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Abstract

The co-prime array, which utilizes a co-prime pair of uniform linear sub-arrays, provides a sys-

tematical means for sparse array construction. By choosing two co-prime integers M and N , O(MN)

co-array elements can be formed from only O(M +N) physical sensors. As such, a higher number of

degrees-of-freedom (DOFs) is achieved, enabling direction-of-arrival (DOA) estimation of more targets

than the number of physical sensors. In this paper, we propose an alternative structure to implement

co-prime arrays. A single sparse uniform linear array is used to exploit two or more continuous-wave

signals whose frequencies satisfy a co-prime relationship. This extends the co-prime array and filtering to

a joint spatio-spectral domain, thereby achieving high flexibility in array structure design to meet system

complexity constraints. The DOA estimation is obtained using group sparsity-based compressive sensing

techniques. In particular, we use the recently developed complex multitask Bayesian compressive sensing

for group sparse signal reconstruction. The achievable number of DOFs is derived for the two-frequency

case, and an upper bound of the available DOFs is provided for multi-frequency scenarios. Simulation

results demonstrate the effectiveness of the proposed technique and verify the analysis results.
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I. INTRODUCTION

An important application of array signal processing is direction-of-arrival (DOA) estimation,

which determines the spatial spectrum of the impinging electromagnetic waves. It is well known

that an N -element uniform linear array (ULA) has N − 1 degrees-of-freedom (DOFs), i.e., it

resolves up to N − 1 sources or targets by using conventional DOA estimation methods, such

as MUSIC and ESPRIT [3, 4]. On the other hand, a higher number of DOFs can be achieved to

resolve more targets by using the same number of array sensors if they are sparsely placed [5, 6].

An increased number of DOFs is usually achieved by exploiting the extended difference co-array

whose virtual sensor positions are determined by the lag differences between the physical sensors.

Among a number of techniques that are available for sparse array construction, co-prime

array [7] is considered attractive due to its capability of the systematic sparse array design. By

choosing two integer numbers M and N to be co-prime, O(MN) targets can be resolved with

M +N − 1 physical sensors [8]. This co-prime array concept can be generalized by introducing

an integer factor that compresses the inter-element spacing of one constituting sub-array, thereby

achieving increased DOFs [9, 11]. In addition, by placing the two sub-arrays co-linearly instead

of co-located, the number of unique virtual sensors is further increased, which benefits DOA

estimation based on sparse signal reconstruction techniques [10, 11].

While the co-prime array concept has been developed using physical uniform linear sub-arrays,

we propose in this paper an effective scheme that implements co-prime array configurations using

a single sparse ULA with two or more co-prime frequencies. As such, the ULA, whose inter-

element spacing is respectively M1 and M2 half-wavelengths of the two respective frequencies,

with M1 and M2 to be mutually co-prime integers, acts as virtual sub-arrays, resulting in an

equivalent structure to co-prime arrays. In essence, the proposed approach integrates the concept

of co-prime array and co-prime filter to reduce complexity and achieve high system performance.

Unlike co-prime arrays, wherein the numbers of sub-array sensors and the inter-element spacings

have to satisfy the co-prime relationship, only the frequencies are required to be co-prime in the

proposed scheme.

The proposed scheme can be adopted for both passive and active radar systems. The former

requires filtering the signal arrivals at the employed co-prime frequencies, whereas the latter

requires emitting those frequencies from a single antenna or a phased array and receiving the

target backscattering with ULA. The transmitter and receiver can be located or widely separated.
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For active sensing, sum co-array of the transmit and receive arrays replaces the difference co-

array of the two structures which is associated with receive only operations [12].

In this paper, we derive the analytical expression of the available number of DOFs as a

function of the number of physical sensors, L, and the selected co-prime frequencies for the

two-frequency case. The results resemble those derived in [9, 11] for a physical co-prime array.

The key difference lies in the fact that, unlike the co-prime array where each sub-array uses

a different number of sensors, the two virtual sub-arrays in the underlying structure refer to

the same physical ULA and thus share the same number of sensors. In addition, the number

of physical sensors is not tied to the co-prime frequency multipliers M1 and M2. The property

enables a higher flexibility in array design and operation. In particular, for a fixed number of

physical array sensors, L, we demonstrate that a high number of DOFs, proportional to L2, can

be achieved with large values of M1 and M2. When K mutually co-prime frequencies are used,

each pair of these frequencies can form a virtual co-prime array as discussed above. Accordingly,

O(K2L2) DOFs can be achieved.

It is shown that, in the proposed scheme, the self-lags in the co-array corresponding to each

sub-array form a subset of the sub-array cross-lags. As such, the available DOFs are solely

determined by the number of cross-lags between the two sub-arrays. Because of the frequency-

dependent characteristics of the source, channel and target radar cross section (RCS), the received

signal vectors corresponding to the different frequencies have a common spatial support, i.e.,

DOA, but generally have distinct coefficients. Thus, DOA estimations become a group sparse

signal reconstruction problem. In this case, the self-lags obtained for each sub-array can also be

exploited for possible performance improvement.

A large number of compressive sensing (CS) techniques have been proposed to deal with this

problem. In this paper, we consider the problem under the Bayesian compressive sensing (BCS)

or sparse Bayesian learning framework [13–17], which generally achieves a better reconstruction

performance over those on the basis of the greedy algorithms and dynamic programming ap-

proaches, such as the orthogonal matching pursuit (OMP) [18] and the least absolute shrinkage

and selection operator (LASSO) [19] algorithms. In particular, we use the complex multitask

Bayesian compressive sensing (CMT-BCS) algorithm [20] to determine the DOAs of group

sparse complex signals. This algorithm jointly treats the real and imaginary components of a

complex value, in lieu of decomposing them into independent real and imaginary components.

