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Abstract — In this paper, a two-stage image formation 
approach, which combines the Fourier and sparsity-based 
reconstruction strategies, is proposed to effectively process the 
multi-static synthetic aperture radar (SAR) data. This method 
exploits the block sparsity of the Fourier sampling patterns 
which contain a number of generally disjoint subbands in the 
two-dimensional spatial frequency domain. The Nyquist 
criterion is satisfied within each subband, whereas different 
subbands are sparsely distributed. In the proposed approach, 
the Fourier-based technique is first applied to produce coarse 
resolution images, which are then combined to produce a high-
resolution image through the exploitation of sparse 
reconstruction techniques. The proposed approach yields 
significant improvement of the resulting SAR image over 
Fourier-based techniques, and offers substantial reduction of the 
computational complexity when compared to direct sparse 
reconstruction. The exploitation of block sparsity-based 
techniques also permits practical treatment of the angle-
dependency of the scattering characteristics in SAR image 
construction. 

I. INTRODUCTION  

In the literature, there are two types of algorithms that produce 
synthetic aperture radar (SAR) images from Fourier samples. 
One is based on classical linear reconstruction techniques, 
such as backprojection [1-2] and direct Fourier reconstruction 
[3-4]. These algorithms are scene-independent and, therefore, 
widely used in practical applications due to their simplicity. 
These algorithms, however, require that the data are sampled 
at the Nyquist rate. When the data are under-sampled or 
otherwise missing samples are present, linear reconstruction 
techniques may result in performance degradation, such as the 
appearance of undesired artifacts. To solve this problem, 
nonlinear reconstruction techniques, particularly the sparse 
reconstruction or compressive sensing approaches, have been 
found useful in recent years [5-6]. Sparse reconstruction 
methods can accurately reconstruct sparse scenes with a small 
number of randomly sampled Fourier samples. 

Passive radars suffer from low signal bandwidths and low 
carrier frequencies [7]. As such, it is important to exploit 
multiple available illuminators for multi-static operation. In 
this paper, we propose an effective multi-static passive SAR 
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imaging method using a two-stage approach in which the 
Fourier-based and sparsity-based signal reconstruction strate-
gies are subsequently applied. The multi-static radar being 
considered consists of multiple stationary illuminators and a 
single moving receiver, but the extension to multiple receivers 
is straightforward. In each subband of Fourier samples that 
correspond to a bistatic illuminator/receiver pair, the sampling 
satisfies the Nyquist criterion. As such, a Fourier-based recon-
struction method is first applied to each subband, which 
corresponds to a bistatic pair, to produce a coarse-resolution 
image. These images are then combined across all the 
subbands to produce a high-resolution image through the 
exploitation of sparse reconstruction techniques. The mapping 
between the coarse-resolution Fourier-based images and the 
fused high-resolution image in this stage allows us to partition 
the entire image to multiple sub-images and process them 
separately. Thus, the required complexity is significantly 
reduced as compared to the direct reconstruction of the entire 
image at the same time.   On the other hand, when compared 
with Fourier-based techniques, the proposed approach avoids 
the artifact effect due to disjoint and sparse observation 
subbands. In addition, the exploitation of block sparsity-based 
techniques enables practical treatment of the angle-
dependency of the scattering characteristics in SAR image 
construction. 

II. MULTI-STATIC PASSIVE SAR 

In this section, we first introduce the tomographic inter-
pretation for a bistatic passive radar pair, and then extend the 
model to a multi-static radar case. 

A.  Bi-static Radar 

Consider a bistatic radar geometry as shown in Fig. 1(a).  
We assume the 2-D geometry without loss of generality, but 
the results can be easily extended to the 3-D case. In our geo-
metry, the center of the interested scene is defined as the 
origin of coordinate system, whereas the positions of the 
transmitter and the receiver are determined by their polar 
radius and polar angle pairs, respectively denoted as 

Tc T
,r qé ùê úë û  

and 
Rc R

,r qé ùê úë û . We assume that an arbitrary point target, located 

at ( ),
t t
x y , with a scattering coefficient is s . The ranges from 

the transmitter and receiver to the target are denoted by 
T
r  and 

R
r , respectively. 



