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Abstract—In this paper, we develop a range Doppler algorithm
(RDA) for the tandem bistatic synthetic aperture radar (BiSAR)
configuration. The key step is to use an analytical tandem bistatic
spectrum. The proposed algorithm is able to handle reasonably
high squint by compensating secondary range compression in
the two-dimensional wavenumber domain, and is more robust
to focus bistatic data compared with Neo’s RDA based on the
spectrum of method of series reversion (MSR) in the tandem
configuration particularly when the baseline-range ratio is large.
The effectiveness of the proposed algorithm is verified by simu-
lations.

I. INTRODUCTION

Bistatic synthetic aperture radar (BiSAR) is characterized

by separate locations of the transmitter and the receiver.

Because of its many advantages over monostatic SAR such

as bistatic imaging, cross-track and along-track interferome-

try, and reduced vulnerability [1], BiSAR has gained much

attention in recent years. As one of the translational invariant

(TI) configurations, the tandem case, in which the transmitter

and the receiver move along an identical trajectory, has a

simple formation structure and can be easily accomplished in

practice. The practical bistatic system (TanDEM-X) of such

configuration has been shown to acquire well-focused images

and interferograms [2].

BiSAR imaging processing is more involved than its mono-

static counterpart due to the considerable separation between

the transmitter and the receiver. Although time-domain imag-

ing algorithms, such as back projection [3] and its extended

fast back projection algorithm [4], can be used to focus

bistatic data very well, they are computationally intensive.

Alternatively, fast imaging algorithms in the frequency domain

such as bistatic range migration algorithm (RMA) [5], bistatic

range Doppler algorithm (RDA) [6] are developed for bistatic

data processing which uses an approximate point target (PT)

spectrum. Unlike monostatic SAR, the BiSAR range history

is the sum of two square roots, referred to as double-square-

root (DSR) term, which makes it difficult to use the points

of stationary phase (PSP) to acquire a close-form PT spec-

trum. Three typical bistatic spectrum estimation techniques

including dim move out (DMO) [7], Loffeld’ bistatic formula

(LBF) [8], and method of series reversion (MSR) [9] were
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proposed to solve this problem. Several frequency-domain

imaging algorithms such as bistatic RDA, Omega-K algorithm

[5], and non-linear chirp scaling (NCS) algorithm [10] have

been developed over the years. All these algorithms can handle

bistatic data very well when the ratio between the baseline

and bistatic range history is small. As the ratio increases,

the bistatic characteristic in the range history will become

prominent. In this case, the above algorithms do not focus the

bistatic data well. The main reason is that the accuracy of these

spectra is sensitive to the baseline-range ratio, especially the

DMO spectrum and the LBF spectrum. As the ratio increases,

the accuracy of these two spectra degrades drastically [11]. As

a result, it is expected that algorithms based on these spectra

will not perform well in the bistatic case with a large ratio.

In contrast to those approximate spectra whose accuracy is

affected by the baseline-range ratio, we derived an accurate

and analytical bistatic PT spectrum, analyze the relationship

between this accurate spectrum and other three spectra in-

cluding DMO, LBF and MSR spectrum, and verify that these

three spectra are approximations of the analytical spectrum

in the bistatic tandem configuration [11], [12]. In this paper,

and extending the previous works, we develop a range Doppler

algorithm based on the analytical bistatic PT spectrum to focus

bistatic data. The proposed algorithm is able to obtain well-

focused images in the reasonably high squint bistatic case by

compensating the second range compression (SRC) term in the

two-dimension (2-D) wavenumber domain and is more robust

to the baseline-range ratio.

This paper is organized as follows. In Section II, an exact

analytical bistatic PT spectrum is introduced. In Section III,

a bistatic RDA is proposed. Simulation results are provided

to demonstrate the effectiveness of the proposed algorithm in

Section V. Section VI serves as a conclusion of the paper.