As a result, the sparsity of the estimated weight vectors can be improved, yielding better signal
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recovery. Group sparsity treatments for real and imaginary entries have been reported in, e.g.,

[21, 22].

The remainder of the paper is organized as follows. In Section II, we first review the co-

prime array concept based on the difference co-array. Then, the array signal model exploiting

co-prime frequencies is summarized in Section III. Analytical expressions of array aperture

and the number of DOFs are derived in Section IV with respect to two and multiple co-prime

frequencies. Sparsity-based DOA estimation exploiting the CMT-BCS is described in Section V.

Simulation results are provided in Section VI to compare the performance of DOA estimation

for different scenarios and validate the usefulness of the results presented in Section V. Section

VII concludes this paper.

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices). In

particular, IN denotes the N × N identity matrix. (.)∗ implies complex conjugation, whereas

(.)T and (.)H respectively denote the transpose and conjugate transpose of a matrix or vector.

vec(·) denotes the vectorization operator that turns a matrix into a vector by stacking all columns

on top of each other, and diag(x) denotes a diagonal matrix that uses the elements of x as its

diagonal elements. ‖ · ‖2 and || · ||1 respectively denote the Euclidean (l2) and l1 norms, and

E(·) is the statistical expectation operator.
⊗

denotes the Kronecker product, and b·c denotes

the floor function and returns the largest integer not exceeding the argument. Pr(·) denotes

the probability density function (pdf), and N (x|a, b) denotes that random variable x follows a

Gaussian distribution with mean a and variance b. Re(x) and Im(x) denote the real and imaginary

parts of complex element x, respectively.

II. CO-PRIME ARRAY CONCEPT

In this section, we first review the co-prime array configuration that achieves a higher number

of DOFs based on the difference co-array concept. A co-prime array [7] is illustrated in Fig.

1, where M and N are co-prime integers, i.e., their greatest common divisor is one. Without

loss of generality, we assume M < N . The unit inter-element spacing d is typically set to λ/2,

where λ denotes the wavelength. The array sensors are positioned at

P = {Mnd| 0 ≤ n ≤ N − 1} ∪ {Nmd| 0 ≤ m ≤M − 1}. (1)

Because the two sub-arrays share the first sensor at the zeroth position, the total number of

sensors used in the co-prime array is M +N − 1. Note that the minimum inter-element spacing

in this co-prime array is d = λ/2.
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Denote p = [p1, ..., pM+N−1]
T as the positions of the array sensors, where pi ∈ P, i =

1, ...,M + N − 1, and the first sensor, located at p1 = 0, is assumed as the reference. Assume

that Q uncorrelated signals impinging on the array from angles Θ = [θ1, ..., θQ]T , and their

discretized baseband waveforms are expressed as sq(t), t = 1, ..., T , for q = 1, ..., Q. Then, the

data vector received at the co-prime array is expressed as,

x(t) =

Q∑
q=1

a(θq)sq(t) + n(t) = As(t) + n(t), (2)

where

a(θq) =
[
1, ej

2πp2
λ

sin(θq), ..., ej
2πpM+N−1

λ
sin(θq)

]T
(3)

is the steering vector of the array corresponding to θq, A = [a(θ1), ..., a(θQ)], and s(t) =

[s1(t), ..., sQ(t)]T . The elements of the noise vector n(t) are assumed to be independent and

identically distributed (i.i.d.) random variables following the complex Gaussian distribution

CN(0, σ2
nIM+N−1).

The covariance matrix of the data vector x(t) is obtained as

Rxx = E[x(t)xH(t)] = ARssA
H + σ2

nIM+N−1

=

Q∑
q=1

σ2
qa(θq)a

H(θq) + σ2
nIM+N−1,

(4)

where Rss = E[s(t)sH(t)] = diag([σ2
1, ..., σ

2
Q]) with σ2

q denoting the input signal power of the

qth target, q = 1, ..., Q. In practice, the covariance matrix is estimated using the T available

samples, i.e.,

R̂xx =
1

T

T∑
t=1

x(t)xH(t). (5)

By vectorizing the matrix R̂xx, we obtain the following measurement vector:

z = vec(R̂xx) = Ãb + σ2
ni, (6)

where Ã = [ã(θ1), . . . , ã(θQ)], ã(θq) = a∗(θq)
⊗

a(θq), for 1 ≤ q ≤ Q. In addition, b =

[σ2
1, . . . , σ

2
Q]T and i = vec(IM+N−1). Benefiting from the Vandermonde vector a(θq), we can

regard z as a received signal from a single snapshot b and the matrix Ã behaves as the manifold

matrix of a larger virtual array which has sensors located at the lags between two sub-arrays.

From a pair of antennas located at the ith and kth positions in p, the correlation E[xi(t)x
∗
k(t)]

yields the (i, k)th entry in Rxx with lag pi − pk. As such, all the available values of i and k,
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where 0 ≤ i ≤ M + N − 1 and 0 ≤ k ≤ M + N − 1, yield virtual sensors of the following

difference co-array:

CP = {z | z = u− v,u ∈ P,v ∈ P}. (7)

The significance of the difference co-array is that the correlation of the received signal can be

calculated at all lags in the set CP . Any application which depends only on such correlation (e.g.,

DOA estimation) can exploit all the DOFs offered by the resulting co-array structure. Using a

part or the entire set of the distinct lag entries in the set CP , instead of the original physical

array, to perform DOA estimation, we can increase the parameter identifiability. The maximum

number of the DOFs is determined by the number of unique elements in the following set

LP = {lP | lPd ∈ CP}. (8)

III. SYSTEM MODEL

As described in the previous section, a higher number of DOFs is achieved using a co-prime

array. Such a co-prime array structure was originally developed using two physical uniform

linear sub-arrays with co-prime inter-element spacing [7]. In this paper, we extend that concept

to a sparse ULA with two or multiple co-prime frequencies, offering improved capabilities and

flexibilities to achieve better performance using a single ULA.

