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ABSTRACT

Missing samples in the time domain introduce noise-like artifacts in the ambiguity domain due to their de facto
zero values assumed by the bilinear transform. These artifacts clutter the dual domain of the time-frequency
signal representation and obscures the time-frequency signature of single and multicomponent signals. In order
to suppress the artifacts influence, we formulate a problem based on the sparsity aware kernel. The proposed
kernel design is more robust to the artifacts caused by the missing samples.
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1. INTRODUCTION

Nonstationary signals are frequently encountered in practice, including radar, sonar and biomedical applications
[1]- [4]. These signals are traditionally analysed in the time-frequency domain in order to adequately address
their time-varying spectral behaviour.

Reduced interference distributions (RIDs) are well-known methods used for the time-frequency representation
(TFR) of nonstationary signals [5]- [8]. These distributions can be conveniently defined through the use of the
ambiguity domain. In this domain, the signal auto-terms are clustered around the origin, while the undesirable
cross-terms are dislocated form the origin. Since the positions of auto-terms and cross-terms are different for
each signal, it is not simple to decouple these terms and obtain a proper TFR. Various kernels of low-pass
filter characteristic have been designed with the goal of suppressing the cross-terms, while preserving the signal
auto-terms [3], [4].

Traditional time-frequency analysis assumes that the analyzed signals are uniformly sampled with the rate
equal to or higher than the Nyquist rate. As a result, RIDs do not consider the randomly undersampled or
incomplete data. Recently, compressive sensing (CS) is introduced as a framework for the analysis of data that
is sampled at a rate significantly lower than Nyquist [9], [10]. Even though CS has been extensively studied in
various fields, possible benefits in other areas such as the time-frequency analysis are of growing interest.

Time-frequency signature and ambiguity function of frequency modulated signals are sparse in their respec-
tive domains and when viewed through a window. This property has allowed compressive sensing and sparse
reconstruction to play an important role in enhancing the data time-frequency distributions (TFDs) [11]- [16].
Joint-variable nonstationary signal representations have greatly benefited from the local sparsity of polynomial
phase signals which has put the high resolution TFD in a new context different from the one traditionally
considered in this area [17], [18].

This paper introduces a novel kernel design that incorporates the sparsity property into the kernel definition.
By imposing the sparsity in the time-frequency domain, the kernel avoids the clutter regions in the ambiguity
domain. This in turn mitigates the noise associated with the missing samples in the time-frequency domain and
produces a better signal representation than the one obtained with sparsity-unaware kernel.

This paper is organized as follows. Section 2 reviews the RIDs and the role of the traditional kernels. The
proposed design is presented in Section 3. Simulation results are provided in Section 4, while the conclusion is
given in Section 5.
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Figure 1. Commonly used kernels in time-frequency analysis.

2. REDUCED INTERFERENCE DISTRIBUTIONS

The Wigner-Ville distribution (WVD) is one of the simplest TFRs. The WVD of x(n) is defined as,

WVD(n, k) =

N/2−1∑
m=−N/2

x(n+m)x∗(n−m)e−2πmk/N , (1)

where m denotes time lag, N is the signal length, while n and k denote discrete time and frequency, respectively.
The WVD provides high energy concentration in the time-frequency plane and is an ideal TFR for linearly
frequency modulated signals, i.e., chirps. However, for multicomponent signals, the WVD exhibits the presence
of cross-terms which can be mistaken as signal components. These cross-terms are a consequence of the bilinear
product in (1). In order to suppress the cross-terms and achieve high energy concentration in the time-frequency
domain, RIDs are introduced. RID can be defined as,

RID(n, k) =

N/2−1∑
p=−N/2

N/2−1∑
m=−N/2

A(p,m)C(p,m)e−2πnp/Ne−2πmk/N , (2)

where p denotes Doppler frequency, C(p,m) is the kernel, whereas A(p,m) is the ambiguity function of signal
x(n). The ambiguity function can be formulated as,

A(p,m) =

N/2−1∑
n=−N/2

x(n+m)x∗(n−m)e−2πnp/N . (3)

Various kernels have been defined in order to address the issue of reducing the effect of cross-terms. Figure 1
illustrates several kernels well-known in the time-frequency analysis. Their formulation is given in Table 1. We
can notice that all kernels assume some form of a low-pass filter in the ambiguity domain. Figure 2 shows the
WVD and RID based on the Choi-Williams kernel of a signal consisting of a sinusoid and a chirp. We can notice
that strong cross-terms, which exist in the WVD, are removed in the RID.

3. SPARSITY PROMOTING KERNEL DESIGN

In this section, we present the kernel design which promotes sparsity in the time-frequency distribution and the
sparsity awareness in the kernel design is a novel step which is introduced in an attempt to reduce the artifacts in
the TFR caused by the missing samples in the time domain. The kernel design is formulated as an optimization
problem.



Table 1. Definition of some commonly used time-frequency kernels.

Time-frequency kernels C(p,m)

Choi-Williams e
−p2m2

σ

Radial Gaussian e
−(p2+m2)

σ

Born-Jordan sin(pm/2)
pm/2

Figure 2. TFRs of a signal consisting of a sinusoid and a chirp.