 
 
 

The transmitter emits signal ( ) ( )exp 2s i ft p t=  to illuminate 

the service area. After demodulation, the received signal can 
be expressed as 

( ) T Rexp 2
r r

r i f
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t s p
é ù+ê ú= ⋅ -ê ú
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,                       (1) 

After motion compensation to the scene center, it becomes 
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r r r r
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c
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.                (2) 

Under the plane wavefront assumption, it can be rewritten as 
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where 
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are the spatial frequencies in the x and y  directions, respec-
tively. They can also be conveniently expressed in the polar 
format as: 
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From (3), it is clear that the data after preprocessing, i.e., 
( )r̂ t , is essentially a sample of the target in the spatial fre-

quency (wavenumber) domain. The sample position is deter-
mined by the azimuth angles of the transmitter/receiver and 
the frequency of the transmitted signal. As illustrated in Fig. 
1(b), for a single-frequency signal, the azimuth angle of the 
transmitter and the signal frequency respectively determine the 
position and size of the red circle, whereas the bisection that 
divides the azimuth angles of the transmitter and receiver 
determines the sample direction, shown as the dashed line. 
The sample position is the intersection of the red circle and the 
dashed line.   
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   (a) data collection geometry       (b) wavenumber domain samples 

Fig. 1.  Data collection geometry and wavenumber domain samples 
for a bistatic transmitter/receiver pair. 

B. Multi-static Passive SAR  

Now we consider the signal model in a multi-static case 
with J illuminators, where the jth illuminator transmits a 
signal with bandwidth 

j
B  and a distinct carrier frequency 

cj
f . 

The receiver receives the scattered echo from the scene at a 
constant repeat time interval. During the coherent processing 
interval (CPI) corresponding to an accumulated angle qD , it 
collects K  sample series at K  different azimuth positions. 
Each series contains the scene echo corresponding to the J 

illuminators. From (3), we obtain the signal model for the 
multi-static SAR as 
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Due to space and frequency diversity, i.e., the variation of 

cj
f , 

l
f , 

Tj
q , and 

Rk
q , the data collected by the airborne multi-

static SAR represent multiple samples in the spatial frequency 
domain. Typically, the samples in 

l
f  and 

Rk
q  are dense and 

satisfy the Nyquist requirement, whereas the samples in 
cj
f  

and 
Tj
q  are often sparse. Therefore, the sample support is 

usually block sparse in the wavenumber domain. For the 
multi-static passive radar configuration shown in Fig. 2(a), the 
corresponding sample support pattern is depicted in Fig. 2(b). 
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    (a)  radar geometry      (b) wavenumber domain sample pattern  

Fig. 2.  Wavenumber domain support pattern for multi-static SAR. 

III. IMAGE FORMATION  

For the multi-static passive radar, as discussed in the previous 
section, the wavenumber domain sample patterns are block 
sparse, i.e., the observed support areas are composed of a 
number of sparsely distributed subbands. In each subband, the 
data are sampled at Nyquist rate. Considering this specific 
sample pattern, we propose an effective two-stage image 
formation algorithm, which combines the linear and nonlinear 
reconstruction techniques. In the first-stage, a series of coarse-
resolution images are individually formed from the subband 
data by using a linear reconstruction algorithm, since the 
subband data are intensively sampled. In the second stage, the 
information extracted from the coarse-resolution images is 
exploited by a sparse reconstruction technique to form an 
image with a finer resolution. This two-stage processing 
strategy is illustrated in Fig. 3. 

A. First-Stage Image Formation 

The observed subband samples are, in general, uniformly 
spaced in the polar ( ),

l Rk
f q  domain. As such, they become non-

uniformly spaced after being mapped to the Cartesian spatial 
frequency domain ( ),

x y
k k . Therefore, to exploit available 

computationally efficient algorithms, such as the fast Fourier 
transform (FFT), a 2-D interpolation of the sampled data onto 
a rectangular grid in the ( ),

x y
k k  domain is performed.  

