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Abstract—The performance of the frequency diverse array
(FDA) radar is fundamentally limited by the geometry of the
array and the frequency offset. In this paper, we overcome
this limitation by introducing a novel sparsity-based multi-target
localization approach incorporating both coprime array and
coprime frequency offset. The covariance matrix of the received
signals corresponding to all sensors and employed frequencies
is formulated to generate a space-frequency virtual difference
coarrays. The proposed approach enables the localization of
up to O(M2N2) targets using O(M + N) physical sensors
with O(M + N) frequencies for a coprime pair of M and
N . The joint DOA and range estimation is cast as a sparse
reconstruction problem and solved using the complex multi-task
Bayesian compressive sensing technique.

Index Terms—Target localization, frequency diverse array
radar, coprime array, coprime frequency offset, Bayesian com-
pressvie sensing

I. INTRODUCTION

Target localization finds a variety of applications in radar,

sonar, communication, and navigation [1]–[4]. Localization

implies range, angle, or both [5]–[7]. In this paper, target

location is determined using the direction-of-arrival (DOA)

and range information. In recent years, simultaneous localiza-

tion of multiple targets has been rigorously investigated using

array processing and multiple-input multiple-output (MIMO)

systems (e.g., [8]–[10]). Among existing techniques, the fre-

quency diverse array (FDA) is considered attractive due to

its simplicity and effectiveness [11]. An FDA radar uses a

small frequency increment across array elements, as compared

with the carrier frequency, which results in beam steering

as a function of the angle and range in the far field [12]–

[14]. As a result, the DOA and range information can be

jointly estimated. However, the localization performance is

fundamentally limited by the geometry of the array and the

design of frequency offsets. In essence, the resolutions in

the angle and range domains are, respectively, determined

by the array aperture and maximum frequency increment.

Further, the number of degrees-of-freedom (DOFs) offered

by the array sensors and frequency increments determines the

maximum number of detectable targets. As a consequence, the

conventional FDA radar with N -element uniform linear array

(ULA) and uniform frequency increment can only localize up
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to O(N2) targets, with a resolution O(1/N) in the angle and

range domains, respectively.

Compared with ULA, sparse arrays use the same number

of sensors to achieve a larger array aperture. They improve

mainbeam properties and, thereby, provide enhanced perfor-

mance in terms of angular accuracy and resolution. These

attributes are achieved without any increase in size, weight,

power consumption, or cost. In addition, sparse arrays offer a

higher number of DOFs through the exploitation of the coarray

concept [15] and, as such, increases the number of detectable

targets. Likewise, non-uniform frequency offsets can be used

to achieve improved estimation and sensing performance [16].

Among a number of techniques that are available for sparse

signal structures and array aperture synthesis, the recent

proposed coprime configurations offer systematical design

capability and DOF analysis involving sensors, samples, or

frequencies [19]–[27].

In this paper, we consider the target localization problem

using an FDA radar, which incorporates both coprime array

structure and coprime frequency offsets. The joint DOA and

range estimation is cast as a sparse reconstruction problem

and solved in the context of the compressive sensing (CS)

techniques [28]. In the proposed approach, the offsets of car-

rier frequencies assume coprime values to further increase the

number of DOFs beyond that achieved by only implementing

the coprime arrays with uniform frequency increments. The

covariance matrix of the received signals corresponding to

all sensors and sensing frequencies is formulated to generate

a space-frequency virtual difference coarrays. It is shown

that the proposed approach enables the localization of up

to O(M2N2) targets, with a resolution O(1/MN) in both

angle and range domains, if O(M +N) physical sensors and

O(M +N) frequencies are used for a coprime pair of M and

N .

The target sparsity in range and angle is utilized by applying

sparse reconstruction techniques which fully utilize all DOFs

of the FDA. As a preferred approach, we use CS algorithms in

the sparse Bayesian learning context as they achieve superior

performance and are insensitive to the coherence of dictionary

entries. To handle the complex-valued observations in the

underlying problem, the complex multitask Bayesian compres-

sive sensing (CMT-BCS) [30] is used. The CMT-BCS achieves

improved sparse signal reconstruction because by utilizing the

group sparsity of the real and imaginary components.

