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ABSTRACT 
 

Unattended catastrophic falls result in risk to the lives of elderly. There are growing efforts and rising interest in 

detecting falls of the aging population, especially those living alone. Radar serves as an effective non-intrusive sensor for 

detecting human activities. For radar to be effective, it is important to achieve low false alarms, i.e., the system can 

reliably differentiate between a fall and other human activities. In this paper, we discuss the time-scale based signal 

analysis of the radar returns from a human target.  Reliable features are extracted from the scalogram and are used for 

fall classifications. The classification results and the advantages of using a wavelet transform are discussed. 
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1. INTRODUCTION 
 

One of the major public health problems is elderly falls. Prompt assistance after a fall can reduce complications and save 

lives. Therefore, it is very important to detect a fall immediately as it happens and mobilize first responders for proper 

care and attendance to possible injury. In recent years, many fall detection systems have been proposed in the literature. 

These can be categorized into two main types of fall monitoring devices, namely, wearable and non-wearable. The 

simplest wearable device is a “push-button”, which can be manually activated in case of a fall. Accelerometer-based 

wearable devices detect falls by measuring the applied acceleration along the elevation dimension.
1 

The wearable 

devices are inexpensive but have two main drawbacks. First, these devices cannot be activated in case of a loss of 

consciousness after a fall. Second, due to memory and suitability issues, the elderly may not be wearing them at all 

times.
2
 Among the non-wearable devices, floor vibration sensors and microphone arrays have been proposed.

3
 

Radar is an excellent modality due to its capability of detecting human motions. The general concept of radar-based 

system is to transmit an electromagnetic (EM) wave over a certain frequency range and analyze the radar returns. 

Changes in the properties of the returned signal relative to the transmitted signal depend on the target motion 

characteristics. In particular, the transmitted and received frequencies differ by a carrier shift, known as Doppler 

frequency shift or Doppler effect. The Doppler frequency shift depends on the velocity of a moving target. In addition, 

the motions of arms and legs introduce additional frequency modulations on the returned radar signal, which generate 

sidebands about the target’s Doppler frequency, called the micro-Doppler effect.
4
 A human in motion reflects radar 

signals with Doppler modulations that reveal information about the motion dynamics. As such, the velocity of moving 

objects can be estimated from the measured Doppler frequency signature of the radar returns.  

The Doppler signatures measured with biometric radars have received significant interest over the past few years.
5-8

 

Radar sensors can provide valuable information about human body motion and cross-motor activities, and can be 

operated at all times.
5
 Gait characterization using various machine learning algorithms has proven to be very effective in 

terms of rendering high classification rates.
6,7

 In Ref. [6], six features were chosen from the short-time Fourier transform 

(STFT) of the radar signal to represent the micro-Doppler signatures; a support vector machine (SVM) was then used as 

a classifier. In Ref. [7], using mel-frequency cepstral coefficients (MFCC), the Doppler signatures of human activities 

are extracted and, based on these features, two different machine learning algorithms, i.e., SVM and k-nearest neighbor, 

are employed to detect falls. Hidden Markov model (HMM) based machine learning approach has also been applied for 

recognizing human actions.
8,9
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This paper considers the classification of two human activities, namely, fall and sit/stand. The raw data, collected from a 

continuous-wave (CW) Doppler radar, was processed to distinguish between the two motion categories of a normal sit or 

stand and a general fall. Wavelet transform serves as an analysis tool to analyze the non-stationary signal’s time-scale 

characteristics. Wavelet transform and its squared magnitude, referred to as the scalogram, are applied to generate 

important motion attributes. Specific features are first extracted from the scalogram and then used by the Mahalanobis 

distance classifier to map the attribute set to the appropriate motion class.  

The remainder of the paper is organized as follows. In Section 2, the signal model is presented. Continuous wavelet 

transform (CWT), the features extracted from the scalogram, and the Mahalanobis distance classifier are described in 

Section 3. Section 4 presents experimental results along with appropriate observations. Section 5 contains the 

conclusion. 

 

2. SIGNAL MODEL 

A monostatic CW radar transmits a sinusoidal signal, expressed as   ( )     (      ) , where  
 

 is the carrier 

frequency. Consider a point target which is located at a distance of    from the radar at time    , and moves with a 

velocity of  ( ) in a direction forming an angle of   with the radar line-of-sight. As such, the distance between the radar 

and the target at time instant t is  

 ( )      ∫  ( )    ( )    
 

 
      (1) 

The received radar signal can be expressed as  

   ( )      [     (  
  ( )

 
)]  (2) 

where      the target reflection coefficient and c is the velocity of the EM wave propagation. The Doppler frequency 

corresponding to   ( ) is 
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where         is the wavelength. 

