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ABSTRACT  
 

Anti-jamming capability is essential for reliable GPS 

operations in hostile environments. A large class of 

“smart” jammers assumes nonstationary frequency 

modulated (FM) waveforms. This makes jammer 

suppression difficult when using conventional jammer 

suppression methods, such as frequency-domain notch 

filters or time-domain gaiting. We utilize two important 

spatio-temporal properties of the jamming FM signals. 

The first property is the sparsity of the waveforms in the 

joint time-frequency domain in which the jammer energy 

is concentrated in narrow ridges across the time and 

frequency variables. The second property is the highly 

correlated jammer waveforms received by multi-antenna 

receivers, enabling the use of spatial degrees of freedom 

for effective jammer suppression and GPS signal 

preservation. 

 In this paper, we develop novel techniques for FM 

jammer suppression of sparsely sampled GPS signals in 

the context of multi-sensor GPS receivers. The following 

important issues are addressed for the first time in this 

context: (a) We develop a multi-sensor data-dependent 

time-frequency kernel design method for suppression of 

noise-like artifacts arising from incomplete observations; 

(b) We utilize proper sparse compressive sensing 

techniques for FM jammer signature estimation that 

preserves phase information at each array sensor; (c) We 

develop multi-sensor array processing methodology that 

achieves effective jammer suppression and GPS signal 

preservation based on reconstructed group sparse data 

estimates and through the exploitation of spatial degrees 

of freedom offered by the sensor array; and (d) We 

examine the effect of different sparse sampling patterns 

and reveal that sensor-dependent missing samples is key 

to improved jammer signature estimation and jammer 

removal capability. 



INTRODUCTION  
 

Anti-jamming capability is essential for reliable GPS 

operations in hostile environments. A large class of 

“smart” jammers assumes nonstationary frequency 

modulated (FM) waveforms. Such waveforms obscure the 

GPS signal across the entire GPS frequency band and 

over consecutive time periods. This makes jammer 

suppression difficult when using conventional jammer 

suppression methods, such as frequency-domain notch 

filters or time-domain gaiting. It is more effective to 

exploit the sparsity of jammer waveforms in the joint 

time-frequency (TF) domain in which their energy is 

concentrated in narrow ridges across the time and 

frequency variables [1-5]. With an accurate estimation of 

the jammer signal TF behavior, nonstationary jammer 

suppression methods, including time-varying notch 

filtering, can be successfully applied. A number of 

methods have been developed for parametric and 

nonparametric estimations of FM jammer signals [6-9]. It 

is noted that, irrespective of the employed suppression 

method, the use of spatial degrees of freedom through 

multi-antenna receiver configuration has invariably led to 

more effective jammer suppression and GPS signal 

preservation [4, 10].  

Traditional anti-jamming GPS receiver signal 

processing assumes that the following two conditions are 

satisfied: (a) The propagation channel conditions are 

time-invariant; and (b) The GPS signals contaminated by 

the jammers are uniformly sampled above the Nyquist 

sampling rate. In practical operations, however, GPS and 

jammer signals often experience random time-varying 

channel conditions due to, for example, multipath fading 

and line-of-sight (LOS) obstruction. Such phenomena are 

frequently observed in ground GPS operation in heavy 

urban environments, such as “city canyon”. Missing data 

may also be resulted from discarding samples contami-

nated by impulsive noise. Sources of impulsive noise 

may, for example, include motor ignition noise and 

wideband radar emissions using narrow pulse, frequency-

hopping, and other types of TF-selective waveforms. As a 

result, the observed data may be sparsely sampled 

described by missing samples from Nyquist sampled data. 

In these situations, parametric jammer estimation neither 

yields accurate characterization nor does it lend itself to 

effective removal of jammer signals. On the other hand, 

nonparametric TF analysis becomes unreliable as missing 

samples yields a high level of noise-like artifacts.  