Notations: We use lower-case (upper-case) bold characters



to denote vectors (matrices). In particular, IN denotes the

N × N identity matrix. (.)∗ implies complex conjugation,

whereas (.)T and (.)H respectively denote the transpose and

conjugate transpose of a matrix or vector. vec(·) denotes

the vectorization operator that turns a matrix into a vector

by stacking all columns on top of the another, and diag(x)
denotes a diagonal matrix that uses the elements of x as its

diagonal elements. E(·) is the statistical expectation operator

and ⊗ denotes the Kronecker product. Pr(·) denotes the

probability density function (pdf), and N (x|a, b) denotes that

random variable x follows a Gaussian distribution with mean

a and variance b. CN (a,R) denotes joint complex Gaussian

distribution with mean a and covariance matrix R. Re(x) and

Im(x) denote the real and imaginary parts of complex element

x, respectively.

II. SIGNAL MODEL

Without loss of generality, we limit our discussion to far-

field targets in the two-dimensional (2-D) space where the

DOA is described by the azimuth angle only. Extension to

three-dimensional (3-D) space is straightforward.

As shown in Fig. 1, an FDA radar utilizes a coprime pair of

uniform linear subarrays, i.e., 2M -element subarray with an

interelement spacing of N units, and N -element subarray with

an interelement spacing of M units [18]. The unit interelement

spacing is denoted as d = λ0/2 = c/(2f0), where c is the

velocity of electromagnetic wave propagation and f0 is the

carrier frequency. The two integers M and N are chosen to

be coprime (M < N ), i.e., their greatest common divisor is

one. Define

P = {Mn|0 ≤ n ≤ N − 1}
⋃

{Nm|0 ≤ m ≤ 2M − 1} (1)

as the union of two sparsely sampled integer subsets. Because

the two subsets share the first element, the total number of

entries in P is 2M+N−1. Denote p = [p1d, ..., p2M+N−1d]
T

as the positions of the array sensors where pk ∈ P, k =
1, ..., 2M + N − 1. The first sensor, located at p1d = 0, is

assumed as the reference.

Consider a scene with Q far-field targets whose locations are

modeled as (θq, Rq), q = 1, 2, · · · , Q. Each FDA element ra-

diates an incremental carrier frequency. That is, a continuous-

wave (CW) signal transmitted from the kth element is ex-

pressed as

sk(t) = exp(j2πfkt), (2)

where radiation frequency fk = f0+ξkΔf is exploited with a

unit frequency increment Δf , and ξk is an integer coefficient

of the frequency offset applied at the kth element for k =
1, ..., 2M + N − 1. In this paper, the FDA radar is operated

with coprime frequency offsets, ξk ∈ P, k = 1, ..., 2M+N−
1. In addition, the maximum increment is assumed to satisfy

(2M+N−1)Δf � f0 so as to guarantee that the FDA radar

works in a narrowband platform.

For a CW waveform with frequency fk transmitted from

the kth sensor, the signal received at the lth sensor is modeled
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Fig. 1. The coprime array configuration.

as

x̌k,l(t) =exp(j2πfkt)

Q∑
q=1

ρq(t)e
−j 4π

λk
Rqe

−j
2πpld

λk
sin(θq)

+ ňk,l(t), k, l = 1, . . . , 2M +N − 1, (3)

where ρq(t), q = 1, . . . , Q, are complex scattering coefficients

of the targets, which are assumed to be uncorrelated zero-mean

random variables with E[ρ∗qρp] = σ2
qδq,p, 1 ≤ q, p ≤ Q, due

to, e.g, the radar cross section (RCS) fluctuations. In addition,

λk = c/fk denotes the wavelength corresponding to fk.