For a spatially extended target, such as a human body, the radar return is the integration over the target region , given 

by 

  ( )  ∫    
( )  . (4) 

In this case, the Doppler signature is the superposition of all component Doppler frequencies. Torso or gait motions 

generally generate time varying Doppler frequencies, and their exact signatures depend on the target shape and motion 

patterns. 

 

3. FALL DETECTION ALGORITHM 

Wavelet transform is considered as a powerful tool in the analysis of non-stationary signals. Like the STFT, the wavelet 

transform uses the inner products to measure the similarity between a signal and an analyzing function. In STFT, the 

analyzing functions are windowed complex exponentials, and the STFT coefficients represent the projection between the 

windowed signal and a sinusoid in an interval of a specified length. In the wavelet transform, the analyzing function is a 

wavelet. 

Compared to the STFT, which uses a fixed window function to capture the local frequency components, the wavelet 

transform exploits multi-resolution windows to achieve both coarse and high frequency resolutions for slowly and 

rapidly time-varying signal components, respectively.  According to the uncertainty principle,
10 

the product of the time-

domain resolution and the frequency-domain resolution is lower bounded. That is, we cannot achieve a high resolution in 

both the time and frequency domains at the same time. Therefore, although STFT can observe the time-varying 

frequency signatures, the question always arises with regard to the optimum window length for the given data to provide 

the best tradeoff between spectral and temporal resolutions.  



The wavelet transform, on the other hand, implements the multi-resolution concept by changing the position and scaling 

of the mother wavelet and thereby captures short duration, high frequency components and long duration, low frequency 

components.
11

 In the underlying application, the wavelet transform is considered particularly useful in capturing the high 

Doppler frequency components of the fall while protecting the low-frequency components in the data. As the wavelet 

transform provides the frequency of the signals and the time associated to those frequencies, it has applications in 

numerous fields, such as signal processing of accelerations for gait analysis, fault detection, design of low power 

pacemakers, and also in ultra-wideband (UWB) wireless communications. 

3.1 Continuous Wavelet Transform 

Since basis orthogonality is not required neither is the inverse transform employed in the processing at hand, we use the 

CWT, rather than the discrete wavelet transform (DWT), for the processing of a discrete signal. In so doing, we can 

incorporate various scales and time shifts over the given data record. In essence, unlike the DWT where dyadic 

representation is adopted, the CWT can operate at every scale, ranging from that of the original signal up to some 

maximum scale which is determined by computations and analysis tradeoffs. Also, the analyzing wavelet is shifted 

sample by sample over the full domain of the analyzed function. The CWT compares the signal to a shifted and 

compressed or expanded version of a wavelet. Expansion and compression of a wavelet function, which correspond to 

the physical notion of scale, are collectively referred to as dilation or scaling.  By comparing the signal to the wavelet at 

various scales and positions, one obtains the coefficients as a function of these two variables.  

Mathematically, the CWT of a function f (t) is presented for a scale parameter,    , and position parameter, b, as, 

  (     ( )  ( ))  ∫  ( )
 

√ 
  (

   

 
)   

 

  
, (5) 

where  (t) is the mother wavelet, * denotes the complex conjugate. Note that the CWT coefficients are affected not only 

by the values of scale and position, but also by the choice of the wavelet. In this paper, the Morlet wavelet is used as the 

analyzing function.
12

 Since the Morlet wavelet is composed of a sinusoid multiplied by a Gaussian window, which forms 

the typical characteristics of a radar signal, all features of the signal are effectively captured. Moreover, it has good local 

performance in both time and frequency domains, despite its simplicity and computational convenience. The mother 

wavelet function used in our work is expressed as  

  ( )    
  

    (   )  (6) 

and is plotted in Figure 1. 

 
Figure 1: Morlet Wavelet. 

 

3.2 Wavelet Features for Classification 

To distinguish the radar signal corresponding to a fall and a sit/stand, a classifier is constructed based on the 

Mahalanobis distance between the features of the event under test and those corresponding to the trained fall and non-

fall classes.  Toward this purpose, multiple features are extracted from the signal scalogram. Only the features observed 

over the time period with sufficient signal power in the frequency bands of interest are passed to the classifier for fall 

detection.
13

  



Among many possible signal attributes in the wavelet domain, we have found three features which are important and 

relevant to the underlying classification problem: (a) the lowest scale at which the coefficient has a significant value; (b) 

the ratio of the power presented from scales 1 to 200 to power presented from scales 201 to 300; and (c) the rate of 

change of scale from 300 to lowest scale. The choice of the considered scale ranges will become evident in Section 4. 

