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Abstract—In this paper, we address the problem of spectrum
estimation of frequency-hopping (FH) signals in the presence
of random missing samples. The signals are analyzed within
the bilinear time-frequency representation framework, where a
time-frequency kernel is designed based on inherent FH signal
structures. The designed kernel permits effective suppression of
cross-terms and artifacts due to missing samples while preserving
the FH signal auto-terms. The kernelled results are represented
in the instantaneous autocorrelation function domain, which are
then processed using sparse reconstruction methods for high-
resolution estimation of the FH signal time-frequency spectrum.
The proposed method achieves accurate FH signal spectrum
estimation even when a large proportion of data samples is
missing. Simulation results verify the effectiveness of the proposed
method and its superiority over existing techniques.
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I. INTRODUCTION

Frequency-hopping (FH) signals are generated by varying
the carrier frequencies according to a certain hopping pat-
tern. Due to their inherent capability of low probability of
intercept and resistance to jamming and multipath fading, FH
signals have been widely utilized in radar, communication, and
satellite navigation. FH signals are a popular choice of wave-
forms for single-platform and multiple-input multiple-output
(MIMO) radar systems [1]-[4]. In order to improve MIMO
radar system resolution, a set of FH pulses are designed in [5]
based on simulated annealing algorithm to optimize the MIMO
radar ambiguity function (AF). A modular software-defined FH
radar is developed in [6] for through-wall imaging and motion
detection at a significant standoff distance. Multiple-target
motion parameters are estimated based on sparse modeling
via a colocated MIMO FH radar [7].

For a variety of applications ranging from interception
of non-cooperative emitters to exploitation of signals of op-
portunity for passive sensing, and to design strategies for
spectrum sharing between different wireless communication
and sensing platforms, estimating and tracking the hopping
spectrum of FH signals are of significant interest. However,
this task is often challenging when the hopping patterns of
the constituent signals are unknown, particularly from highly
noisy observations [8].

As FH signals generally exhibit sparsity in the joint time-
frequency domain, compressive sensing (CS) and sparse recon-
struction techniques [9], [10] can be used to robustly recover
their spectrum with fewer and even corrupted samples. In the

CS context, FH parameters can be estimated by formulating
the problem as an underdetermined linear regression with
a dual sparsity penalty [8], [11]. To improve performance,
particularly in low signal-to-noise ratio (SNR) conditions, a
sparse Bayesian learning-based approach was proposed in
[12]. Nevertheless, these approaches are based on linear time-
frequency analysis and suffer from temporal-spectral resolution
trade-offs, resolution restraint due to the uncertainty principle,
and none considered the effect of missing samples.

In practice, the received signals are often subject to missing
samples, which may arise from fading, obstruction, impulsive
noise, and collecting/storage equipment failures, leading to
degraded FH spectrum estimation performance. Recent results
have shown that missing samples generate strong undesirable
artifacts in the time-frequency domain, thus making the con-
ventional time-frequency analysis and sparse reconstruction
methods difficult to apply [13]. The effect of missing samples
on the time-frequency distribution and robust recovery using
time-frequency kernels and sparse reconstruction were first
reported in [14].

In this paper, we develop a new approach for FH spectrum
estimation based on bilinear time-frequency representations
(TFRs) under the sparse reconstruction framework. In the
context of bilinear TFRs, the ambiguity domain representation
of the FH signals allows convenient FH signal auto-term selec-
tion that enables effective suppression of undesirable artifacts
as well as cross-terms. The results are then used for sparse
reconstruction of the TFRs by utilizing the linear Fourier re-
lationship between the kernelled instantaneous autocorrelation
function (IAF) and the TFRs. As such, the proposed approach
can robustly restore the FH spectrum in noisy and missing
sample case without the requirement of a prior information of
the hopping patterns. The advantage of the FH signal structure-
aware kernel outperforms the adaptive optimal kernel (AOK),
particularly under severe conditions with a high level of noise
and/or a high number of missing samples.

Notations: Lower-case (upper-case) bold characters are
used to denote vectors (matrices). abs(-) returns the modulus
of a given complex number. o denotes Hadamard product.
diag{-} represents a diagonal matrix that uses the entries of a
vector as its diagonal entries, and Iy denotes an N x N identity
matrix. (-)*. Fg and F;l denote the one dimensional discrete
Fourier transform (DFT) and inverse discrete Fourier transform
(IDFT) matrices with respect to the d dimension, respectively.
()T and (-)H respectively denote complex conjugate, transpose
and hermitian operations of a matrix. [|-||, represents the /-
norm of a vector, and |-| denotes the cardinality of a set.