Furthermore, ňk,l(t) is the additive noise, which is assumed

to be spatially and temporally white, and are independent of

target signals.

The received signal is converted to baseband signals corre-

sponding to the respective frequencies, followed by low-pass

filtering, yielding

xk,l(t) =

Q∑
q=1

ρq(t)e
−j 4π

λk
Rqe

−j
2πpld

λk
sin(θq) + nk,l(t)

=

Q∑
q=1

ρq(t)e
−j

4πfk
c Rqe−j

πplfk
f0

sin(θq) + nk,l(t), (4)

where nk,l(t) is the noise at the filter output with a variance

σ2
n. Note that fk/f0 = (f0 + ξkΔf)/f0 ≈ 1, due to the

increment ξkΔf � f0. Then, (4) can be expressed as

xk,l(t) =

Q∑
q=1

ρq(t)e
−j

4πfk
c Rqe−jπpl sin(θq) + nk,l(t). (5)

Stacking all xk,l(t) for k, l = 1, ..., 2M + N − 1, yields a

(2M +N − 1)2 × 1 vector,

x(t) =

Q∑
q=1

ρq(t)ap,f (θq, Rq) + n(t)

= Ap,fd(t) + n(t), (6)

where ap,f (θq, Rq) = ap(θq)⊗af (Rq) represents the steering

vector related to the angle-range pair (θq, Rq). Herein, ap(θq)
and af (Rq) are steering vectors corresponding to θq and Rq ,

respectively, expressed as

ap(θq) =
[
1, e−jπp2 sin(θq), · · · , e−jπp2M+N−1 sin(θq)

]T
,

(7)

af (Rq) =
[
e−j

4πf1
c Rq , e−j

4πf2
c Rq , · · · , e−j

4πf2M+N−1
c Rq

]T
.

(8)



In addition, Ap,f = [ap,f (θ1), · · · ,ap,f (θQ)] and d(t) =
[ρ1(t), · · · , ρQ(t)]T , and nk(t) is the noise vector following

the complex Gaussian distributions CN (0, σ2
nI(2M+N−1)2).

The (2M +N − 1)2 × (2M +N − 1)2 covariance matrix

of data vector x(t) is obtained as

Rx = E[x(t)xH(t)] = Ap,fRddA
H
p,f + σ2

nI(2M+N−1)2

=

Q∑
q=1

σ2
qap,f (θq, Rq)a

H
p,f (θq, Rq) + σ2

nI(2M+N−1)2 ,

(9)

where Rdd = E[d(t)dH(t)] = diag([σ2
1 , . . . , σ

2
Q]) represents

the target scattering power. Note that we assume the target

scattering coefficients to be frequency-independent for the

emiting signals because the frequency offsets are small. In

practice, the covariance matrix is estimated using T available

samples, i.e.,

R̂x =
1

T

T∑
t=1

x(t)xH(t). (10)

By vectorizing the matrix R̂x, we obtain the following (2M+
N − 1)4 × 1 measurement vector:

z = vec(R̂x) = Ãp,fbp,f + σ2
n ĩ, (11)

with

Ãp,f = [ãp,f (θ1, R1), · · · , ãp,f (θQ, RQ)], (12)

bp,f = [σ2
1 , · · · , σ2

Q]
T , (13)

ĩ = vec
(
I(2M+N−1)2

)
, (14)

where

ãp,f (θq, Rq) = a∗p,f (θq, Rq)⊗ ap,f (θq, Rq)

= a∗p(θq)⊗ a∗f (Rq)⊗ ap(θq)⊗ af (Rq)

= (a∗p(θq)⊗ ap(θq))⊗ (a∗f (Rq)⊗ af (Rq))

