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Abstract—This paper addresses the problem of estimating
the chirp rates of multi-component linear frequency modulated
signals, which is important in radar, sonar and navigation signal
processing. The main difficulties in the estimation procedure
lie in the cross-terms between multi-components and the high
computation burden. To solve these problems, a novel algorithm
that combines segmented discrete polynomial-phase transform
and sparse discrete fractional Fourier transform is proposed to
yield a significant reduction of the computational load with a
satisfactory estimation performance. Simulation results are pro-
vided to demonstrate the effectiveness of the proposed approach.

I. INTRODUCTION

Linear frequency modulated (LFM) signals, also referred to
as chirp signals, are frequently encountered in radar, commu-
nication, navigation and sonar systems. In these applications,
one of the important tasks is to accurately estimate the chirp
rates. Many approaches have been developed in the literature
[1]–[9]. However, the presence of cross-terms between multi-
components and the high computation burden remain as the
main challenges for multi-component LFM parameter estima-
tion.

Consider a K-component discretized LFM signal modeled
as

s(n) =
K∑

k=1

Ake
j2πfknΔt · ejπμk(nΔt)2+w(n),

n ∈ [0, N − 1],

(1)

where Ak, fk and μk represent the parameter set of the k-th
LFM component, including the constant complex amplitude,
the initial frequency, and the chirp rate for k = 1, . . . ,K.
In addition, Δt denotes the sampling interval, N denotes the
number of samples, and w(n) denotes the additive complex
white Gaussian noise of power σ2. In order to estimate the
parameters of the multi-component signals, we choose to use
the discrete polynomial-phase transform (DPT) method since
it is an efficient and commonly used method. However, as is
discussed later, the DPT-based approach suffers from the cross-
terms between the multi-components. Such effect is further
compounded with noise when the input signal-to-noise ratio
(SNR) is low.

To solve these problems, we propose a novel scheme which
consists of three major steps: First, we segment the input
signals to perform coherent integration in order to mitigate the
impact of the low input SNR on the algorithm performance.
We then conduct DPT across segments to obtain an estimation

of the chirp rates, where the discrete Fourier transform (DFT)
operations are realized by fast Fourier transform (FFT) to
accelerate the computation. Finally, to eliminate the effect of
cross-terms, the sparse discrete fractional Fourier transform
(SDFrFT) is applied to the original input signal with different
rotation angles, and the chirp rates and the initial frequencies
are determined by peak detection with a decision threshold.

II. PROPOSED PARAMETER ESTIMATION ALGORITHM

The order-two DPT of s(n) is defined as [2]

DPT2 {s(n), f, τ} Δ
= DFT {s(n)s∗(n− τ)}

=

N−1∑
n=τ

s(n)s∗(n− τ)e−j2πfnΔt,
(2)

where (·)∗ denotes conjugate operation, τ is a positive integer.

In the case of multi-component LFM signals as described
in (1), K2 − K cross-terms appear in the DPT spectrum.
The order-two DPT of s(n) can be expressed as (3) given
in the following page, where the first term at the right-hand
side represents the spikes corresponding to the estimated chirp
rates, the second term represents the cross-terms, and the last
three terms represent the noise. From (3), it can be seen that
when the SNR of the input signal is lower than 0 dB, after
phase differencing, the SNR of the output signal will decrease.

To precisely estimate the parameters in the presence of
cross-terms and with a relatively low input SNR, we first
perform coherent integration to the segmented input LFM
signal before phase differencing. Assume that the signal is
partitioned into P non-overlapping segments, and the length
of each segment is L = N/P . By letting n = l + pL for
p ∈ [0, P −1] and l ∈ [0, L−1], the signal of the p-th segment
can be derived from (1) as

s̃(p, l) =
K∑

k=1

Ake
j2πfk(l+pL)Δtejπμk(l+pL)2Δt2 + w̃(p, l).