Assume K continuous-wave (CW) signals with co-prime frequencies are received at an L-

element ULA with inter-element spacing D. By co-prime frequencies, we mean that the ratio

between carrier frequencies equals the ratio between co-prime integers. For a CW waveform

with frequency fk, k = 1, . . . , K, the return signal from the Q far-field targets, located at DOAs

θq, q = 1, 2, · · · , Q, are expressed in a vector form as

x̆k(t) = exp(j2πfkt)

Q∑
q=1

ρkq(t)ak(θq) + n̆k(t), k = 1, . . . , K, (9)

where ρkq(t) is the complex envelop of the signal q corresponding to fk, which does not vary

with the receive antennas, but is in general frequency-dependent due to the different propagation

phase delays. We assume ρkq(t) to be uncorrelated for different targets over one scan due to target

motion or RCS fluctuations (Swerling II). In addition, ak(θq) is the steering vector corresponding

to θq for frequency fk, expressed as

ak(θq) =

[
1, e

−j 2πD
λk

sin(θq), ..., e
−j 2π(L−1)D

λk
sin(θq)

]T
, (10)
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where λk = c/fk denotes the wavelength corresponding to fk, and c is the velocity of wave

propagation. Furthermore, n̆k(t) is the additive noise vector whose elements are assumed to be

spatially and temporally white, and are independent of the target signals.

After converting the received signal vector to baseband using the respective frequencies,

followed by low-pass filtering, we obtain

xk(t) =

Q∑
q=1

ρkq(t)ak(θq) + nk(t) = Aksk(t) + nk(t), k = 1, . . . , K, (11)

where Ak = [ak(θ1), · · · , ak(θQ)] and sk(t) = [ρk1(t), · · · , ρkQ(t)]T . We denote the noise

variance at the filter output as σ2
nk

.

For convenience, Mk, k = 1, . . . , K, are denoted as mutually co-prime integers. Without loss

of generality, we assume that they are sorted in a descending order, i.e., M1 < M2 < . . . < MK .

In addition, we assume that D is integer multiples of the half-wavelengths of all frequencies,

such that Mk = 2D/λk, k = 1, . . . , K. As such, the ULA is sparse (spatially undersampled) at

each frequency by a factor of Mk. In this case and for clarity, we can rewrite the steering vectors

in a frequency-independent form, expressed as

ak(θq) =
[
1, e−jMkπ sin(θq), ..., e−jMk(L−1)π sin(θq)

]T
. (12)

It is clear that the DOA estimation problem is similar to the co-prime arrays considered in

[7, 11]. There are K uniform linear sub-arrays with a respective co-prime inter-element spacing.

It is noted, however, that unlike a co-prime array, in which the numbers of sub-array sensors

are different, all sub-arrays in the underlying virtual co-prime array structure share the same

number of sensors, L. In addition, the DOA estimation method needs to account for the fact that

signals corresponding to different virtual arrays have distinct phases. In the next two sections, we

respectively analyze the achievable DOFs and describe group sparse CS-based DOA estimation

technique.

IV. ANALYSIS OF ACHIEVABLE DOFS

Similar to the co-prime array, the parameter identifiability can be improved using correlation-

aware techniques. In this section, we consider the virtual array constructed by exploiting multiple

co-prime frequencies and derive the analytical expressions of the number of DOFs.
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A. Analysis of DOFs with two co-prime frequencies

We first consider the problem when two frequencies M1 and M2, M1 < M2, are used. As

shown in Fig. 2, the sensors of the two equivalent sub-arrays are located at

P̃ = {M1l1d0|0 ≤ l1 ≤ L− 1}
⋃
{M2l2d0|0 ≤ l2 ≤ L− 1}, (13)

where d0 denotes a half-wavelength unit inter-element spacing in a normalized frequency sense

(i.e., no specific frequency is referred to), and l1 and l2 are the respective indices of the sensor

positions of the two equivalent sub-arrays. As such, the aperture of this equivalent co-prime

array structure is M2(L− 1)d0. In addition, the two uniform linear sub-arrays in the underlying

problem have the same L sensors, which align in the zeroth position and whenever l2/M2 is an

integer. Therefore, there are 2L − 1 − b(L − 1)/M2c equivalent sensors. It is noted that, when

M2 < L, there are overlaps among the equivalent sensors, resulting in a reduced number of

DOFs. Therefore, we only consider the M2 ≥ L case in the remainder of this paper.