= ãp(θq)⊗ ãf (Rq) (15)

for 1 ≤ q ≤ Q. Benefiting from the Vandermonde structure of

ap(θq) and af (Rq), the entries in ãp(θq) and ãf (Rq) are still

in the forms of e−jπ(pi−pj) sin(θq) and e−j4π(ξi−ξj)ΔfRq/c, for

i, j = 1, · · · , 2M + N − 1. As such, we can regard z as a

received signal from a single snapshot signal vector bp,f and

the matrix Ãp,f corresponds to a higher number of virtual

array sensors and virtual frequency offsets which are located

at the lags between the two subarrays and two frequencies,

respectively. As a consequence, the problem is similar to

handling fully 2-D coherent targets, and some covariance

matrix based techniques can be applied, e.g., the Fourier-based

power spectrum density (PSD) [31] and MUSIC with spatial

smoothing [32]. There are O(MN) available DOFs in ap(θq)
and af (Rq), respectively. As such, the increased number of

DOFs enables localization of far more targets. Provided that

sufficient snapshots are available for reliable covariance matrix

estimation, O(M2N2) angle-range pairs can be identified

correctly.

Remark: The DOA and range information is contained in the

phase term, which are wrapped within the [−π, π) or [0, 2π)
range. It implies ambiguity in range due to phase wrapping.

Therefore, the unambiguous range of localization of targets are

given by −90◦ ≤ θq < 90◦ and 0 ≤ Rq < Rmax = c/(2Δf),
for q = 1, · · · , Q.

III. TARGET LOCALIZATION USING CMT-BCS

The signal vector z in Eqn. (11) can be sparsely represented

over the entire discretized angular girds as

z = Φr, (16)

where Φ =
[
Φs, ĩ

]
. Herein, Φs is defined as the collection of

steering vectors ãp,f (θg1 , Rg2) over all possible grids θg1 and

Rg2 , g1 = 1, . . . , G1, g2 = 1, . . . , G2, with G = G1G2 � Q.

In addition, the vector r contains coefficients in these search

grids to be determined. It is important to note that r is sparse,

where the joint angle-range of targets, (θq, Rq), q = 1, . . . , Q,

are indicated by positions of the nonzero entries. Thus, the

problem described in (16) can be solve using sparse recon-

struction techniques [33]–[37]. In this paper, we exploit the

sparse Bayesian learning methods due to their superior perfor-

mance and robustness to dictionary coherence. In particular,

the CMT-BCS approach [30] is used to deal with complex

entries.

Assume that the entries in sparse vectors r are drawn from

the product of the following zero-mean Gaussian distributions:

rg ∼ N (rg|0, αgI2), g ∈ [1, . . . , G], (17)

where rg is a vector consisting of the real part coefficient rgR
and imagery part coefficient rgI with respect to the gth grid in

r. In addition, α = [α1, . . . , αG]
T is the variance of Gaussian

pdf. It is easy to confirm that rg trends to be zero when αg is

set to zero [35].

To encourage the sparsity of r, a Gamma prior is placed on

α−1
g , which is conjugate to the Gaussian distribution,

α−1
g ∼ Gamma(α−1

g |a, b), g ∈ [1, . . . , G], (18)

where Gamma(x−1|a, b) = Γ(a)−1bax−(a−1)e−
b
x , with Γ(·)

denoting the Gamma function. It has been demonstrated in

[38] that a proper choice of the hyper-parameters a and b
encourages a sparse representation for the coefficients in r. A

Gaussian prior N (0, β0I2) is also placed on the additive noise.

Similarly, the Gamma prior is placed on β−1
0 with hyper-

parameters c and d.