Recently, we have developed a novel method for 

effective jammer suppression by exploiting the local 

sparsity of FM jammer signals [11]. Reconstruction of 

FM jammer signals from sparsely sampled observations 

falls under the emerging area of compressive sensing and 

sparse reconstruction where, in this case, sparsity is 

exhibited in the frequency domain when the signal is 

locally viewed through a short window.  In such 

approaches, FM jammer instantaneous frequency 

estimation based on sparse signal reconstruction is built 

upon the linear Fourier relationship between the TF 

domain and other joint-variable domains [12-14]. By 

exploiting data-dependent kernel and applying sparse 

signal reconstruction, high-accuracy instantaneous 

frequency (IF) estimation is achieved even when a high 

number of data samples is missing.   

Considering the fact that many existing anti-jamming 

GPS receivers are equipped with multi-sensor array 

processing capability, the objective of this paper is to 

develop novel techniques for FM jammer suppression of 

sparsely sampled GPS signals in the context of multi-

sensor GPS receivers. The output of the anti-jamming 

processing yields “clean” GPS signals for geolocation 

through standard dispreading and discrimination opera-

tions. The added spatial domain degrees of freedom 

benefit jammer TF signature estimation, jammer removal, 

and GPS signal preservation. Reaping these benefits, 

however, requires the developed anti-jamming algorithm 

to properly utilize the multi-sensor array GPS receiver 

platform. In particular, the following important issues are 

addressed in this paper: (a) In achieving effective 

suppression of noise-like TF domain artifacts due to 

missing data samples, adaptive TF kernels are designed to 

incorporate multi-sensor observations; (b) Group sparsity 

of the FM jammer signature over multiple array sensors, 

that is, the data observed in each sensor corresponds to 

identical time-varying instantaneous frequency signature 

but with different complex coefficients, should be 

exploited for enhanced FM jammer signature estimation. 

The applied group sparse compressive sensing method 

should generate individual complex signature estimate 

corresponding to each sensor. In particular, the phase 

information of the FM jammer in each sensor should be 

preserved; (c) Using multiple sensors enables reliable 

jammer signature estimation and effective jammer 

removal even under a large number of missing samples; 

and (d) We examine the effect of identical or different 

sparse sampling patterns across the array sensors, and 

reveal that sensor-dependent sparse sampling enhances 

jammer signature estimation and jammer removal 

capability.    

In this paper, after presenting the signal model, we 

first review the concept of jammer suppression, and the 

joint space-time subspace projection is exploited as a 

means to perform jammer suppression. We then provide a 

detailed description of the estimation of the temporal and 

spatial jammer signatures, including the sparsely sampled 

multi-sensor signal model, TF analysis, multi-sensor TF 

kernel design, and group sparsity based IF signature 

estimation. The effectiveness of the proposed work is 

validated using simulation results.  

 

NOTATIONS 
 

We use lower-case (upper-case) bold characters to denote 

vectors (matrices). In particular, IN denotes the N N  



identity matrix. (·)∗ denotes complex conjugation, and (·)T 

and (·)H, respectively, denote the transpose and Hermitian 

(conjugate transpose) operations. ( )x F  and 1( )x

 F  

respectively represent the discrete Fourier transform 

(DFT) and inverse DFT (IDFT) with respect to x. || · ||1 

and || · ||2 respectively denote the l1 and l2 norm operations. 

In addition,   denotes the Kronecker product.  

 

SIGNAL MODEL 
 

GPS signals and the associated jammers adhere to the 

narrowband signal model. Considering an N-elements 

array that receives GPS signals contaminated by a jammer 

and noise, the discrete-time received signal vector can be 

expressed as 

1

( ) ( ) ( ) ( ) ( ) ( ),
s

j

Q

i i j
i

t s t s t t 


  y na a          (1) 

where [1, , ]t T , and sQ  is the number of the GPS 

signals. In addition, ( )a  is the 1N  steering vector of 

the array corresponding to a direction of signal arrival  , 

and ( )is t  and ( )js t  are waveforms of the i-th GPS signal 

and the jammer, respectively. The jammer signal is 

assumed to be an FM signal. ( )tn  is the 1N  additive 

white Gaussian noise vector with zero mean and 

covariance matrix 
2

N I .  

