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Abstract—In this paper, we propose a novel method to estimate
the clutter covariance matrix (CCM) and perform space-time adaptive
processing (STAP) for effective clutter suppression based on a small
number of secondary data samples. By exploiting the group sparsity
of the angle-Doppler domain clutter profile shared by nearby range cells
in a bistatic passive radar platform, we first apply the complex multi-task
Bayesian compressive sensing (CMT-BCS) algorithm to reconstruct the
sparse clutter profile based on the secondary data samples. The clutter
profile in the range cell under test is then obtained within the common
clutter support over all secondary data samples to ensure the exclusion
of target signals in the estimated CCM. Compared to the conventional
STAP method, the number of required secondary samples is significantly
reduced due to the group sparsity of the clutter profile. The effectiveness
of the proposed algorithm is verified using simulation results.

I. INTRODUCTION

Passive radar (PR) systems utilize broadcast, navigation, and

communication signals as sources of opportunity to perform various

surveillance tasks. PR systems have attracted significant interests

due to their distinct advantages, such as low cost and covertness,

as compared to conventional active radar systems [1], [2].

Airborne PR systems suffer from strong ground clutter that may

obscure weak target signals. Space-time adaptive processing (STAP)

is an effective technique for detecting slowly moving targets in

a cluttered scene. Conventional STAP techniques require a large

number of secondary data samples to yield a reliable estimation

of the clutter covariance matrix (CCM) [3]. A significant amount

of work, such as reduced-rank STAP, has been performed to relax

the restriction of the number of secondary data samples [4]. In PR

systems, however, a sufficient number of secondary data samples may

not be available to construct the CCM with a sufficient rank, because

narrowband signals that correspond to a poor range resolution are

used.

More recently, new STAP techniques have been developed based

on the latest advances in the area of sparse signal reconstruction

and compressive sensing (CS). It has been shown that, by taking

advantages of the intrinsic sparsity of the clutter profile in the angle-

Doppler domain, the clutter spectrum can be recovered using very few

data samples [5]–[8]. In these approaches, the sparse clutter profile

estimation is cast as a regularized optimization problem which can

be readily solved using available CS methods. The estimated clutter

profile is then used to construct the CCM to achieve effective clutter

suppression. In [5] and [8], a single data sample under test is used

to estimate the scatterer profiles. In [6] and [7], two approaches are

proposed for the clutter profile estimation by utilizing multiple data

samples. One such approach is to average the estimated profiles,

which are individually estimated based on their own range cell, to

represent the clutter profile in the range cell under test. Another

method is to choose the maximum values from multiple separately

estimated clutter profiles as the profile under test.
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There are several critical issues involved with these techniques.

First, to avoid suppression of the target signals during the STAP

procedure, the target signals in the range cell under test must be

excluded in the reconstructed clutter profiles. In these approaches,

this requirement is satisfied by assuming that target signals are weak

and, thereby, are absent from the reconstructed clutter profile. It is,

however, difficult to guarantee such an outcome in different situations.

Second, preserving the high fidelity of the clutter spectrum requires

a high-resolution clutter profile estimation in the angle-Doppler

domain, which may yield a high coherence in the measurement

(dictionary) matrix. The performance of most existing CS methods

degrades significantly when the dictionary matrix becomes highly

coherent.

In this paper, we propose a novel approach to accurately estimate

the CCM and implement STAP based on a very small number of

secondary data samples. By exploiting the group sparsity of the

clutter, i.e., nearby range cells share the same non-zero clutter support

in the angle-Doppler domain but their values are different in general,

we first use the secondary data samples to estimate this clutter-only

support. The actual clutter profile in the range cell under test is then

estimated within the clutter-only support and, as such, ensures the

exclusion of the target signals in the estimated CCM. The complex

multi-task Bayesian compressive sensing (CMT-BCS) [9] algorithm

is exploited to perform high-resolution estimation of the angle-

Doppler domain clutter profile because Bayesian-based CS methods

are insensitive to the dictionary matrix coherence. The proposed

method does not require the independent and identically distributed

(i.i.d.) condition of the secondary data samples as typically assumed

in conventional STAP. The effectiveness of the proposed algorithm

is verified using simulation results.