II. ANALYTICAL TANDEM BISTATIC PT SPECTRUM

In SAR systems, a linear chirp signal with a wide bandwidth

B is transmitted to acquire high resolution images. After

demodulation to the baseband, the received echo signal can

be expressed in terms of the range time and azimuth range

X = vtm domain with platform velocity v and slow time tm,

s(τ,X) =wr

[
τ − R(X)

c

]
waz(X) exp

[
−j2π

R(X)

λ

]

× exp

[
jπγ

(
τ − R(X)

c

)2
]
, (1)
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where τ denotes the fast time, wr is the range envelope, waz

is the azimuth envelope, R(X) = RT (X) + RR(X) is the

range history from the transmitter to target and then back to

the receiver, λ = c/fc is the wavelength, fc is the carrier

frequency, c is the velocity of electromagnetic wave, and γ is

the chirp rate.

Performing a range Fourier Transform (FT), we obtain the

signal in the range wavenumber and azimuth range domain,

s(ΔKR, X) =Wr(ΔKR)waz(X) exp

[
j
ΔK2

R

2b
− jKRR(X)

]
,

(2)

where Wr(·) represents the spectral shape of the transmitted

pulse in the range wavenumber domain, KR = 4π(fr +
fc)/c = ΔKR + KRc is the range wavenumber, ΔKR =
4πfr/c, fr ∈ (−B/2, B/2) is the range frequency, KRc is

the range wavenumber center, and 1/b = 2πγ/c2.

Using the concept of instantaneous Doppler wavenumber

[11], [13], we obtain

KX = −KR

[
∂RT (X)

∂X
+

∂RR(X)

∂X

]
= KR sin θ cosβ, (3)

where β = (θT −θR)/2 is referred to as the half quasi bistatic

angle, θ = (θT − θR)/2 is the bistatic squint angle, θT and

θR represent the instantaneous squint angles of the transmitter

(Tx) and the receiver (Rx), respectively, as depicted in Fig. 1.

We acquire the bistatic PT spectrum based on (2) and

(3) according to the geometry-based bistatic formula (GBF)

technique [13],

S(ΔKR,KX) = Wr(ΔKR)Waz(KX)

· exp
(
j
ΔK2

R

2b

)
exp(−jKXXn)

· exp
[
−j(RB + hx)

√
4K2

R cos2 β(ΔKR,KX)−K2
X

]
,

(4)

where Waz(·) is the shape of the azimuth wavenumber spec-

trum, KX is the azimuth wavenumber, Xn is the azimuth

position of the point target, RB denotes the closest distance

from the platform trajectory to target Pn, and hx is half the

baseline.
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Fig. 1. Bistatic tandem SAR geometry

In Eq. (4), the first exponential phase term represents

the range frequency modulation, whereas the second phase

term reflects the target azimuth position and the third one

represents the bistatic deformation that describes the effect

of bistatic operation. It is clear that this spectrum reduces to

the monostatic case when the baseline hx = 0.

It should be pointed out that β(ΔKR,KX) in the 2-D

wavenumber domain is unknown in Eq. (4). Therefore, the

spectrum in Eq. (4) is not a bistatic PT spectrum with a

closed form unless we acquire the analytical expression of

β(ΔKR,KX), e.g. using numerical computation techniques

such as the GBF algorithm [13]. In [11], we derived a

close-form expression of β(ΔKR,KX) in the bistatic tandem

configuration, given by

β = arctan

(
−
√
2y − 2

2
+

P

2

)
, (5)
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(
q

2
+

√(q
2

)2
+
(p
3

)3) 1
3

+

(
−q

2
−
√(q

2

)2
+
(p
3

)3) 1
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+
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3
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√
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RR
2
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4
X
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Substituting Eq. (5) into Eq. (4), a closed-form bistatic

PT spectrum can be derived. In [11], we have analyzed the

spectrum accuracy and concluded that the DMO, LBF and

MSR spectra are merely approximate formulations of the

closed-form spectrum.