Because each sub-array is linear and uniformly spaced and the two sub-arrays share the first

sensor at the zeroth position, a self-lag position of a sub-array can always be taken as the cross-

lag position between a sensor of this sub-array and the first sensor of the other sub-array. In

other words, the self-lag positions form a subset of the cross-lag positions [11]. Therefore, we

only consider the cross-lags when determining the number of DOFs. In this array configuration,

the cross-lags of the two equivalent sub-arrays are given by the following set,

L̃c = {l̃c|l̃c = M1l1 −M2l2}, (14)

and the corresponding mirrored set,

L̃−
c = {l̃c|l̃c = M2l2 −M1l1} = {−l̃c|l̃c ∈ L̃c}, (15)

where 0 ≤ l1 ≤ L− 1 and 0 ≤ l2 ≤ L− 1. The achievable DOFs from the difference co-array

is determined by the unique elements in the following set

L̃P = L̃c
⋃

L̃−
c . (16)

Overall, there are 2L2 lags in the set L̃P , which contains both non-overlapping and overlapping

lags. To obtain a higher number of DOFs, which is determined by the number of unique lags

in the set L̃P , we can choose different pairs of M1 and M2 to reduce the redundancies in both

L̃c and L̃−
c , as well as the overlapping lags between L̃c and L̃−

c .
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Denote η as the number of unique lags in the set L̃P . The following proposition reveals the

analytical relationship between η and different choice of M1 and M2.

Proposition 1: For a virtual array constructed from a ULA with inter-element spacing D using

two co-prime frequencies with D = 1
2
M1λ1 = 1

2
M2λ2, the number of unique lags is given by

η = 2L2 − 1−max{0, 2L− 1−M2}min{M1 + 1, 2L− 1−M1}. (17)

It can be expressed for three different cases:

(a) For M2 ≥ 2L− 1, η = 2L2 − 1;

(b) For L ≤M2 < 2L− 1 and L ≤M1 < M2, η = 2L2 − 1− (2L− 1−M2)(2L− 1−M1);

(c) For L ≤M2 < 2L− 1 and 1 ≤M1 < L, η = 2L2 − 1− (2L− 1−M2)(M1 + 1).

The proof is provided in Appendix A.

The number of DOFs in the co-array can be obtained as (η + 1)/2 [23]. It indicates that η

achieves the maximum value of 2L2− 1 in case (a), irrespective of M1, provided that M1 < M2

is satisfied. In practice, however, a large value of M2 would increase the number of missing

positions, i.e., holes in the difference co-array. For cases (b) and (c), η depends on the values of

both M1 and M2 and is maximized when M1 = 1 or M1 = M2−1. The latter case yields a smaller

frequency separation between f1 and f2, whereas the former configuration represents a nested

structure [24]. A nested array is usually designed such that the virtual sensors in the resulting

co-array are all contiguous and is considered as a special case of the generalized co-prime array

in [11].

For an illustrative purpose, examples for different pairs of M1 and M2 are presented in Fig. 3

and Fig. 4, where the physical ULA has 4 sensors in all cases. The equivalent sensor positions

are illustrated in Fig. 3, whereas the respective co-arrays are presented in Fig. 4. Note that the

holes are indicated by “ × ”. It is clear that the difference co-arrays for all cases have more

virtual sensors than the number of physical sensors in the original ULA. Compared to the other

examples, there are more duplications in the M1 = 2 and M2 = 3 < L case depicted in Fig.

3(a), leading to a reduction of the DOFs in the co-array, as shown in Fig. 4(a). Also, there are

19 unique lags for the M1 = 3 and L < M2 = 4 < 2L−1 case in Fig. 4(b), whereas it increases

to 31 in Fig. 4 (c) for M1 = 6 and M2 = 7 ≥ 2L − 1, due to fewer overlapping lags between

L̃c and L̃−
c . The nested structure with M1 = 1 and M2 = L = 4 is depicted in Fig. 4(d) as a

special case of L ≤M2 < 2L− 1. It is evident that, in this case, all 25 lags are contiguous.
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B. Analysis of DOFs with multiple co-prime frequencies

When more than two mutually co-prime frequencies are used, each co-prime frequency pair

forms a virtual co-prime array corresponding to the two frequencies. Therefore, for K mutually

co-prime frequencies, there are
(
K
2

)
= K(K−1)

2
co-prime frequency pairs. As a consequence, the

number of DOFs in the resulting co-array is determined by the cardinality of the unique sum set

of lags obtained in each co-prime frequency pair, which generally increases with the number of

frequencies being used. However, a general expression of the DOF for different choices of the co-

prime frequencies is rather complicated and does not necessarily provide meaningful insights.

Instead, we provide the maximum number of achievable DOFs in the following proposition,

which corresponds to the case where each pair achieves the maximum number of DOFs with

minimum overlapping between different frequency pairs.

Proposition 2: The maximum number of achievable unique lags of the co-array generated from

the equivalent sub-arrays is given by

η = (L2 − 1)(K2 −K)− 2(L− 1)(K2 − 2K) + 1. (18)

The proof is provided in Appendix B.

It is clear that η ∝ O(K2L2), since there are O(K2) frequency pairs and O(L2) unique lags

for each pair. To achieve the upper bound of DOFs, however, it requires a large separation

between different multipliers Mk, k = 1, . . . , K, so that the number of overlapping lags between

different frequency pairs is minimized.

V. COMPRESSIVE SENSING BASED DOA ESTIMATION

While the DOA estimation problem considered here appears to be similar to that discussed in

[7, 25], the CS method exploited therein cannot be readily applied to the underlying problem. A

major distinction is that the target reflection coefficients ρkq, q = 1, . . . , Q, differ at different

frequencies k = 1, . . . , K, due to differences in their propagation phase delays and target

reflectivities. As such, the phase term of the cross-correlation between the received data vectors

for different frequencies depends not only on the spatial angle, but also on the unknown phase

difference in the reflection coefficients and propagation delays. In this section, we formulate the

DOA estimation problem as a group sparsity based signal recovery problem.
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A. DOA estimation using only cross-lags

As discussed earlier, a full number of unique lags is achieved in the resulting co-array by

using the cross-lags between the sub-arrays. As such, the spatial spectra can be estimated based

only on the cross-lag correlations without loss of DOFs.