(4)
Thus, the DFT of s̃(p, l) with respect to l can be written as

S̃(p,m) =
L−1∑
l=0

s̃(p, l)e−j2πml/L

=

K∑
k=1

Ake
j2πfkpLΔtejπμk(pLΔt)2 ·Hk(p,m) + W̃ (p,m),

m ∈ [0, L− 1],
(5)



DPT2 {s(n), f, τ} = DFT {s(n)s∗(n− τ)}
= DFT

{(
K∑

k=1

Ake
j2πfknΔtejπμk(nΔt)2 + w(n)

)
·
(

K∑
k=1

Ake
−j2πfk(n−τ)Δte−jπμk[(n−τ)Δt]2 + w∗(n− τ)

)}

= DFT

{
K∑

k=1

A2
ke

j2πfkτΔt−jπμkτ
2Δt2ej2πμkτΔt(nΔt)

+
∑

p �=q∈k

ApAqe
j2πfqτΔt−jπμqτ

2Δt2ej2π(fp−fq+μqτΔt)(nΔt)+jπ(μp−μq)(nΔt)2

+w(n) ·
K∑

k=1

Ake
−j2πfk(n−τ)Δte−jπμk[(n−τ)Δt]2 + w∗(n− τ) ·

K∑
k=1

Ake
j2πfknΔtejπμk(nΔt)2 + w(n) · w∗(n− τ)

}
.

(3)

{Fαx}(u) =
∫ ∞

−∞
Kα(u,t)x(t)dt =

⎧⎪⎪⎨
⎪⎪⎩

√
1−j cotα

2π

∫ ∞

−∞
ej

t2+u2

2 cotα−jtucscα · x(t)dt, α �= Dπ,

x(t), α=2Dπ,
x(−t), α= (2D ± 1)π.

(12)

where W̃ (p,m) is the DFT of w̃(p, l) with respect to l, and

Hk(p,m) =

L−1∑
l=0

ej2πfklΔtejπμk(l
2+2lpL)Δt2e−j2πml/L. (6)

The second exponential function term in (6) captures the
Doppler spread, in the amount of μkLΔt, inside a single seg-
ment. To ensure the validity of this segmented DPT algorithm,
this term must be less than 1

NΔt , i.e.,

μkLΔt ≤ 1

NΔt
. (7)

For a given multi-component LFM signal, the chirp rates are
fixed, yielding the constraint to the segment length L to be

L ≤ 1

NΔt2 |max{μk}| . (8)

When (8) is satisfied and, thereby, the effect of the Doppler
spread is negligible, (6) can be simplified as

Hk(p,m) ≈
L−1∑
l=0

ej2πfklΔte−j2πml/L =
sin(Lξ)

sin ξ
ej(L−1)ξ,

(9)
where ξ = π(fkΔt−m/L). Substituting (9) into (5), we can
obtain

S̃(p,m) =
K∑

k=1

Ak
sin(Lξ)

sin ξ
ej(L−1)ξej2πfkpLΔtejπμk(pLΔt)2 + W̃ (p,m).

(10)
The term ejπμk(pLΔt)2 indicates that the phases of the signals
in the same frequency bin of different segments preserve the
LFM signature with the chirp rate μk. From (3) and (10), it
can be derived that the estimated chirp rates are

μ̂k =

argmax
fk

∣∣∣DPT2{S̃(p,m), f, τ}
∣∣∣

τLΔt
. (11)

However, (3) suggests that the result of (11) may be corrupted
by cross-terms. To eliminate the effects of these undersirable
cross-terms, a new method is proposed below.

In the area of time-frequency analysis, the discrete fraction-
al Fourier transform (DFrFT) is a powerful tool for processing
LFM signals [7], [10], [11]. Since DFrFT can transform a
function to any intermediate domain between time and fre-
quency domains, it exhibits superior capability to concentrate
LFM signals with no effect from cross-terms. The continuous
fractional Fourier transform is defined as (12), shown on the
top of the page, where u denotes the fractional Fourier domain
frequency, D is an integer, α denotes the rotation angle,
and the phase of

√
1−j cotα is constrained in the range of

(−π/4, π/4).