Notations: We use lower-case (upper-case) bold characters to

denote vectors (matrices). In particular, IN denotes the N × N
identity matrix. (.)∗ denotes complex conjugate, whereas (.)T and

(.)H , respectively, denote the transpose and conjugate transpose of a

matrix or vector. diag(x) represents a diagonal matrix that uses the

elements of x as its diagonal elements. ‖·‖22 implies the Euclidean (l2)

norm of a vector. Tr(.) denotes the trace of a matrix. Pr(·) expresses

the probability density function (pdf), and N (x|a, b) denotes the

random variable x follows a Gaussian distribution with mean a and

variance b. In addition, Re(x) and Im(x) are the real and imaginary

parts of complex element x, respectively.

II. SYSTEM AND SIGNAL MODEL

Consider a bistatic PR system consisting of a stationary transmit-

ters and a moving receiver as depicted in Fig. 1. The transmitter

is assumed to be located at a stationary and known position pT =
[pT,x, pT,y, pT,z]

T . The radar receiver, which utilizes an N -element

uniform linear array (ULA) with inter-element spacing d, moves in

a straight line with a constant velocity vR in the x-direction. The

initial position of the reference sensor is assumed to be pR(0) =
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Fig. 1. Bistatic passive radar geometry.

[pR,x(0), 0, HR]
T . As such, the position of the reference sensor at

time instant t is expressed as pR(t) = [pR,x(0) + vRt, 0, HR]
T .

The signal vector observed at the receive array is expressed as,

x(t) = xc(t) + xs(t) + n(t), (1)

where xc(t) denotes the clutter vector and xs(t) represents the

target signal vector. In addition, the additive noise vector n(t) is

characterized as i.i.d. complex Gaussian with zero mean. The clutter

and the target signal are described in the next two sub-sections. Note

that the direct-path interference from the transmitter is not considered

here as it can be effectively suppressed in the received data by

exploiting interference cancellation techniques [10].

A. Clutter

The clutter observed at the receiver is modeled as a summation of

Nc discrete and statistically independent scatterers, given by,

xc(t) =

Nc∑
m=1

√
PTGmσc,m

rTC,mrCR,m(t)
a(φm)

· s[t− τTC,m(t)− τCR,m(t)]e−j2πfc(τTC,m+τCR,m(t)), (2)

where PT is the transmit power from the illuminator, and Gm is

the transmit antenna gain. rTC,m, m ∈ 1, · · · , Nc, is the range

from the transmitter and the mth clutter scatterer, and rCR,m(t) is

the range from the same scatterer to the receiver at time instant t.
The delays corresponding to rTC,m and rCR,m(t) are respectively

denoted as τTC,m and τCR,m(t). In addition, σc,m is the reflectivity

of the mth clutter scatterer, and s(t) is the emitted signal waveform.

Furthermore,

a(φm) = [1, ejκd sin(φm), ..., ejκ(N−1)d sin(φm)]T ∈ CN
(3)

is the steering vector of the receive array toward the direction of the

mth clutter scatterer with a direction-of-arrival (DOA) φm, which

is defined as the cone angle with respect to the x-axis. In the

above expressions, κ = 2π/λ is the wavenumber, λ = c/fc is the

wavelength of the emitted signal, c is the velocity of light, and fc is

the carrier frequency.

In practice, the waveform emitted from the illuminator is available

at the receiver from, e.g., the use of reference channels [11]. Per-

forming matched filtering and the nth range bin yields the output of

the clutter signal at azimuth time tl = lT , l = 0, ..., L−1. Assuming

a small value of T , then the output signal is expressed as

y(n)
c (tl) =

Nc∑
m=1

√
PTGmσc,m

rTC,mrCR,m(t)
ρa(φm)ej2πνm(tl−(L−1)T/2), (4)

where ρ = ρ(0), with

ρi(τ) =

∫ tl+T

tl

s(t)s∗(t+ τ)dt (5)

denoting the signal auto-correlation function, which is independent

of tl as most waveforms have a stable auto-correlation property [2].