The cross-lag covariance matrix R
(i,k)
xx between the L×1 received data vectors xi(t) and xk(t),

for 1 ≤ i 6= k ≤ K, is obtained as

R(i,k)
xx = E

[
xi(t)x

H
k (t)

]
= AiR

(i,k)
ss AH

k =

Q∑
q=1

σ(i,k)
q ai(θq)a

H
k (θq), (19)

where R
(i,k)
ss = E[si(t)s

H
k (t)] = diag([σ

(i,k)
1 , . . . σ

(i,k)
Q ]) is the cross-correlation matrix between

the received signals at the ith and kth frequencies. Note that σ(i,k)
q , q = 1, . . . , Q, in general,

takes a complex value. Vectorizing R
(i,k)
xx in (19), we obtain

zik = vec
(
R(i,k)

xx

)
= Ãikbik, i 6= k ∈ [1, . . . , K], (20)

where Ãik = [ãik(θ1), ..., ãik(θQ)] with ãik(θq) = a∗
i (θq)

⊗
ak(θq), and bik = [σ

(i,k)
1 , ..., σ

(i,k)
Q ]T .

It is noted that the L2 × 1 vector zik can be sparsely represented in the spatial domain over the

entire angular grids as

zik = Ão
ikb

o
ik, i 6= k ∈ [1, . . . , K], (21)

where Ão
ik is defined as the collection of steering vectors ãik over the entire possible grids θg for

g = 1, . . . , G, with G� Q. It is important to note that the angle positions of the signal arrivals

θq, q = 1, . . . , Q, are indicated by the non-zero entries in vector boik, whose values describe the

corresponding coefficients. Generally, the non-zero entries take different values with respect to

different frequency pairs but share the same positions because they correspond to the DOAs of

the same Q targets. Therefore, boik exhibits a group sparsity across the K frequencies and, as

such, the DOA estimation problem can be solved in the context of group sparse reconstruction.

B. DOA estimation using both self- and cross-lags

While CS-based DOA estimation can be performed based only on the cross-lag correlations

without losing the available co-array DOFs, the utilization of both self- and cross-lags makes

full use of the observed data and may yield performance improvement.
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The self-lag covariance matrix for the data vector xk(t), corresponding to the kth frequency

for 1 ≤ k ≤ K, can be obtained as

R(k,k)
xx = E

[
xk(t)x

H
k (t)

]
= AkR

(k,k)
ss AH

k + σ2
nk

IL =

Q∑
q=1

σ2
kqak(θq)a

H
k (θq) + σ2

nk
IL, (22)

where R
(k,k)
ss = E

[
sk(t)s

H
k (t)

]
= diag([σ2

k1, . . . σ
2
kQ]) is the auto-covariance matrix corresponding

to the kth frequency, and the signal power σ2
kq, q = 1, . . . , Q, is real and positive. Similarly,

vectorizing R
(k,k)
xx in (22) yields an L2 × 1 vector

zkk = vec
(
R(k,k)

xx

)
= Ãkbk + σ2

nk
i, k ∈ [1, . . . , K], (23)

where Ãk = [ãk(θ1), ..., ãk(θQ)], ãk(θq) = a∗
k(θq)

⊗
ak(θq), bk = [σ2

k1, ..., σ
2
kQ]T , and i =

vec(IL). Similarly, zkk can be sparsely represented as

zkk = B̃o
kkb̃

o
kk, k ∈ [1, . . . , K], (24)

where B̃o
kk =

[
Ão
k, i
]

and b̃okk =
[
bo

T

kk , σ
2
nk

]T
. Herein, Ão

k is the collection of steering vectors

ãk(θg) with g = 1, . . . , G, and bokk is the sparse vector whose non-zero entry positions correspond

to the DOAs of the signals. Similar to boik in Eqn. (21), b̃okk also exhibits a group sparsity across

the K frequencies and shares the same sparsity pattern with boik. Thus, by combing the results of

zik and zkk, both self- and cross-lag covariances can be fully utilized for possible performance

improvement based on group sparsity.

By using z̃ik, i, k ∈ [1, . . . , K], to denote both cross-lag vector zik, i 6= k, and self-lag vector

zkk, the DOA estimation problem using both self- and cross-lag covariances can be reformulated

as:

z̃ik = B̃o
ikb̃

o
ik + εik, i, k ∈ [1, . . . , K], (25)

where each vector z̃ik employs its respective L2 × (G+ 1) dictionary matrix,

B̃o
ik =


[
Ão
kk, i
]
, i = k,[

Ão
ik,0

]
, i 6= k,

(26)

and 0 denotes the all zero vector of L2 × 1. An L2 × 1 error vector εik is included in (25)

to account for the discrepancies between the statistical expectation and the sample average in

computing the covariance matrices R
(i,k)
xx , i, k = 1, . . . , K. The discrepancies are modelled as

i.i.d. complex Gaussian as a result of a sufficiently large number of samples employed in the

averaging.
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Note that exploiting the self-lag covariances, together with the cross-lags, requires expanding

the dimension of the unknown sparse vector b̃oik by an additional element of the noise power

σ2
nk

. In this case, the first G elements of the obtained estimates of b̃oik are used to determine the

DOAs, whereas the last element of b̃oik is discarded.

A number of effective algorithms within the convex optimization and Bayesian sparse learning

frameworks are available to solve the complex-valued group sparse reconstruction problem. In

this paper, the CMT-BCS algorithm proposed in [20] and summarized in Section V-C is used

due to its superior performance and robustness to dictionary coherence.