After performing polar format transformation, the signal in 
(6) can be expressed as 
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Fig. 3  Illustration of the proposed two-stage image formation method 
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are the resampled positions in the 
x
k  and 

y
k  domains, respec-

tively. For the jth subband, the support center of wavenumber 
domain is set as 

( )
2

cos coscjj
xc Tj Rc

f
k

c

p
q q= + ,  ( )

2
sin sincjj

yc Tj Rc

f
k

c

p
q q= + .   (9) 

Performing 2-D FFT on (8) with respect to k and l yields a 
series of coarse-resolution images, expressed as 
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where ( ),jA x y  is the point spread function for the jth subband 

data, whereas 1 / ( )
xk

KD  and 1 / ( )
yk

LD  are the pixel sizes in the 

x  and y  directions, respectively. 
From (10), we can obtain a coarse estimate of target 

position as 

0 0,
x y

t t
k k

n m
y y

K L
= =

D D
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whose respective accuracies are ( )1 /
xk

KD  and ( )1 /
yk

LD . In 

(11), 
0
n  and 

0
m  are the pixel indexes of the target location in 

the x  and y  directions, respectively. 

B. Second-Stage Image Formation 

Because the observation subbands are sparsely distributed 
in the wavenumber domain, Fourier reconstruction may not 
yield a desirable image resolution and low sidelobe levels. In 
addition, it is difficult to perform coherent Fourier recon-
struction across the entire observation subbands when the scat-
tering coefficients depend on the aspect of the illuminators.  

In such situations, the recently developed nonlinear recon-
struction techniques, i.e., the sparse signal reconstruction and 
compressive sensing approaches, can provide an effective 
target reconstruction capability, provided that the scene is 
sparse. Such sparse scene imaging problems to be considered 
herein are important in practice because many real-world 
scenes are either strictly sparse or can be approximated with a 
small number of strong scatterers. As such, in the sequel, we 
employ sparse reconstruction techniques in the second image 
formation stage to fuse the coarse-resolution images.  

In this stage, each coarse-resolution image pixel is divided 
into N N´  fine resolution pixels. Therefore, the size of the 
new pixel in the range and azimuth becomes ( )1 /

xk
NKD  and 

( )1 /
yk

NLD , respectively.  For the jth illuminator, the signals at 

the coarse-resolution cell and the fine-resolution cell can be 
associated by a transform matrix, expressed as 

( ) ( ) ( ),  1,2, ,j j jr j JF = = w ,                         (12) 

where ( )jr  is the value of the pixel generated in the coarse-

resolution image, ( )2

( )
1
, ,

T
j j j

N
w w= w  is the fine-resolution pixel 

vector to be reconstructed. In addition, ( )jF  is a sensing row 
vector of size 21 N´ , whose nth element is expressed as 

( ) { }( ) , expj j j j

n c n c n n xc n yc
A x x y y i x k y kf é ù= - - ⋅ +ê úë û ,     (13) 

where ( ),
c c
x y  and ( ),

n n
x y  are the coordinates of the coarse-

resolution pixel cell and the nth fine-resolution pixel, respec-
tively. 

To fully account for the spreading effects of the image, it 
is desirable to exploit multiple coarse-resolution pixels to 
construct the fine-resolution images in the second stage. 
Toward this end, we modify (12) by using Q  coarse-
resolution pixels, yielding the following expression: 

( ) ( ) ( ),  1,2, ,j j j j JF =  r = w ,                （14） 

where ( )( )
1
, ,

T
j j j

Q
r r= r  is a vector containing the values of Q  

selected neighboring coarse-resolution pixels, ( )jw  represents a 
vector of the unknown fine-resolution pixels contained in the 
Q  coarse-resolution pixels, and ( )jF  is a 2Q QN´  sensing 
matrix, whose (q,n)th element is  

( ) { }( )