The CMT-BCS algorithm carries out Bayesian inference by

the Gibbs samplers [30]. Define r̂
RI

=
[
(r̂

R
)T , (r̂

I
)T

]T
with

r̂
R
= [r̂

1R
, . . . , r̂

GR
]T and r̂

I
= [r̂

1I
, . . . , r̂

GI
]T . Then,

Pr(r̂
RI
|z,Φ,α, β0) = N (r̂

RI
|μ,Σ), (19)

where

z
RI

= [Re(z)T , Im(z)T ]T (20)

μ = β−1
0 ΣΨT z

RI
, (21)

Σ =
[
β−1
0 ΨTΨ+ F−1

]−1
, (22)

Ψ =

[
Re(Φ) −Im(Φ)
Im(Φ) Re(Φ)

]
, (23)

F = diag(α1, . . . , αG, α1, . . . , αG). (24)



It is noted that, the real and imaginary parts share the same α
to ensure their group sparsity. The mean and variance of each

scattering coefficients can be derived, once we obtain α and

β0, which is determined by maximizing the logarithm of the

marginal likelihood [30]. Then, the corresponding joint angle-

range of targets, (θq, Rq), q = 1, . . . , Q, can be estimated by

positions of the nonzero entries in r.

IV. SIMULATION RESULTS

For illustrative purposes, we consider an FDA radar ex-

ploiting coprime array and coprime frequency offset, where

M = 2 and N = 3 are assumed. As shown in Fig. 2, the

array and frequency offset consist of (2M + N − 1) = 6
physical elements, yielding (3MN + M − N) = 17 lags,

respectively. As such, the increased number of DOFs can

be used to localize far more targets than the number of

array sensors as well as frequencies. In addition, the unit

interelement spacing is d = λ0/2, where λ0 is the wavelength

with respect to the carrier frequency f0 = 1 GHz. We choose

the unit frequency increment to be Δf = 30 KHz, resulting

maximum unambiguous range Rmax = c/(2Δf) = 5000 m.

In all simulations, Q far-field targets with identical powers

are considered. The qth target is assumed to be on angle-range

plane (θq, Rq), where θq ∈ [−60◦, 60◦] and Rq ∈ [1000, 5000]
m, for q = 1, · · · , Q. The covariance matrix are obtained by

using 1000 snapshots in the presence of noise with a 0 dB

SNR.

In Fig. 3, we first compare the performance of different

algorithms under 6 antennas and 6 frequencies, i.e., MUSIC

algorithm with uniform linear arrays and uniform frequency

offset (ULA-UFO), MUSIC algorithm with coprime arrays and

coprime frequency offset (CA-CFO), and CMT-BCS with CA-

CFO. Note that, spatial smoothing technique is applied to the

covariance matrix so that its rank can be restored in MUSIC

with CA-CFO. Thus, only consecutive lags can be used so

that every sub-matrix has similar manifold. In Fig. 3(a),

Q = 9 targets are selected, and the corresponding localization

performance are illustrated in Figs. 3(b)–(d), respectively. It is

evident that the cases of CA-CFO have better resolution than

the ULA-UFO scenario for closely spaced targets by using

virtual array and frequency. As a comparison, the CMT-BCS

method outperforms the MUSIC algorithm, since it exploits

all unique lags to form a virtual array and frequency, which

yields larger array aperture and frequency increment than the

corresponding MUSIC techniques using consecutive lags.

In the next example, Q = 42 targets, which is more than

the available DOFs for the conventional FDA radar with ULA-

UFO, are considered in Fig. 4. It is evident that all 42 targets

can be localized using CMT-BCS with CA-CFO technique.

Thus, the proposed approach enables localize more targets.

V. CONCLUSIONS

In this paper, we proposed a novel sparsity-based multi-

target localization algorithm, which incorporates both coprime

arrays and coprime frequency offsets in FDA radar platforms.

By exploiting a sparse array and a frequency offset under

the difference coarray equivalence, the proposed technique
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Fig. 2. The physical elements and corresponding lags.
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Fig. 3. The localization results using different approaches (Q = 9).
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Fig. 4. The localization results using CMT-BCS with CA-CFO (Q = 42).

achieved a higher number of degrees-of-freedom representing

a larger array aperture and increased frequency increments.

These attributes enable high resolution localization of many

more targets than the number of physical sensors. The ef-

fectiveness of the proposed technique was demonstrated by

simulation results.
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