C. CMT-BCS algorithm

We use the CMT-BCS to determine the DOAs of the targets which are treated as group sparse

complex observations. In this subsection, we briefly review the CMT-BCS approach based on

[20]. Assume that the entries in the sparse vectors rik are drawn from the product of the following

zero-mean Gaussian distributions:

b̃o
g

ik ∼ N (b̃o
g

ik |0, αgI2), g ∈ [1, . . . , G], (27)

where b̃o
g

ik is a vector consisting of the real part coefficient, b̃o
gR

ik , and the imagery part coefficient,

b̃o
gI

ik , with respect to the gth grid in b̃oik. In addition, α = [α1, . . . , αG]T is a vector that contains

variances of b̃o
g

ik , g = 1, ..., G. Note that the vector α is shared by all groups to enforce the

group sparsity. It is easy to confirm that b̃o
g

ik trends to be zero when αg is set to zero [14].

To encourage the sparsity of b̃oik, a Gamma prior is placed on α−1
g , which is conjugate to the

Gaussian distribution,

α−1
g ∼ Gamma(α−1

g |a, b), g ∈ [1, . . . , G], (28)

where Gamma(x−1|a, b) = Γ(a)−1bax−(a−1)e−
b
x , with Γ(·) denoting the Gamma function, and

a and b are hyper-parameters.

As the covariance matrix is estimated from the received data samples, a Gaussian prior

N (0, β0I2) is also placed on the εik. Similarly, the Gamma prior is placed on β−1
0 with hyper-

parameters c and d.

The CMT-BCS algorithm carries out a Bayesian inference by the Gibbs samplers [20]. Once

the parameters α and β0 are estimated by maximizing the marginal likelihood, the joint pos-
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terior density function of b̃oik can be obtained analytically using Bayes’ rule. Define b̃oRIik =[
(b̃oRik )T , (b̃oIik )T

]T
, with b̃oRik = [bo1Rik , . . . , boGRik ]T and b̃oIik = [bo1Iik , . . . , b

oGI
ik ]T . Then,

Pr(b̃oRIik |z̃ik, B̃
o
ik,α, β0) = N (b̃oRIik |µik,Σik),

where

z̃RIik =
[
Re(z̃ik)

T , Im(z̃ik)
T
]T

(29)

µik = β−1
0 ΣikΨ

T
ikz̃

RI
ik , (30)

Σik =
[
β−1
0 ΨT

ikΨik + F−1
]−1

, (31)

Ψ =

Re(B̃o
ik) −Im(B̃o

ik)

Im(B̃o
ik) Re(B̃o

ik)

 , (32)

F = diag(α1, . . . , αG, α1, . . . , αG). (33)

Note that the mean and variance of each scattering coefficients can be derived using Eqns. (30)

and (31) when α and β0 are given. On the other hand, the values of α and β0 are determined

by maximizing the logarithm of the marginal likelihood, i.e.,

{α, β0} = arg max
α,β0
L(α, β0), (34)

where

L(α, β0) =
K∑

i,k=1

log Pr(b̃oRIik |α, β0)

= const− 1

2

K∑
i,k=1

log |Cik|+ (z̃RIik )T C−1
ik z̃RIik , (35)

and Cik = β0I + ΨikFΨT
ik. A type-II maximum likelihood (ML) approximation [26] employs

the point estimates for α and β0 to maximize Eqn. (35), which can be implemented via the

expectation maximization (EM) algorithm to yield

α(new)
g =

1

K2

K∑
i,k=1

(µ2
ik,g + µ2

ik,g+G + Σik,gg + Σik,(g+G)(g+G)), g ∈ [1, . . . , G], (36)

β
(new)
0 =

1

2GK2

K∑
i,k=1

(
Tr[ΣikΨ

T
ikΨik] + ||z̃RIik −Ψikµik||22

)
, (37)

where µ2
ik,g and µ2

ik,g+G are the gth and (g + G)th elements in vector µik, and Σik,gg and

Σik,(g+G)(g+G) are the (g, g) and (g+G, g+G) entries in matrix Σik. Because α and β0 depend
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on µik and Σik, the CMT-BCS algorithm is iterative and iterates between Eqns. (30)-(31) and

Eqns. (36)-(37), until a convergence criterion is satisfied or the maximum number of iterations

is reached.

VI. SIMULATION RESULTS

In the simulations, the CMT-BCS algorithm is used to estimate the DOAs of the signal arrivals

with hyper-parameters a = b = c = d = 0. The maximum number of iterations in the Gibbs

sampling is set to 200, and the sampler with the maximum marginal likelihood in the last 20

samples is chosen as the estimate of b̃oik.

We present four examples to demonstrate the effectiveness of the proposed technique. For

all examples, Q targets, which are uniformly distributed between −60◦ and 60◦ are assumed to

imping a ULA with L = 4. The grid interval in the angular space is set to 0.25◦. In addition, the

noise power at each frequency is assumed to be identical and the phase difference between the

received signal corresponding to each frequency pair is independent and uniformly distributed

over [0, 2π). We evaluate the performance through Monte Carlo simulations. The root mean-

square error (RMSE) of the estimated DOA of the signal arrivals, expressed as

RMSE =

√√√√ 1

IQ

I∑
i=1

Q∑
q=1

(θ̂q(i)− θq)2,

is used as the metric for performance evaluation with respect to the input SNR, where θ̂q(i) is

the estimate of θq for the ith Monte Carlo trial, i = 1, . . . , I . We use I = 500 independent trials

in all simulations.