III. BISTATIC RANGE DOPPLER ALGORITHM

In this section, a bistatic RDA is developed based on the

above closed-form spectrum. The processing steps of the

bistatic RDA are similar to Neo’s method [6], where the

secondary range compression (SRC) is compensated for in the

2-D wavenumber domain, whereas the range cell migration

correction (RCMC) is done by an interpolator in the range

time and azimuth wavenumber domain, and then the azimuth

compression operation is performed with a range-dependent

phase multiplication. Compared with Neo’s RDA method, the

proposed algorithm is able to better focus the bistatic data no

matter how long the bistatic baseline is. The baseline-range

ratio has nearly no effect on the imaging performance.

The development of bistatic RDA starts with the 2-D spec-

trum (4) of the point target. The phase of spectrum (4) can be

decomposed into the following components based on Taylor’s

expansion with respect to the range wavenumber center KRc

up to the quadratic term,

φ(ΔKR,KX) ≈φrm(ΔKR) + φaz(KX) + φrcm(KRc,KX)

·ΔKR + φsrc(KRc,KX)ΔK2
R + φres, (7)
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where

φrm(ΔKR) = −ΔK2
R

2b
, (8)

φaz(KX) = −(RB + hx tanβ0) ·M1, (9)

φrcm(KRc,KX) = −hxβ̂0 sec
2 β0 ·M1

+ (RB + hx tanβ0) · M2

M1
, (10)

φsrc(KRc,KX) =
M4 ·M1

2
+ (hxβ̂0 sec

2 β0)
M2

M1

− [RB(1 + ρ tanβ0)(
M2

2

2M3
1

− M3

2M1
)], (11)

with

ρ = hx/RB ,

M1 =
√
4K2

Rc cos
2 β0 −K2

X ,

M2 = 4K2
Rc cos

2 β0 − 2K2
Rcβ̂0 sin(2β0),

M3 = 4 cos2 β0 − 8KRcβ̂0 sin(2β0),

− 2K2
Rc

ˆ̂
β0 sin(2β0)− 4K2

Rcβ̂0
2
cos(2β0),

M4 = hx
ˆ̂
β0 sec

2 β0 + 2hxβ̂0
2
tanβ0 sec

2 β0,

β0 = β|KR=KRc
, β̂0 =

∂β

∂KR
|KR=KRc

,
ˆ̂
β0 =

∂2β

∂K2
R

|KR=KRc
.

The above phase terms can be interpreted as follows:
(a) The first phase term φrm(ΔKR) represents the range

modulation, which is dependent only on the range wavenum-

ber. This term can be removed through range compression by

multiplying a conjugated phase. This operation is the same as

the monostatic case.
(b) The second phase term φaz(KX) represents the azimuth

modulation. A conjugated phase is used to perform azimuth-

matched filtering. This operation is applied in the range time

and azimuth wavenumber domain due to significant range

dependence.
(c) The third term φrcm(ΔKR,KX) is linearly proportional

to the range wavenumber ΔKR and represents the RCM term.

A range direction interpolator is used to correct the RCM in

the range time and azimuth wavennumber domain in a similar

manner with the monostatic RDA.
(d) The fourth phase term φsrc(ΔKR,KX) represents

range/azimuth coupling term and becomes significant for a

high squint angle, a fine resolution, or large bistatic baseline.

If uncompensated, the coupling term would lead to significant

degradation in the resolution. The SRC is compensated in the

2-D wavenumber domain, since the strong dependency exists

in the 2-D wavenumber domain. However, this SRC term is

weakly range dependent and φsrc(ΔKR,KX) is computed at

a specific range called reference range which is always at the

swath center. For wider range swath, it may be necessary

to segment the scene into multiple range invariance regions

whose width is determined by the tolerable quadratic phase

error.
(e) The last phase term φres represents the residual phase,

including phase terms that are independent of range and

azimuth wavenumber and higher-order error phase terms. This

phase term has no effect on the focusing processing.