In addition,

νm = − 1

λ

d

dt
rmR(t) = − 1

λ
vR cosφm (6)

is the Doppler frequency of the mth clutter scatterer and is determined

by the scatterer-receiver path. It should be noted in Eq. (6) that the

clutter Doppler frequency only depends on the receiver velocity and

is independent of range cells. This characteristic invites the use of

group sparsity of the clutter profiles among nearby range cells to

obtain the common clutter support in the bistatic configuration.

Stacking y
(n)
c (tl) over the L collected azimuth time samples yields

ỹc =

Nc∑
m=1

√
PTGmσc,m

rTC,mrCR,m(t)
ρh(νm, φm), (7)

where

h(νm, φm) = b(νm)⊗ a(φm) ∈ CNL
(8)

is the spatio-temporal signature of the mth scatterer, and

b(νm) = [e−j2πνm(L−1)T/2, ..., ej2πνm(L−1)T/2]T ∈ CL
(9)

is the temporal signature vector of the mth clutter scatterer.

B. Desired Signal

Assume that Q moving targets, all located on ground within an

area, are inseparable via the bistatic ranges due to the coarse range

resolution in the PR system. The qth ground moving target is located

at pq = [xq, yq, 0]
T with a velocity of vq = [vxq, vyq, 0]

T . The

desired signal xs(t) received at the receiver is expressed as

xs(t) =

Q∑
q=1

√
PTGqσq

rTqrqR
a(φq)

· s[t− τTq (t)− τqR(t)]e
−j2πfc[τTq (t)+τqR(t)], (10)

where σq is the complex reflection coefficient associated with the

radar cross section (RCS) of the qth target. In addition, τTq(t) and

τqR(t) are delays respectively corresponding to the range rTq(t)
between the transmitter and the qth moving target, and the range

rqR(t) between the qth moving target and the receiver.

In a similar manner with the clutter, by performing matched

filtering at a given area, specified by delay τn, we obtain the matched

filter output at azimuth time tl = lT , l = 0, ..., L− 1, as

y(n)
s (tl) =

Q∑
q=1

√
PTGqσq

rTqrqR
ρa(φq)e

j2πνq [tl−(L−1)T/2], (11)

where νq denotes Doppler frequency of the qth moving target and is

determined by the change rate of the combined bistatic range, which

can be expressed by

νq = − 1

λ
· d

dt
[rTq(t) + rqR(t)]

= − [pT − pq(0)]
T · vq

λ‖pT − pq(0)‖ − [pR(0)− pq(0)]
T · vq

λ‖pR(0)− pq(0)‖
− [pR(0)− pq(0)]

T · vR

λ‖pR(0)− pq(0)‖ , (12)

where pq(0) is the the initial position of the qth moving target, and

vR = [vR, 0, 0]
T is the velocity vector of the radar receiver. The

Doppler frequency νq contains two components. The first component

includes the first two terms on the right-hand side of Eq. (12) and

represents the contribution of the moving target, whereas the second

component is given as the third term on the right-hand side of Eq.

(12) and represents the contribution of the moving receiver.



Stacking y
(n)
s (tl) over the L collected azimuth time samples

results in the following signal vector,

ỹs =

Q∑
q=1

√
PTGqσq

rTqrqR
ρh(νq, φq), (13)

where

h(νq, φq) = b(νq)⊗ a(φq) ∈ CNL
(14)

is the spatio-temporal signature of the qth target, where a(φq) and

b(νq) are similarly defined as in Eq. (3) and Eq. (9).

III. CLUTTER PROFILE ESTIMATION AND CLUTTER

SUPPRESSION

Because of the sparsity of the clutter in the angle-Doppler domain,

CS-based approaches are effective in estimating the clutter profile,

which is key to performing STAP [5]–[8]. The CMT-BCS [9] extends

the real-valued multi-task CS algorithm [12] for the reconstruction of

complex-valued sparse signals, and yields improved performance by

sharing the same hyper-parameters between the real and imaginary

components. The CMT-BCS has been successfully applied to recon-

struct sparse complex-valued signals and achieve improved accuracy

in various applications [13]–[15]. For convenience, this method is

briefly summarized in the Appendix based on [9].

In this section, considering the fact that the non-zero support of

clutter profiles is shared by nearby range cells, we first employ a small

number of secondary samples to learn the common clutter support.

The exact clutter profile in the range cell under test is then obtained

through CMT-BCS by considering the clutter-only entries within the

learned clutter support.

