structure with low sub-Nyquist rates. By increasing the values of M and N , the number of detectable frequencies
increases and the frequency resolution becomes finer. While the sampling may be arbitrarily sparse, it should be
noted that the latency time, which is approximately MNLTs, increases with both M and N . On the other hand,
there are less samples in constant data updating cycle, resulting in the deterioration of the spectrum estimation
performance. In this section, a generalized coprime sampling technique is proposed to improve the frequency
resolution and estimation performance with almost the same latency time.

An integer factor p is introduced to achieve a larger number of lags. Instead of using 2N samples in the first
sampler as in the conventional coprime sampling scheme, we use pN samples in the first sampler to estimate
correlation matrix, whereas the same M samples are used in the second sampler. In this case, the resulting lags
fall into the following set,

K = {k|k = Mn1 −Nn2, 0 ≤ n1 ≤ pN − 1, 0 ≤ n2 ≤M − 1}. (6)

For different factor p, we obtain different set K. An example is shown in Fig. 2. It is observed from this figure
that the number of positive lags increases as p increases from 2 to 4. The following proposition about set K is
useful to understand the property of the resulting lag positions.

Proposition1 : The set K contains all the consecutive integers in the range 0 ≤ k ≤ (p− 1)MN +N − 1.

Proof: Given any integer k satisfying

0 ≤ k ≤ (p− 1)MN +N − 1, (7)

we need to prove that there exist integers n1 ∈ [0, pN − 1] and n2 ∈ [0,M − 1] such that k = Mn1 −Nn2 holds.
The requirement n2 ∈ [0,M − 1] is equivalent to

0 ≤ Nn2 ≤MN −N. (8)

Because Mn1 = k +Nn2, we obtain the following relationship by combining (7) and (8),

0 ≤Mn1 ≤ pMN − 1 < pMN. (9)

This result can be equivalently expressed as 0 ≤ n1 < pN . Because n1 is an integer, this requirement is equivalent
to

0 ≤ n1 ≤ pN − 1, (10)
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Figure 2: The set K with different values of p (M = 4 and N = 3. •: Valid lag positions; ×: missing lag
positions).

which is satisfied in the underlying coprime array configuration.

As a result of proposition 1, the correlation matrix R̃est can be systematically obtained with the entries

R̃est(k) =


1

L

L−1∑
l=0

x[M(n1 +Nl)]x∗[N(n2 +Ml)], k ∈ [0, (p− 1)MN +N − 1],

R̃∗
est(−k), k ∈ [−(p− 1)MN −N + 1, 0),

(11)

where n1 ∈ [0, pN − 1] and n2 ∈ [0,M − 1]. It becomes conventional coprime sampling when p = 2. Thus, the
conventional coprime sampling case can be considered as a special case of the generalized coprime sampling. As
a comparison, the corresponding properties of generalized coprime sampling are summarized below:

A. The maximum sampling rate remains the larger value of fs/M and fs/N .

B. It can estimate up to (p − 1)MN + N − 1 frequencies in the spectrum, which is increased by a factor of
p− 1.

C. The frequency resolution is approximately proportional to fs/ [(p− 1)MN ], which is an improvement by
a factor of p− 1.

D. The latency time Tl is

Tl = [M(pN − 1) +MN(L− 1)]Ts = (MNL−M)Ts + (p− 1)MNTs, (12)

which is approximately the same as the conventional coprime sampling, particularly for a large number of
time blocks L.

Therefore, when L is large, a high value of p in the generalized coprime sampling scheme leads to an improved
estimation performance without increasing the values of M and N as in conventional coprime sampling. The
maximum number of p is bounded by the minimum updating data rate of the system determined by M , N ,
L and Ts. Since we obtain the estimated correlation based on the received data samples as in Eqn. (11), the
number of time blocks L takes a large value to reduce the noise perturbation. In that case, the second term in
Eqn. (12) is negligible when p � L, compared to the corresponding first term, and Tl keeps nearly constant as
p increases.