In contrast to the finite truncation of KX in the Tay-

lor expansion used in Neo’s method, the proposed algo-

rithm keeps the information of KX without any loss in

φaz(KX), φrcm(ΔKR,KX) and φsrc(ΔKR,KX). While the

losses caused by the truncation operation, are insignificant in

a small baseline-range ratio case, they become large as the

baseline-range ratio increases and lead to degradation of the

focusing quality. This will be demonstrated in the simulations.

Compared with the complexity of Neo’s RDA method that

performs the Taylor expansions in terms of KX and ΔKR,

the proposed algorithm only performs the Taylor expansion in

terms of ΔKR and the extra computations of β̂0 and
ˆ̂
β0. As

such, their complexities are comparative.
Removing the range compression term and the SRC term in

the 2-D wavenumber domain, the reference function becomes

ϕr(ΔKR,KX , Rs) = exp
[−jφsrc(KRc,KX , Rs)ΔK2

R

]
· exp(−jφrm), (12)

where Rs is the reference range from the reference target to

the trajectory.
Taking the inverse range FT, we obtain the signal in range

time and azimuth wavenumber domain as

S(τ,KX) = ωr

(
τ − φrcm

c

)
Waz(KX) exp [jφaz(KX)] ,

(13)

where ωr is the sinc-like compressed envelope and RCM

term appears in this envelope. RCMC is performed by a

range-depedent interpolation in this step. The RCMC operation

straighten the trajectories so that they become parallel to the

azimuth wavenumber axis.
The last step is the azimuth compression. The reference

function becomes

ϕaz(KX) = exp [−jφaz(KX)] . (14)

After this step, the inverse azimuth FT is then performed to

transform the data into the complex image domain.

IV. ALGORITHM ANALYSIS

In the previous section, a bistatic RDA method based on the

analytical PT spectrum is developed. As we discussed above,

the coupling phase term (11), if not properly compensated,

will lead to significant degradation in the image resolution.

In the RDA algorithm, the SRC compensation operation is

performed independent of range. As the range region size

increases, the focusing quality of points in the margin degrades

drastically, especially in the case with a large baseline-range

ratio. It is thus necessary to analyze the relationship between

the baseline-range ratio and the range region size in this

algorithm.
Focusing on the SRC compensation operation in (12),

we compensate the range-dependent SRC phase term by a

reference phase term with reference range Rs. The quadratic

phase error (QPE) due to range region size is expressed by

neglecting the second and higher-order error phases, i.e.,

ε(ρ,ΔRB) ≈ ∂φsrc(KRc,KX , ρ)

∂RB
ΔRBΔK2

R, (15)
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where ΔRB = RB−Rs. The maximum value of QPE is given

by

εmax(ρ,ΔRB) =
∂φsrc(KRc,KX , ρ)

∂RB
ΔRB(B/c)2. (16)

Within a range processing block, the QPE should be limited

by νπ , where ν is normally set to 0.25. According to (16), the

maximum range offset can be determined via the condition

ΔRB,max =
νπc2

B2

[
∂φsrc(KRc,KX , ρ)

∂RB

]−1

. (17)

It is clear that the tolerable range offset ΔRB is inversely

proportional to the transmitted bandwidth B. Fig. 2 shows the

relationship between ΔRB,max and the ratio ρ when B = 80
MHz. It is clear that the proposed algorithm can well focus

these targets for a range region size of 350 m even when

the baseline-range ratio is up to 1. However, the tolerable

range region size in the Neo’s RDA method is only 20 m. The

main reason is that the accuracy of MSR spectrum degrades

and the losses due to the truncation operation become larger

as the baseline-range ratio increases, and thus the tolerable

range region size in Neo’s RDA based on the MSR spectrum

becomes smaller. The LBF and DOM spectra completely fail

in such a large ratio. They cannot even focus the reference

target [11]. Their region sizes become comparative as the ratio

decreases.
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V. SIMULATIONS

In this section, two simulations are performed to verify the

feasibility of the proposed algorithm and effectiveness of the

analysis above. Simulation parameters are given in Table I.