According to the clutter signal model described in Section II, the

matched filter output of the received signal in the range cell under

test is expressed for the kth bistatic pair as

ỹ(t) = ỹ(t)
c + ỹ(t)

s + ỹ(t)
n = Φ̃(w̃(t)

c + w̃(t)
s ) + ỹ(t)

n , (15)

where the superscript (t) is used to emphasize the range under test,

w̃
(t)
c and w̃

(t)
s are, respectively, NsNd × 1 vectorized clutter and

signal entries in the angle-Doppler domain, with Nd and Ns being

the numbers of Doppler and azimuth grids defined in the angle-

Doppler domain, respectively, Φ̃ = [h(ν1, φ1), · · · ,h(νNd , φNs)] ∈
CML×NdNs , and ỹ

(t)
n denotes the noise component. On the other

hand, the matched filter output of the received signals in the ntth

secondary samples, where the described target signals are absent, is

expressed as

ỹ(nt) = ỹ(nt)
c + ỹ(nt)

n . (16)

Rewriting the clutter term in Eq. (16) as the product of a dense

dictionary matrix Φ̃ and a sparse vector w̃
(nt)
c , we have

ỹ(nt) = Φ̃w̃(nt)
c + ỹ(nt)

n , (17)

where w̃
(nt)
c ∈ CNdNs .

In this paper, we consider a small number of secondary data

samples from range cells that are close to that under test, and thus it

is well justified that they share the same non-zero clutter support with

that under test, i.e., their scatterers are located in the same positions in

the angle-Doppler domain. However, the exact values of the scatterers

generally differ for each range due to the random nature of the

clutter. Note that the assumption of the common support is much

more relaxed and practical compared to the i.i.d. requirement and, as

we will show, we need much less number of secondary samples.

The sparse clutter profile, w̃
(nt)
c , can be effectively recovered based

on Eq. (17) from secondary samples by exploiting the CMT-BCS

algorithm. From this estimated common clutter support, we then form

the clutter-only dictionary Φ̃cs as a sub-matrix of Φ̃ by extracting

the columns whose corresponding coefficients in w̃
(nt)
c have non-

zero support. One way to confine the clutter estimate for the range

cell under test is to project the received signal to the clutter profile

through the least square (LS) algorithm, expressed as

ŵ(t)
c =

(
Φ̃

H
csΦ̃cs

)−1

Φ̃
H
csỹ

(t). (18)

However, this approach does not yield a robust solution because of the

fact that the estimated clutter coefficients based on the LS algorithm

are sensitive to the perturbation of the noise, particularly when the

columns of the measurement matrix Φ̃cs are highly coherent as a

result of high-resolution clutter profile estimation. A more reliable

and accurate solution to estimate the clutter profile is by solving the

following equation based on the CMT-BCS algorithm,

ỹ(t) = Φ̃csw
(t)
c + ỹ(t)

n . (19)

Note that, when compared with Eq. (15), the measurement matrix Φ̃
is replaced by the clutter-only dictionary matrix Φ̃cs and w

(t)
c is the

corresponding sub-vector. As such, the target signal term is avoided

in the estimated clutter entries w
(t)
c , in Eq. (19) because it is out of

the clutter support obtained from the nearby range cells.

Once the clutter coefficient vector ŵ
(t)
c is estimated, the corre-

sponding CCM is expressed as [5], [7]

R̂z =

M∑
m=1

|ŵ(t)
c (νm, φm)|2h(νm, φm)hH(νm, φm) + β̂2

0INL,

(20)

where β̂2
0 is the noise power and can be adaptively estimated from

observation data as described in Eq. (30).

Based on the estimated CCM from Eq. (20), the weight vector for

that range under test is obtained as [3],

u =
R̂−1

z h0

hH
0 R̂−1

z h0

, (21)

where h0 is the spatio-temporal signature of the hypothetic target.