II. SIGNAL MODEL

Consider a discrete-time FH signal §[n], corrupted by
additive complex white Gaussian noise, expressed as [11], [12],

K
§[n] =) Agge®™ e fvn], my <n<ng, (1)
k=1

where n; is the [-th system-wise hopping instant, A ; and
fr, are the complex amplitude and frequency of the k-th
tone in the [-th system dwell [n;_1,n;), respectively, where
I =1,2,...,L, and L denotes the total number of system-
wise hops. The observed data length is /N, and the number of
tones K; can vary with [ because of emitter (de)activation or
bandwidth mismatch [8]. In addition, f, is the sampling rate,
and v[n] is the noise vector.

Denote x[n] as the observation data with N — M missing
samples, and the positions of these missing samples are
assumed to be randomly distributed. As such, x[n] can be
regraded as the Hadamard product of §[n] and an binary mask
bln], i.e.,

x[n] = §[n] o b[n], (2)

with )
bl = { ) oo ®
where J C {1,2,..., N} is the set of observed time instants

with cardinality | 7| = M, and M /N represents the missing-
sample ratio.

ITII. PROPOSED FH SPECTRUM ESTIMATION APPROACH
A. Bilinear Time-Frequency Representations

The discrete IAF of a signal z[n], n = 1,2,...
defined as
Crzl[T,n] = z[n + 7]2%[n — 7], %)

where 7 denotes the time lag index.

Stack C.[r,n] corresponding to all values of 7 and
n as a matrix Cxx. Then, the AF matrix of signal x =
[(1),...,2(N)]*, expressed with respect to lag 7 and
Doppler frequency s, can be obtained by performing IDFT
of the IAF with respect to the time index n, i.e.,

A{T, 5} = F ' Ca{r,n} =Y Cox{T, n}e>™", (5)

n

where the notation {7, s} is used to emphasize that the matrix
A is constructed with respect to variables 7 and k.

The Wigner-Ville distribution (WVD) can be obtained by
performing DFT to its IAF with respect to the lag index T,
ie.,

Wxx{fa n} = FTCXX{T7 n} = Z Cxx{Ta n}e_j47rfT' (6)

B. Kernel Design Based on FH Signal Structures

For FH signals, the frequency spectra represented by the
auto-term time-frequency distributions depend on the hop
frequency and vary over time. As such, it is difficult to
design a single filter or mask in the time-frequency domain
for both linear and bilinear TFRs. However, when represented
in the ambiguity domain, auto-terms of FH signals, and other
nonstationary in general, always pass through the origin with
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Fig. 1. Hopping frequency spectrum and AF of FH signals.

low-pass characteristics. On the other hand, cross-terms due
to bilinear operation are positioned away from the ambiguity
domain origin. This property has motivated a large amount of
work to design time-frequency kernels for auto-term preser-
vation and cross-term suppression [15], [16]. While a number
of such kernels are available, data-dependent adaptive kernels,
such as the adaptive optimal kernel (AOK) [17], are found
attractive for this purpose because the kernels are adaptive
tuned to optimize the preservation of signal auto-terms [14],
[18]. Nevertheless, a critical problem with the AOK is that it
may misfunction when the signals are highly contaminated by
additive noise and artifacts due to missing samples.

We notice an important fact that, for the FH signals within
each hop, their auto-terms are always present on the lag axis
(i.e., zero zero-Doppler), regardless of their hop frequencies.
Consider for example an single-hop FH signal with a sampling
rate 20 KHz and hopping period of 1.6 ms, whose spectrum
and AF are shown in Fig. 1(a). Note that the shape (magnitude)
of the AF does not depend on the hopping frequency. On the
other hand, for the multi-component shown in Fig. 1(b), the
auto-terms remain in the same position (the exact value is dis-
torted due to the superposition of multiple component) whereas
the cross-terms appear away from the origin depending on the
signal lags and the hop frequency difference. Note in Fig. 1(b)
that we purposely used fractional hop period to emphasize
that the hop period is not known. In addition, as we will see
leter, the effect of missing samples is manifested as artifacts
spreading over the entire ambiguity domain. Based on this
property, one can design a time-frequency kernel that utilize
the known property of the FH signal auto-terms in the AF
domain. The designed kernel will keep the auto-term ambiguity
region while filtering out other ambiguity regions, reducing or
eliminating, cross-terms and artifacts due missing samples.