4. SIMULATION RESULTS

Simulation results are presented to demonstrate the effectiveness of the proposed technique for different values
of p. Cases of p = 2 (or conventional coprime sampling), p = 5 and p = 30 are considered. In all simulations,
we assume Q sinusoidal signals with frequencies fq, for q = 1, . . . , Q, which are distributed in Bs = [0, 300] MHz



with the original sampling rate fs = 600 MHz. The noise power is assumed to be constant with this frequency
band. M = 4 and N = 3 are considered, i.e., the sub-Nyquist sampling rates for the two samples are respectively
fs/M = 150 MHz and fs/N = 200 MHz. In addition, L = 800 are used to estimate the correlations R̃est(k) with
k ∈ [−(p− 1)MN −N + 1, (p− 1)MN +N − 1], i.e., [−14, 14], [−50, 50] and [−350, 350], respectively. We use
the MUSIC algorithm in time domain to perform the frequency identification.

4.1 The number of detectable frequencies

We first compare the number of detectable frequencies. Q = 61 frequencies, which are uniformly distributed
between 5 MHz and 298 MHz, are assumed. Note that, only the p = 30 case has a sufficient number of DOFs
to identify all frequencies. This is verified in Fig. 3 in which only the case of p = 30 in Fig. 3(c) resolve all 61
frequencies, whereas not all frequencies are correctly identified for the cases of p = 2 and p = 5 in Figs. 3(a) and
(b).
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Figure 3: Estimated spectra for different values of p (Q = 61 and Input SNR=10 dB). (a) p = 2. (b) p = 5. (c).
p = 30.

4.2 Frequency resolution

In Fig. 4, Q = 4 frequencies, which are located at [45, 45.75, 91.5, 96] MHz, are used to examine the frequency
resolution. The result show that, the p = 30 scenario depicted in Fig. 4(c) can identify all 4 frequencies. However,
the case of p = 5 can only resolve the pair with frequencies 91.5 MHz and 96 MHz but fail to separate the closer
pair with frequencies 45 MHz and 45.75 MHz, as shown in Fig. 4(b). Both pairs of frequencies are unresolvable
when p = 2, as depicted in Fig. 4(a). Thus, it is evident that the resolution becomes finer as p increases, due to
the increased dimension of R̃est.
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Figure 4: Estimated spectra for different values of p (Q = 4 and Input SNR=10 dB). (a) p = 2. (b) p = 5. (c).
p = 30.



4.3 Identification performance

Q = 4 frequencies are then changed to be uniformly distributed between 45 MHz and 96 MHz, so that their
frequency separations satisfy the requirement of the resolution for all cases. We use Monte Carlo simulations to
evaluate the average root mean square error (RMSE) of the estimated sinusoidal frequencies, expressed as

RMSE =

√√√√ 1

IQ

I∑
i=1

Q∑
q=1

(f̂q(i)− fq)2, (13)

where f̂q(i) is the estimate of fq from the ith Monte Carlo trial, i = 1, . . . , I. We use I = 5000 independent
trials in the simulations. Fig. 5 compares the RMSE performance as a function of the input SNR. It is evident
that the RMSE is improved with the increase of the input SNR. In addition, the performance is improved as the
value of p increases.
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Figure 5: The latency time with respect to the number of time blocks L.

4.4 Latency time

Finally, we show the latency time, with respect to the number of time blocks L, in Fig. 6 based on Eqn. (12). For
different values of p, it is noted that the latency time slightly increases with p, whereas the difference becomes
negligible as L increases.
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Figure 6: The latency time with respect to the number of time blocks L.



5. CONCLUSION

We proposed a generalized coprime sampling technique to estimate the spectra of signals with a coprime pair of
sub-Nyquist rate. The proposed approach achieves better frequency resolution and identification performance in
a similar latency time. An analytical expression of the number of contiguous lags was derived. The effectiveness
of the proposed technique was verified using simulation results.
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