IV. SIMULATION RESULTS

In the simulated bistatic PR system, a stationary transmitter is

located 8 km away from the scene center, emitting DVB-T signals

with the carrier frequency of 800 MHz. The initial position of the

receiver is [0, 6, 8]T km, and the receiver is equipped with a 20-

element uniform linear array (ULA) with an inter-element spacing

of half of the minimum wavelength. The velocity of the receiver is

vR = [100, 0, 0]T m/s. The range of Doppler frequency bandwidth is

from −300 Hz to 300 Hz. 30 azimuthal samples are used, yielding

a total number of NL = 600 spatio-temporal samples.

A. Reconstruction of Clutter Profiles Based on CMT-BCS

Fig. 2 depicts the clutter profiles with nt = 4 nearby secondary

samples in the angle-Doppler domain. The angle-Doppler domain

clutter profile is discretized into a grid of Nd = 90 Doppler bins

from −300 Hz to 300 Hz and Ns = 40 angle bins from −180◦

to 180◦, yielding K = 3600 entries. According to the guideline for

sparse clutter profile recovery in STAP, it would be a desirable choice

that the value of NsNd ranges between 4NL and 16NL [16]. The

clutter profiles in each angular bins are represented by two adjacent

non-zero random complex entries, and thus the total number of non-

zero entries is 80, as shown in Fig. 2. An additive Gaussian noise is

added with a clutter-to-noise ratio (CNR) of 40 dB.

To exhibit the advantages of CMT-BCS on the sparse signal

reconstruction with group structure, we have tested several state-of-

the-art CS algorithms, including group Lasso (GLasso) [17], block

orthogonal matching pursuit (BOMP) [18], for their performance of
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Fig. 3. Estimated clutter support. (a) Original clutter support; estimated
clutter support from (b) BOMP; (c) GLasso and (d) CMT-BCS.

clutter profile estimation. To quantitatively evaluate the performances

of those algorithms, we introduce the normalized mean square error

(NMSE), defined as‖ϑ̂− ϑgen‖2/‖ϑgen‖2, as the metric, where ϑ̂ is

the estimate of the true scatterer coefficients ϑgen.

Fig. 3(a) shows the original clutter support. Fig. 3(b) shows the

estimated support using the BOMP algorithm with the knowledge

of the true sparsity assumed. This algorithm leads to a very poor

clutter profile estimate and generates a high number of spurious

clutter entries around the true positions because of the high coherence

in the measurement matrix. The GLasso yields a better result when

compared with the BOMP algorithm, resulting in a smaller NMSE.

Despite its improved performance, this algorithm still has a high

number of false clutter entries. Fig. 3(d) depicts the result based on

the CMT-BCS with the group sparsity utilized. It is evident that the

CMT-BCS algorithm reconstructs the non-zero clutter support with

the least spurious positions and most concentrated structure among

the methods being compared.

Once the clutter supports are acquired, we calculate the clutter

scattering coefficients by utilizing both the LS algorithm in Eq. (18)

and the CS algorithms in Eq. (19), respectively. Fig. 4(a) shows the

true clutter profile. By utilizing the LS method in Eq. (18) based

on the clutter support obtained from the CMT-BCS algorithm, we

acquire the clutter profile shown in Fig. 4(b). For comparison, we

also estimate the clutter profiles based on the clutter supports which

are respectively obtained from the BOMP, GLasso, and CMT-BCS

algorithms, and the results are depicted in Figs. 4(c)–4(e). In order

to evaluate the accuracy of the estimated clutter profiles, we compare

the NMSEs performance among those algorithms, as shown in Fig.

5(a). It is observed that the reconstruction error obtained from the LS

algorithm is much larger than that from the CMT-BCS algorithm due
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to its sensitivity to the noise and the measurement matrix coherency,

even though both algorithms use the same clutter support.

To quantitatively evaluate the accuracy of the estimated CCMs in

Eq. (20) based on the profiles obtained from the aforementioned CS

algorithms, the output signal-inference-noise-ratio (SINR) loss, which

is commonly used for the performance evaluation of STAP systems

[3], is shown in Fig. 5(b). It is observed that the SINR loss in the

CMT-BCS algorithm closely coincides with the Clairvoyant results

because the CMT-BCS algorithm is capable of acquiring the best

estimates of the clutter profile. On the other hand, the SINR loss

based on the BOMP algorithm suffers the most due to poorest clutter

profile estimation under the highly coherent measurement matrix.