,
, expj j j j

q n q n q n n xc n yc
A x x y y i x k y kf é ù= - - ⋅ +ê úë û ,     （15） 

with ( ),
q q
x y  denoting the position of the qth coarse-resolution 

pixel.  
As we described earlier, in multi-static passive SAR, the 

scattering coefficients differ with respect to different illu-
minators due to their different aspect angles.  That is, the fine-
resolution pixel coefficients to be estimated, which are ex-
pressed as vectors ( )jw  in (14), are different for different index 
j. Nevertheless, because it is likely that the same sparse scat-
terers make contribution to the observation data irrespective of 
the illuminators, the positions of the nonzero entries in the 
vectors ( )jw  are identical or at least highly overlap. This chara-
cteristic is referred to as the block sparsity or group sparsity 
[8]. This type of problems can be effectively solved using 
techniques that take such property into account, such as block-
sparsity based compressed sensing [8], multi-task compressed 
sensing [9-10], and distributed compressed sensing [11].  

Equation (14) is solved for each coarse resolution pixel 
and repeated until all the coarse-resolution pixels are 
processed. Finally, all the obtained fine-resolution sub-images 
are mosaicked to obtain the high-resolution image of the entire 
scene. The proposed second-stage processing is illustrated in 
Fig. 3.  Note that while the fine-resolution pixel coefficients 
are computed for Q coarse-resolution pixels each time, only 
the results obtained for the underlying coarse-resolution pixel 
is maintained and those belonging to the neighboring coarse-
resolution pixels are discarded.   



 
 
 

IV. EXPERIMENTAL RESULTS  

Simulations are performed to verify the effectiveness of the 
proposed technique. Assume that the passive radar system 
employs 8 stationary illuminators with a moving receiver.  
The respective frequencies and azimuth angles of the illumi-
nators are summarized in Table 1, whereas the bandwidth of 
each signal is assumed to be 20 MHz. It is assumed that, for 
the sparse scene consisting of a collection of point targets, as 
shown in Fig. 4, the receiver changes its azimuth angle from 
11o to 17o during the observation period. The resulting 
wavenumber domain support is shown in Fig. 5. For each bi-
static pair corresponding to an illuminator, the scattering coef-
ficients are considered time-invariant because of the small 
azimuth angle of the receiver. The scattering coefficients, 
however, vary independently for bistatic pairs associated with 
different illuminators.  

Table 1.  Frequency and Azimuth Angles of the 8 Illuminators 

Illuminator 1 2 3 4 5 6 7 8 

fc (MHz) 450 550 500 480 610 520 630 580 

Angle(o) 5 10 45 25 30 20 15 50 
 

    
 

Fig. 4 Targets locations.           Fig. 5 Sample support area.  

For comparison, the result obtained from direct Fourier-
based imaging is shown in Fig. 6(a). The images obtained in 
the eight subbands are noncoherently combined because the 
scattering coefficients are aspect-dependent and, thereby, their 
phases cannot be coherently aligned. As we discussed earlier, 
the quality of the resulting image is undesirable as it suffers 
from a poor image resolution and high sidelobe levels. We 
also show the results when conventional compressive sensing 
techniques, which do not consider the group sparsity, are used 
to reconstruct the image.  The image shown in Fig. 6(b) is the 
sum of the image magnitudes computed separately for each 
illuminator to account for their different scattering coef-
ficients.  

In the proposed two-stage imaging technique, the eight 
coarse-resolution images, respectively obtained through the 
Fourier transform, are fused to form a fine-resolution image 
using the block orthogonal matching pursuit (BOMP) [8] 
technique. It is evident from Fig. 6(c) that the resulting image 
recovers the high-resolution pixels with a high fidelity.  

V. CONCLUSION 

In this paper, we have proposed an effective two-stage 
technique for multi-static passive SAR imaging. By com-
bining Fourier-based approach and group sparsity based signal 
reconstruction methods, the proposed technique achieves 
high-quality SAR imaging with a low complexity.  
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Fig. 6  Images produced by (a) Fourier-based imaging, (b) conventional compressed sensing, and (c) the proposed two-stage method. 
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