These features are detailed below.  

(1)  Lowest scale or highest frequency component. The lowest scale corresponds to the highest frequency component 

in the activity. This clearly helps in distinguishing between low and high velocity motions. The noise effect is 

mitigated by setting the scalogram coefficients below a certain threshold level,     to zero. This threshold is 

determined based on the mean (  ) and standard deviation (√  ) of the scalogram coefficients over the no activity 

region, in a spirit similar to the concept of constant false alarm rate in radar surveillance.
14

 The noise threshold is 

given by  

        √     (7) 

where the value of N trades off between the signal preservation and noise rejection. In this paper we use N=1.5. 

(2)  Ratio of the energies. Only the ranges from 1 to 200 and 201 to 300 are selected because it is easy to distinguish 

sit/stand and a fall using these ranges. A typical sit/stand has significant power present above the scale of 200, 

whereas a fall has significant power present even when the scale is below 100. The ratio of power from scale range 

of 1 to 200 to scale range of 201 to 300 is, therefore, used as a key feature for the application at hand. 

(3)  Rate of change of scale. The rate at which the scale changes from the 300th to the lowest scale having significant 

coefficient value represents how fast the Doppler frequencies vary with time.  
 

3.3 Mahalanobis Distance 

The Mahalanobis distance is a descriptive statistic, which is defined as the unitless measure of the distance between two 

points in the space defined by two or more correlated variables.
15

  The Mahalanobis distance is widely used in cluster 

analysis and classification techniques. To this end, it is used to measure the similarity between an unknown set and a 

known set. The unknown set is classified as the known set that has the smallest Mahalanobis distance.    

Denote the mean vector of class q as m
(q)

 and the corresponding covariance matrix as C
(q)

, where q implies either fall or 

non-fall.  Then, for a feature vector x of the event under test, the Mahalanobis distance D
(q)

 between x and the class q is 

expressed as  

  ( )  √(   ( )) [ ( )]  (   ( ))  (8) 

where (.)
T
 denotes transpose. Note that the Mahalanobis distance differs from the Euclidean distance in the sense that it 

takes into account the correlations of the data set and is scale-invariant.  

The computation of the features and the corresponding Mahalanobis distances is summarized below:  

1) Calculate the CWT of the raw data and then segment the results into short intervals, where the actual movement 

takes place; 
2) Generate the scalogram. That is, calculate the power of each CWT coefficient by taking the magnitude square 

of each coefficient; 
3) Determine the mean m

(q)
 of the features of the training sets of each class q and the corresponding covariance 

matrix as 
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where Nq is the number of training set samples for class q, and xi

(q)
 is the feature vector of the ith sample of the  

training set for class q.  

4) Compute the Mahalanobis distance between the test feature vector x and the class q using equation (8). 

5) Assign the test vector x to the class with the smallest Mahalanobis distance. 



4. EXPERIMENTAL RESULTS 
 

To verify the effectiveness of the proposed method, experiments were performed at the Radar Imaging Lab, Center for 

Advanced Communications, Villanova University.  Figure 2 depicts the experiment setting. The radar operates at a 

carrier frequency of 8 GHz with an antenna whose feed point is 40 inches high from the floor, and the sampling 

frequency is 1 kHz. The antenna is installed to transmit and receive vertically polarized signals. The test subject is 

approximately 9 feet away from the radar. 

The experiments consist of two human subjects, who individually undergo sit, stand, and fall backward relative to the 

radar line-of-sight. The first experiment consists of a single human subject going through a series of sitting in a chair and 

standing up motions over an interval of 20 seconds. The sit and stand motions are performed in a relatively fast manner 

so that the Doppler frequencies are closer to those of the falls for more challenging classifications. The second 

experiment entails the fall of a single human followed by the motion of getting back up over a time interval of 20 

seconds. Each of the two test subjects were asked to repeat both experiments five times so that variations could be 

monitored for all the activities. As such, the recorded data consists of ten sets per experiment. Prior to taking the wavelet 

transform, the clutter from the environment was suppressed by subtracting empty scene measurements from the target 

scene data.  

 
 

Figure 2: Experiment Setting. 