A. Example I: Achievable number of DOFs with two co-prime frequencies

The number of achievable DOFs from the 4-element ULA with two co-prime frequencies is

first illustrated in Fig. 5. Q = 9 targets are considered, which are much larger than the number

of physical sensors. Two co-prime frequencies with M1 = 3 and M2 = 4 are exploited. Because

the virtual sensor lags are obtained from the estimated covariance matrix based on the received

data samples, as in Eqn. (5), the virtual steering matrix is sensitive to the noise contamination.

To clearly demonstrate the number of achievable DOFs, therefore, we use 10000 noise-free

snapshots to obtain a relatively clean covariance matrix. Fig. 5(a) shows the estimated spatial

spectrum from the proposed co-array, which yields a co-array with η = 19 virtual sensors, and
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the result of the conventional non-co-array scenario is depicted in Fig. 5(b). It is clear that the

co-array provides a sufficient number of DOFs to correctly identify the DOAs of all 9 targets,

whereas the non-co-array approach fails.

B. Example II: DOA estimation using only cross-lags vs. both self- and cross-lags

In Figs. 6 and 7, the results obtained by using both self- and cross-lags are compared to

those using only the cross-lags. Q = 6 targets are considered and two co-prime frequencies with

M1 = 3 and M2 = 4 are exploited. The RMSE with respect to the input SNR is depicted in Fig.

6, where 2000 snapshots are used. At a moderate or high SNR, the utilization of both self- and

cross-lag covariances benefits from additional measurement offered by the self-lags, resulting

in the improved performance than the cross-lag only scenario. In Fig. 7, such improvement is

demonstrated with fewer false peaks in the estimated spectra, where the input SNR is 10 dB. On

the other hand, in the low SNR region, as shown in Fig. 6, the performance of the algorithm using

cross-lag covariances only is better than the results using both self- and cross-lag covariances.

In this case, both vectors zik and zkk are highly perturbed by the noise. The inclusion of self-lag

covariance matrices causes additional errors in the noise power estimation in (25), whereas this

term does not exist in the cross-lag covariances.

C. Example III: DOA estimation using different frequency pairs

This example compares the DOA estimation performance when different frequency pairs are

used. In the first frequency pair, M1 = 3 and M2 = 4 are assumed, yielding η = 19 elements in

the virtual co-array. In the second frequency pair, we assume M1 = 6 and M2 = 7, resulting in

η = 31 virtual co-array lags. In Fig. 8, the RMSE performance is presented as a function of the

number of targets, Q, where SNR is assumed to be 10 dB and 2000 snapshots are exploited. The

result shows that the second frequency pair outperforms the first one due to its higher number

of DOFs and the larger aperture.

D. Example IV: Performance of multiple co-prime frequency cases

To demonstrate the merits of exploiting multiple co-prime frequencies, we first consider a

three frequency case with M1 = 5, M2 = 6 and M3 = 7. Similarly, 10000 noise-free snapshots

are used to obtain a relatively clean covariance matrix. Fig. 9 shows the estimated spectrum for
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Q = 13 targets. Note in this case that all targets are resolved correctly due to a high number of

DOFs and a small number of missing positions in the co-array.

Then, the RMSE performance of the three frequency case is presented in Fig. 10 with respect

to the input SNR, where Q = 13 and 2000 snapshots are assumed. For comparison purposes,

a four frequency scenario with M1 = 5, M2 = 6, M3 = 7, and M4 = 11 is also considered. It

is clearly shown that the performance is significantly improved as the number of frequencies is

increased.

VII. CONCLUSIONS

In this paper, we developed a co-prime array implementation using a sparse uniform linear

array with multiple co-prime frequencies. We derived the analytical expression for the number

of unique lags of the yielding difference co-array to determine the number of detectable targets.

The complex multitask Bayesian compressive sensing algorithm was used to exploit the group

sparse direction-of-arrivals (DOAs) across different frequencies for effective spatial spectrum

estimation. The number of detectable targets and the DOA performance are improved as the

number of frequencies increases. The effectiveness of the proposed technique and analysis is

verified using simulation results.

VIII. APPENDIX

A. Proof of Proposition 1

Denote ηt and ηo as the total number of lags in L̃P and the number of overlaps between

the set L̃c and L̃−
c , respectively. Then, the number of distinct lags in L̃P can be expressed

as

η = ηt − ηo. (38)

Both L̃c and L̃−
c have L2 distinct lags due to the co-primality of M1 and M2. It is easy to

confirm that

ηt = 2L2. (39)

Given arbitrary lags l̃cm = M1l1m −M2l2m and l̃cn = M2l2n −M1l1n in set L̃c and L̃−
c ,

respectively, where the indexes 0 ≤ l1m ≤ L − 1, 0 ≤ l2m ≤ L − 1, 0 ≤ l1n ≤ L − 1 and

0 ≤ l2n ≤ L− 1. Had l̃cm = l̃cn been held, we would have M1(l1m + l1n) = M2(l2m + l2n).
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It is evident that they overlap at 0 position provided l1m = l1n = l2m = l2n = 0. When

l1m + l1n 6= 0, the requirement is equivalent to

M1

M2

=
l2m + l2n
l1m + l1n

. (40)

(a) When M2 ≥ 2L − 1, the maximum value of l1m + l1n is less than M2. Since M1 and M2

are co-prime, it is indicated that M1/M2 cannot be reduced to a ratio of smaller integers.