In this paper, we design the kernel by thresholding the
single-component auto-term AF, expressed as

U[r, k] = { |Asx [T, 6], i [Axx[T, K] > &,

0, otherwise,
where ¢ is the threshold, which is chosen to only keep FH auto-
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Fig. 2. Proposed ambiguity domain kernel.

term AF with substantial signal concentration. The resulting
kernel function corresponding to the FH signal described above
is shown in Fig. 2, where the value of £ is chosen to be
0.125 max[Axx {7, K }.

C. Sparse Reconstruction of Time-Frequency Representations

The design kernel obtained in Section III-B is applied to the
original AF, and the results are converted to the IAF domain
through the Fourier transform with respect to the Doppler
frequency , which can be expressed as follows

Cox{m,n} = F A {7, } = Fp (A {7, K} 0 {7, K}).
)
Note that the TFR matrix is associated with the resulting IAF
matrix by the following Fourier relationship:

Cxx{T,n} = ®W i {f, n}, )

where ® is a Fourier transform matrix that perform IDFT with
respect to frequency index f.

Denote the nth column of the IAF matrix Cxx{7,n}
as cxx[n], and the nth column of the bilinear TFR matrix
Wix{f,n} as wxx[n]. Then, their relationship, as depicted
below, confirms the CS model in [19]:

Cxx[n] = i’wxx[n], (10)

Therefore, the TFR can be obtained from sparse reconstruction,
in lieu of conventional Fourier transform, by repeating the
procedure for each time instant column. Various compressive
sensing algorithms can be used for this purpose. In this
case, we use a simple form of orthogonal matching pursuit
(OMP), which simply estimate the most likely frequency and
its coefficient for each time instant. Other CS methods can be
used as well.

IV. SIMULATION RESULTS AND ANALYSIS

Simulation results are provided to demonstrate the effec-
tiveness of the proposed approach. In the simulations, we use
an FH signal consisting of three components as depicted in
Fig. 1(b). At the 20 KHz sampling rate, each hop of 1.6 ms
yields 32 samples.

We first consider the situation where the input SNR is
0 dB, and 50% of the samples are randomly missing. The
real-part waveform is shown in Fig. 3(a). The AF, IAF, and
the WVD without applying a kernel are respectively shown
in Fig. 3(b)—(d). It is clear that, because of the strong noise
and large proportion of missing samples, no signatures can be

identified from the AF and WVD. Fig. 3(e)—(g) shows the AF,
IAF, and TFR after the proposed kernel, as depicted in Fig. 2,
is applied. Further, Fig. 3(h) shows the sparse TFR obtained
from OMP, which shows clear and consistent FH spectrum.
The comparison between Fig. 3(g) and Fig. 3(h) evidently
shows the superiority of the sparse TFR reconstruction over
the conventional Fourier based TFR.

Next, we compare with the performance of the AOK.
Because the application of AOK fails to function in the above
challenging situation, we shown in Fig. 4 a easier case where
a higher SNR of 5 dB is assumed and only 20% samples
are missing. Similarly, the waveform is shown in Fig. 4(a),
and the unkernelled AF, IAF, and WVD are depicted in Fig.
4(b)—(d). The kernelled AF in Fig. 4(e) shows that it catches
an undesired component due to cross-term effect, shown as a
diagonal strip. As a result, both the Fourier-based TFR in Fig.
4(g) and the sparse TFR in Fig. 4(h) show incorrect spectrum
estimates. By comparing the reconstruction results of Fig. 3(h)
and Fig. 4(h), the advantages of the proposed kernel over the
AOK is clearly demonstrated.

V. CONCLUSION

In this paper, a novel frequency hopping (FH) spectrum
estimation approach with the consideration of missing samples
was proposed within the framework of sparse reconstruc-
tion. In particular, a time-frequency kernel was designed that
was constructed based on the inherent FH signal structure.
The kerneled joint-variable representation over time and lag
was used to provide the time-frequency signal representation
through sparse reconstruction. It was shown that this approach
outperforms existing approaches devised for the same problem.
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