 

 

The CWT of the background subtracted data corresponding to the various test cases was computed. Figures 3(a) and  

3(b) show the  scalograms of a fall and a sitting motion, respectively. To facilitate feature extraction, the scalograms are 

converted to binary images by applying threshold of noise floor, as discussed earlier. The resulting binary images are 

cleaned by removing those coefficients which are not representing the signal of interest. Figures 3(c) and 3(d) show the 

binary images corresponding to Figures 3(a) and 3(b), respectively, whereas Figures 3(e) and 3(f) depict the respective 

results after image cleaning. Comparing the binary images before and after cleaning, we observe that the latter provide 

an enhanced framework for extracting the features for distinguishing falls from sitting.  

In Figure 3, the lowest scale (i.e., the highest frequency) component of a fall and sit exhibits a noticeable difference.  

The ratio of the power from scales 100 to 200 and 201 to 300 in the fall case is expected to be much higher because of 

the presence of energy components in the scale range where no activity exists for a sit case. The rate of change of scale 

also is expected to be much higher for a fall than a sit.  

Since the CWT does not distinguish between positive and negative frequencies, sit and stand are collectively considered 

as one class, whereas fall is considered as another class. The classification results obtained using the Mahalanobis 

distance as a classifier is presented in Table 1. Two sets are taken from each class, namely, sit/stand and fall and treated 

as the test cases. The remaining eight data sets for each class were used as training data. The feature vector 

corresponding to each test set is projected onto the sit/stand and fall classes and the Mahalanobis distance to each class is 

determined. A small Mahalanobis distance represents a high similarity between the test set and the corresponding class. 

From the results in Table 1, we observe that the classification accuracy is 100% for the sit/stand and fall classes for the 

data being analyzed. 



 

      (a) Wavelet transform of a Fall                                                 (b) Wavelet transform of a sit  

 

           (c) Binary image of the fall scalogram          (d) Binary image of the sit scalogram 

 
                         (e) Cleaned binary image of the fall                                 (f) Cleaned binary image of the sit                                                                                                                    

                                                     

     Figure 3: Scalogram and results of morphological processing.  

 

                                                    
 

     Table 1: Confusion matrix of the classification results using CWT 
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To make a comparison between the scalogram-based approach with that based on the spectrogram, we first convert the 

cleaned scalograms of fall and sit, as depicted in Figures 3(e) and 3(f), to the time-frequency domain, which are plotted 

in Figures 4(a) and 4(b), respectively.  The binary image of the spectrograms of the same fall and sit are plotted in 

Figures 4(c) and 4(d), respectively, where the Hamming window of size 255 is applied to obtain each spectrogram.  

From the figures, we observe that the peaks obtained from the scalogram and spectrogram are similar. The same features 

that are extracted from the scalogram are also obtained from the spectrogram and used to perform classification. The 

corresponding results using STFT are presented in Table 2, which also provides 100% classification accuracy. However, 

when the window size is reduced to 127, the STFT based classifier exhibits missed detections and false alarms, as 

indicated in Table 3. This example highlights the shortcoming of the STFT based approach. A suitable window size has 

to be specified in the STFT to obtain correct classification results. An inappropriate window size will affect the 

classification rate as shown in Table 3. The scalogram-based approach overcomes the limitations of the STFT based 

approach, thereby providing enhanced classifications. In addition, it also provides smoother distribution after the 

morphological processing. 

 

 
 

              (a) Converted scalogram of the fall from Figure 3(e)          (b) Converted scalogram of the Sit from Figure 3(f)  

 

 

                 (c) Binary image of the spectrogram of the fall                  (d) Binary image of the spectrogram of the sit 

 

       Figure 4. Comparison with spectrograms 

      

     
 Table 2: Confusion matrix of the classification results using STFT with a window size of 255 
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 Table 3: Confusion matrix of the classification results using STFT with a window size of 127 

 

Actual 

Class 

 

Classified Class 

Sit/Stand Fall 

Sit/Stand 8 2 

Fall 1 9 

 

 

5. CONCLUSION 
 

In this paper, the wavelet transform was used as a tool for the analysis of non-stationary radar signals that lead to the 

detection of typical human falls. A feature extraction technique was used as basis for classification. Three features were 

extracted from a scalogram obtained through the continuous wavelet transform. The extracted features were taken into a 

feature vector and classification was performed based on the Mahalanobis distance metric. Experimental results show a 

100% classification rate between the fall and the sit/stand activities. This demonstrates that the features taken into 

consideration have the capability of robust classification. Since the scalogram provides a good tradeoff between the low 

frequency and high frequency components, classification using wavelet transform provides more accurate results as 

compared to the spectrogram-based counterparts. 
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