V. CONCLUSION

Conventional space-time adaptive processing (STAP) suffers from

the requirement of a high number of independent identically dis-

tributed (i.i.d.) secondary data samples for a reliable estimation of

the clutter covariance matrix (CCM). In this paper, a novel approach

was proposed to estimate the CCM based on a very small number of

secondary samples. Unlike traditional STAP technique which directly



uses the secondary data for the CCM estimation, the secondary

samples are used in this paper to estimate the common clutter support

by exploiting the group sparsity of the clutter profile shared by nearby

range cells. This estimated support is then used in the range cell under

test to acquire the clutter profile with the target signal excluded. This

strategy avoids the requirement of a high number of i.i.d. secondary

samples, and avoid the serious shortcoming of existing CS-based

STAP approaches which, by directly estimating the clutter profile

from the data observed in the range cell under test, the moving target

signals may be treated as clutter and subject to suppression.

APPENDIX: BRIEF SUMMARY OF COMPLEX MULTI-TASK

BAYESIAN COMPRESSIVE SENSING [9]

Consider a general multi-task CS model described as

y̌l = Φ̌lw̌l + ε̌l, l ∈ [1, · · · , L], (22)

where each complex measurement y̌l ∈ CNl employs its own

projection matrix Φ̌l ∈ CNl×M , and ε̌l denotes the additive complex

noise vector. Decompose the mth element w̌ml of complex vector

w̌l ∈ CM into its real and imaginary components, denoted as

w(R)
ml and w(I)

ml, respectively, and form a real vector that consists

of all real and imaginary components of complex vector w̌l as

wl = [w(R)
1l , · · · , w(R)

Ml, w
(I)
1l, · · · , w(I)

Ml]
T ∈ R2M . By defining yl =

[Re(y̌l), Im(y̌l)]
T and

Ψl =

[
Re(Φ̌l) −Im(Φ̌l)

Im(Φ̌l) Re(Φ̌l)

]
, (23)

Eq. (22) becomes

yl = Ψlwl + εl. (24)

The prior distribution of real weight vector wl that characterizes task

l is modeled as a zero-mean Gaussian distribution, which is shared

between the real and imaginary components and across all L groups,

i.e.,

wl ∼ N (wl|0,A), (25)

where

A = diag(α1, · · · , αM , αM+1, · · · , α2M ), (26)

with αm = αm+M denoting the variance of both w(R)
ml and w(I)

ml,

m = 1, · · · ,M . w(R)
ml and w(I)

ml tend to be zero with probability 1

for all l ∈ [1, ..., L] when αm is set to zero. By sharing the same

parameter αm for both real and imagery components, the CMT-BCS

algorithm improves the sparsity of the estimated weight vectors and

yields improved sparse signal recovery performance, when compared

with the case when the real and imaginary components are indepen-

dently treated.

When the parameters α and β0 are specified, the posterior density

function for wl can be evaluated analytically based on Bayes’ rule

as

Pr(wl|yl,Ψl,α, β0) = N (wl|μl,Σl),

where

μl = β−1
0 ΣlΨ

T
l yl (27)

and

Σl =
[
β−1
0 ΨT

l Ψl +A−1
]−1

(28)

respectively denote the mean and covariance of the scattering coeffi-

cients. A type-II maximum likelihood approximation employs a point

estimate for β0 and α to maximize marginal likelihood, yielding,

α(new)
m =

√√√√√√√√√√

L∑
l=1

(wT
mlwml +wT

m+M,lwm+M,l)

L∑
l=1

Tr
[
(C∗

l )
−1(ΨT

mlΨml +ΨT
m+M,lΨm+M,l)

] ,

(29)

β
(new)
0 =

1

2ML

L∑
l=1

Tr[ΣlΨlΨ
T
l ] + ‖yl −Ψlμl‖22, (30)

where Cl = β0I+ΨlAΨT
l ∈ R2Nl×2Nl .

Note that α
(new)
m in Eq. (29) and β

(new)
0 in Eq. (30) are functions

of μl in Eq. (27) and Σl in Eq. (28), while μl and Σl are functions

of αm and β0. This suggests an iterative algorithm, which iterates

between Eq. (27), Eq. (28) and Eq. (29), Eq. (30), until a convergence

criterion is satisfied.
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