As a result, (40) cannot be hold. In other word, L̃c and L̃−
c only coincide at 0 position, i.e.,

ηo = 1. (41)

Substituting (39) and (41) into (38), we can obtain

η = 2L2 − 1. (42)

(b) When L ≤ M2 < 2L − 1, the relationship 0 ≤ l1m + l1n ≤ 2L − 2 < 2M2 is guaranteed.

Due to the co-primality of M1 and M2, (40) is valid if and only if

l2m + l2n = M1,

l1m + l1n = M2. (43)

Since 0 ≤ l1m , l2m ≤ L− 1, the requirement is equivalent to

M1 − (L− 1) ≤ l2n ≤M1,

M2 − (L− 1) ≤ l1n ≤M2. (44)

Because 0 ≤ l1n , l2n ≤ L− 1, we obtain the following relationship

max{M1 − (L− 1), 0} ≤l2n ≤ min{M1, L− 1},

M2 − (L− 1) ≤l1n ≤ L− 1, (45)

where max{a, b} and min{a, b} are operators, returning maximum and minimum values

between a and b, respectively. Since L ≤M1 < M2, Eqn. (45) becomes

M1 − (L− 1) ≤ l2n ≤ L− 1,

M2 − (L− 1) ≤ l1n ≤ L− 1. (46)

It is indicated that 2L − 1 −M1 and 2L − 1 −M2 integers are in the respective range of

l2n and l1n . In addition to 0 position, there are (2L− 1−M1)(2L− 1−M2) combination

to satisfy (40), i.e,

ηo = (2L− 1−M1)(2L− 1−M2) + 1. (47)
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Substituting (39) and (47) into (38), we can obtain

η = 2L2 − 1− (2L− 1−M1)(2L− 1−M2). (48)

(c) When L ≤M2 < 2L− 1 and 1 ≤M1 < L, (45) is equivalent to

0 ≤l2n ≤M1,

M2 − (L− 1) ≤l1n ≤ L− 1. (49)

As such, there are (M1 + 1)(2L− 1−M2) integers satisfying (40). Therefore,

ηo = (M1 + 1)(2L− 1−M2) + 1. (50)

Substituting (39) and (50) into (38), we can obtain

η = 2L2 − 1− (M1 + 1)(2L− 1−M2). (51)

B. Proof of Proposition 2

(a) When K multiple frequencies are exploited, there are K(K−1)/2 pairs of frequencies. As

such, the total number of lags, ηt, which includes both unique and overlapping lags, is

ηt = K(K − 1)L2, (52)

as each pair has 2L2 lags. To obtain the maximum number of achievable unique lags of the

co-array, we consider the case that each pair achieves its respective maximum number of

unique lags, as described in Section IV-A, and the number of overlapping lags between

different pairs is minimum. In this case, redundancy between different co-prime pairs

happens at the following two cases: (a) The zeroth entry is shared by all K(K − 1)/2

pairs of co-prime frequencies with a total number of K(K − 1) overlapping lags, whereas

the unique lag in this position is 1; (b) At all self-lag positions because the array sensors

corresponding to each frequency are used to generate K − 1 co-prime frequency pairs. As

each frequency yields 2(L−1) non-zero self-lags in L̃c
⋃

L̃−
c , there are K(K−1)×2(L−1)

total lag entries with 2K(L−1) unique lags, yielding 2K(K−2)(L−1) redundancies to be

discounted in computing the available unique lags. As a result, we can obtain the maximum

number of the achievable unique lags of the co-array as

η = ηt − ηo = (L2 − 1)(K2 −K)− 2(L− 1)(K2 − 2K) + 1. (53)
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Fig. 1. The coprime array configuration.
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(a) A sparse ULA
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(b) Equivalent structure with two coprime frequencies

Fig. 2. A sparse ULA with two coprime frequencies configuration.
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(b) M1=3 and M2=4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

(c) M1=6 and M2=7

Fig. 3. Equivalent sensor positions for different M1 and M2 with L = 4 elements ULA (∇: Sub-array with M1; 4: Sub-array

with M2).
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Fig. 4. The co-array lag positions in the set L̃c
⋃

L̃−
c with L = 4 element ULA (•: Positions in L̃c; �: Positions in L̃−

c ).
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(a) Co-array scenario (b) Non-co-array scenario

Fig. 5. Estimated spectrum using co-array and non-co-array scenarios (M1 = 3, M2 = 4, Q = 9, and 10000 noise-free

snapshots).
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Fig. 6. RMSE versus input SNR (M1 = 3, M2 = 4, Q = 6, and 2000 snapshots; ∇: Use self- and cross-lags; 4: Use cross-lags

only).
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(a) Using self- and cross-lags (b) Using cross-lags only

Fig. 7. Spatial spectra estimated using different lags (M1 = 3, M2 = 4, Q = 6, SNR=10 dB, and 2000 snapshots).



25

1 2 3 4 5 6
10

−2

10
−1

10
0

Q

R
M

S
E

 (
de

g)

Fig. 8. RMSE versus signal number for different frequency pairs (SNR=10 dB and 2000 snapshots; ∇: first pair (M1 = 3 and

M2 = 4); 4: second pair (M1 = 6 and M2 = 7)).
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Fig. 9. Spatial spectra estimated for three frequency case (M1 = 5, M2 = 6, M3 = 7, Q = 13 and 10000 noise-free snapshots).
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Fig. 10. RMSE versus SNR for different number of frequencies (Q = 13 and 2000 snapshots; ∇: M1 = 5, M2 = 6 and

M3 = 7; 4: M1 = 5, M2 = 6, M3 = 7 and M4 = 11.