To reduce the complexity required to compute the DFrFT,
we have recently proposed a novel sub-linear SDFrFT al-
gorithm [12], which is developed on the basis of the Pei’s
sampling type DFrFT algorithm [13] and the sparse Fouri-
er transform [14]. Compared with the existing algorithms,
the novel SDFrFT is capable of substantially reducing the
computation complexity without degrading the precision when
applied to the fast analysis of non-stationary signals with a
large size and sparse spectrum in the fractional Fourier domain.
Therefore, after chirp rate estimation with the segmented DPT,
we use the SDFrFT to search for the chirp rates and the
initial frequencies. The detailed proposed parameter estimation
scheme is illustrated in Fig. 1.

III. SIMULATION RESULTS AND DISCUSSIONS

In the simulation, we use an LFM signal consisting of two
components as described in (1). The parameter settings of the
simulation are listed in Table I.

TABLE I. SIMULATION PARAMETERS

fs (kHz) N P
fk (Hz) μk (Hz/s) SNRk (dB)

f1 f2 μ1 μ2 SNR1 SNR2

4 214 27 1600 1609 -2.7 -3.7 -4.0 -5.9

Figs. 2(a) and 2(b) show the time and frequency domain
plots of the signal, respectively. The two components cannot
be clearly distinguished from the frequency-domain spectrum
as shown in Fig. 2(b).



Fig. 1. Flow chart of the proposed algorithm.
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Fig. 2. Input signal: (a) Time domain of the input signal. (b) FFT result of
the input signal.

The simulation results are shown in Fig. 3. The simulated
result of the segmented DPT is presented in Fig. 3(a), and
3(b) depicts a slice corresponding to the subband occupying
frequencies between 1594–1625 Hz. From Fig. 3(b), four
spikes can be clearly observed. As it is impossible to select
two dominant spikes, we cannot separate the spikes of the
components from that of the cross-terms. After performing
DFrFT/SDFrFT to the input signal at the estimated rotation
angles α, the cross-terms can be eliminated since the transform
outputs do not concentrate at the fake chirp rates, as can be
clearly seen in Figs. 3(c) and 3(d). On the contrary, if the
estimated chirp rate is correct, we can obtain a focused spike in
the DFrFT/SDFrFT results as shown in Figs. 3(e)–3(h), which
show the fractional Fourier spectrum with respective rotation
angles of the two components.

To draw a better comparison, we provide simulation results
of the estimation error. 1000 Monte Carlo trials are conducted
with the input SNRs ranging from -12 dB to 10 dB. Other
simulation parameters are shown in Table I, but only the

component corresponding to f1 and μ1 is selected in this
simulation. A comparison of the mean-square error (MSE) of
the estimated chirp rate between the DPT and the proposed
approach (segmented DPT plus SFrFT) is presented in Fig.
4, which clearly shows a significant reduction of MSE by the
proposed method, particularly when the input SNR is low.

It is worth mentioning that the improved detection per-
formance is achieved with a notably reduced computational
complexity by using SDFrFT. It was proved in [12], [15]
that, when the data length is increased to a moderate level,
the advantage of the SDFrFT over the DFrFT becomes more
evident.
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Fig. 4. Comparison of the MSE between DPT and proposed method.

IV. CONCLUSION

In this paper, a novel parameter estimation approach for
multi-component LFM signals was proposed on the basis of
segmented DPT and SDFrFT algorithms. Compared to existing
methods, by utilizing segmented coherent integration and SD-
FrFT, the proposed algorithm is immune from cross-terms, and
improves the estimation performance, particularly for signals
with a low input SNR. Such improvement is achieved with a
significantly reduced computational complexity.
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Fig. 3. Simulation results: (a) Result of the segmented DPT. (b) Side view of frequency (corresponding to the chirp rates)-amplitude section of the segmented
DPT result in (a). (c) DFrFT result of the input signal with α of one cross term. (d) SDFrFT result of the input signal with α of the same cross term as in (c).
(e) DFrFT result of the input signal with α of the first component. (f) SDFrFT result of the input signal with α of the same component as in (e). (g) DFrFT
result of the input signal with α of the second component. (h) SDFrFT result of the input signal with α of the same component as in (g).
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