Let us first briefly examine the effect of missing samples on the ambiguity domain. Signal with missing
samples can be represented as the sum of the original signal s(n) and the set of missing samples at random
positions ni,

x(n) = s(n)−
∑
ni

δ(n− ni)s(n). (4)

If we denote
∑
ni

δ(n− ni)s(n) as v(n), we can write the following expression for the ambiguity function of x(n),

Ax(p,m) =

N/2−1∑
n=−N/2

[s(n+m)s∗(n−m)−v(n+m)s∗(n−m)−v∗(n−m)s(n+m)+v(n−m)v∗(n−m)]e−2πnp/N , (5)

i.e.,

Ax(p,m) = As(p,m) +

N/2−1∑
n=−N/2

[−v(n+m)s∗(n−m)− v∗(n−m)s(n+m) + v(n−m)v∗(n−m)]e−2πnp/N . (6)

We can notice that only the first term in (6) corresponds to the desired ambiguity function, while the other terms
are artifacts caused by the missing samples. Further details about the noise effect caused by the missing samples
can be found in [14]. As can be seen from (6), the noise pattern in the ambiguity domain depends on the values
of the missing samples values and their positions. Therefore, some parts of the ambiguity function will be more
distorted than others. This motivates the search for points which are reliable for TFR estimation. Model in (4)
provides another information which facilitates the search for the reliable points. Namely, missing samples can
be seen as impulses in the time domain. It is known that a portion of energy of impulses in the time domain
is located along the τ = 0, i.e., the lag axis in the ambiguity domain. Thus, by avoiding the points along the
lag axis, a part of noise is removed. This is shown in the Figure 3 where RIDs are based on the Choi-Williams
kernel. It should be noted that other signal components, which are not impulses, can also occupy some part of



lag axis. However, since they are overlapping with impulses, we can neglect them under the assumption that the
power of impulses is higher than that of auto-terms.

In the case of multicomponent signals the influence of cross-terms should be reduced, hence the search for
more reliable points is performed within the specified kernel region. That is, we assume that the kernel shape is
fixed in advance and that the cross-terms are negligible or eliminated. For a given kernel shape, the search for
reliable points is formulated as follows,

minimize
x

‖ aC � x− aC ‖2
subject to ‖W(x� aC) ‖1≤ K (7)

xL ≤ x ≤ xU

where symbol ◦ denotes Hadamard product, aC is the vectorized version of the ambiguity function AC which
is obtained after applying a kernel (AC = A � C). W is the discrete 2D Fourier transform matrix, K is a
parameter for adjusting the sparsity, whereas xL and xU denote the lower and upper limits of x.

The task of the optimization problem is to find the mask x, which when applied along with some of the
traditional kernels, will minimize the clutter in TFR caused by the missing samples. In order to perform that
task, we formulate the objective function and the constraints in the following manner. The objective function is
the error between the noisy ambiguity function and the masked ambiguity function. The role of the objective
function is to preserve the energy of auto-terms since they contain the desired signal information. On the other
hand, these auto-terms are distorted so the sparsity constraint is added in order to reduce the clutter in TFR.
Namely, by specifying the sparsity of the TFR, the kernel mask puts the highest weight on the points which
alleviate that property, while the influence of other points is suppressed. In this way, the artifacts are reduced
since they compromise the sparsity of TFR. Additionally, we include the lower and upper limits for the mask.
Also, in the implementation we specify that kernel assume zero value along the lag axis.

4. SIMULATION RESULTS

In this section, we demonstrate the effectiveness of the proposed kernel using multicomponent signal. The results
show that artifacts in the TFR are significantly reduced by using the proposed kernel design. We include RID
using Choi-Williams kernel as one of the traditional kernels.

We observe a multicomponent signal which consists of two sinusoids. 30% of samples are randomly missing
in time. The RID based on the use of Choi-Williams kernel is shown in Figure 4(d). Some of the noise is
removed by imposing zeros along the kernel lag axis. TFR obtained after applying the proposed approach on the
Choi-Williams kernel is shown in Figure 4(b). We can notice that the kernel design obtained in the optimization
process described in Section 3 (Figure 4(a)) provides less cluttered TFR when compared to the RID based on
the non-optimized kernel (Figure 4(c)). Even though the kernel does not perfectly recover the auto-terms, noise
is significantly removed when compared to the results in Figure 4(d).

5. CONCLUSION

This paper introduces kernel design with the aim of reducing the artifacts in the TFR caused by missing samples
or random undersampling. Namely, missing samples in the time domain distort the ambiguity function and the
TFR. In order to reduce the artifacts in the time-frequency domain, the proposed kernel searches for the points
in the ambiguity domain responsible for a sparse TFR. In so doing, TFR becomes less cluttered when compared
to the traditional RIDs.
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Figure 3. Reducing the effect of impulses by imposing the zero values along the lag axis in the ambiguity domain.

Figure 4. TFR using the proposed approach and RID based on Choi-Williams kernel.
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