The oversampling rate is 1.5 in range and 1.8 in azimuth;

rectangular weighting is adopted in both range and azimuth

processing. Point target arrangement in the scene is shown in

Fig. 3. Seven point targets (labeled as T1-T7) are illuminated

by a composite bistatic beam. The separation between adjacent

point targets is 100 m. The target T4 is assumed to be the

reference target, and the closest range from T4 to the trajectory

is 20 km.

In the first case, the baseline is 8km and the ratio ρ is

0.4. An appreciable amount of squint angle with transmitter

squint angle θT0 of 34.99◦ and receiver squint angle θR0

of 16.70◦ is assumed to introduce a severe SRC term. The

RCMs and SRC compensation and range cell correction in

the range time and azimuth wavenumber domain are shown

in Fig. 4. RCMs caused by the bistatic squint model are

very clear in Fig. 4(a) and Fig. 4(b). SRC is compensated to

remove the range/azimuth coupling and the range interpolator

is used to remove these RCMs and the results after correction

are shown in Fig. 4(c). Taking the azimuth compression and

inverse FT, we obtain the complex image as shown in Fig.

5(a). The contour plots of reference target T4 and the farthest

target T7 are shown in Fig. 5(b). Range impulse responses,

azimuth impulse responses and their quality measurements

of two point targets (T4 and T7) are shown in Fig. 6. The

impulse response width (IRW) is 1.31 cells in range and 1.63

cells in azimuth, which meets the theoretical limits in range

(1.33/1.5=0.88) and in azimuth (1.63/1.8=0.90) for rectangular

weighting. Furthermore, the sidelobe levels agree with the

theoretical values of −13.3 dB and −10 dB for peak sidelobe

ratio (PSLR) and integrated sidelobe ratio (ISLR), respectively.

As such, we conclude that the proposed RDA algorithm is able

to focus data in the tandem bistatic configuration very well.
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In the second simulation, it is verified that the proposed

algorithm is more robust compared with Neo’s RDA as the

ratio of baseline-range increases. To analyze the effect of

baseline on the proposed RDA algorithm, the simulation with

a longer baseline (20 km and ρ = 1.0) is performed. It is

evident that the differences in both the range and azimuth

impulse responses are negligible for both T4 and T7, as

shown in Fig. 6. For comparison purposes, the range impulse

responses, the azimuth impulse responses, and the focusing

quality measurements of two point targets (T4 and T7) are

shown in Fig. 7 based on Neo’s bistatic RDA method. The

reference target T4 has excellent focused qualities in both

range and azimuth impulse responses in both cases, whereas

the performance of the range response of the farthest target

T7 drastically degrades as the baseline-range ratio increases.

Its PLSR and ISLR in range degrade up to −7.89 dB and
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TABLE I
SIMULATION PARAMETERS

Baseline Squint θT0 Squint θR0 Center frequency Range bandwidth Sample rate Velocity PRF
Case 1 8km 34.99◦ 16.70◦

10GHz 80MHz 120MHz 150m/s 600Hz
Case 2 20km 45.00◦ 0◦

−6.36 dB, respectively, as are shown in Fig. 7(b). The reason

behind this is that Neo’s bistatic RDA method was developed

based on the MSR’s spectrum which is approximate and its

accuracy is sensitive to the baseline-range ratio. Therefore, it

is expected that Neo’s method will not perform well when the

baseline-range ratio is large. As a result, the proposed RDA

method is more robust to focus the bistatic tandem data and

the baseline-range ratio has negligible impact on the imaging

results.
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Fig. 6. Plots of range and azimuth impulse response based on the
proposed algorithm. (a) Plots of range and azimuth impulse response
for T4. (b) Plots of range and azimuth impulse response for T7.

VI. CONCLUSION

An analytical spectrum-based bistatic RDA algorithm is de-

veloped to focus SAR data in the tandem configuration. Unlike

existing algorithms, the proposed RDA algorithm is insensitive

to the baseline-range ratio and is thus more robust in the

bistatic tandem case. As a result, The proposed technique is

effective when the bistatic SAR data is acquired with a large

baseline in the tandem configuration.
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