Consider the thinned sampling of the array 

observations with a random pattern applied to each array 

sensor, where the number of missing samples is 

0
n

M T  for n = 1, …, N. As such, for the n-th array 

sensor, the thinned observation ( )nx t  can be expressed as 

the product of ( )ny t , the n-th element of y(t) in (1), and 

the following observation mask, 

1, if ,
( )

0, if ,

n

n

n

t
b t

t


 


                       (2) 

where {1, , }n T  is the set of observed time instants 

and its cardinality is n nT M  . For simplicity but 

without loss of generality, we assume 
n

M  to be the same 

for all sensors, i.e., nM C , for 1, ,n N , whereas 

( )
n

b t  may or may not be the same. 

 

JAMMER SUPPRESSION BASED ON JONT 

SPACE-TIME DOMAIN PROJECTION 
 

In this paper, we use the orthogonal projection scheme for 

effective jammer suppression. That is, the received signal 

vector, defined over the joint space and time domain, is 

projected into the orthogonal subspace of the jammer [4].  

Consider that the temporal signature of the jammer is 

considered over L time samples, expressed as  

[ (0),..., ( 1)]
j jj

Ts s L s .                     (3) 

The Kronecker product of the temporal signature and its 

spatial signature, ( )a , yields its overall subspace 

defined in the joint space-time domain, denoted as 

( )j j j v s a . The projection matrix into the 

orthogonal subspace of the jammers is given by  

1( )LN

H H

j j j j

 P I v v v v .                    (4) 

In such an approach, the temporal domain can typically 

exploits a large dimension to ensure insignificant GPS 

signal loss in the projection-based jammer suppression, 

whereas the spatial domain degrees-of-freedom provide 

robust jammer suppression capability and additional GPS 

signal protection. The challenges underlying the proposed 

work lie in the requirement of accurate estimates of the 

jammer spatial and temporal signatures in the presence of 

missing samples in the observed data.  

To achieve this objective, we consider the recently 

developed multi-sensor sparsity-aware TF analyses and 

signal filtering MUSIC (SF-MUSIC) techniques that are 

summarized below [14, 15]. We separately address the TF 

analysis of the jammer signals based on sparse data 

observations through adaptive TF kernel design and 

sparse signal reconstruction. Their IF laws, and 

subsequently their phase signatures, are then estimated. 

The jammer spatial signature is estimated using the SF-

MUSIC. 

 

TIME FREQUENCY REPRESENTATION USING 

MODIFIED ADAPTIVE OPTIMAL-KERNAL 
 

The simplest bilinear TF distribution (TFD) is the 

Wigner-Ville distribution (WVD),  

1( ) = { ( ( , ))}D t, f A   F F ,                  (5) 

which is defined as a two-dimensional (2-D) Fourier 

transform of the following ambiguity function (AF):  

 * 4( , ) ( ) ( ) j t

t

A x t x t e        ,             (6) 

with   and  respectively denoting the frequency shift 

and the time lag. 

WVD is known to provide the best TF resolution for 

single-component linear FM signals, but it is 

contaminated by cross-terms when the IF law is nonlinear 

or when a multi-component signal is present. A number of 

reduced interference distributions (RIDs) have been 

developed to reduce the cross terms [16, 17]. These RIDs 

apply a multiplicative kernel to the AF and function like a 

low-pass filter in the ambiguity domain. As the signal 

auto-terms are likely to be localized around the low-

frequency region, whereas the cross-terms are away from 

the Doppler and lag axes, RID kernels generally preserve 

the signal auto-terms and suppress cross-terms. In 

addition, because white noise spreads over the entire TF 

domain, applying RID kernels also reduce the noise 



power. RID kernels can be classified into two major 

classes, i.e., data-independent and data-dependent. An 

example for the former is the Choi-Williams [18], 

whereas the adaptive optimal kernel (AOK) [19] is 

popularly used example for the latter.  

When the observations are sparsely sampled, missing 

samples cause noise-like artifacts produced by the 

missing data. The effect of the artifacts due to missing 

data samples resembles that due to noise in the TF domain 

in the sense that they respectively spread over the entire 

TF region. Therefore, such effects can be mitigated using 

a proper TF kernel. The data-dependent kernels generally 

outperform the data-independent counterparts because 

they are adaptively optimized based on the signals.  

It is shown in [14] that, in a multi-sensor platform, 

the design of AOK should not be separately performed at 

each array sensor, but rather it should utilize the data 

observed at all sensors to produce a single optimum 

kernel. Let ( , )
n

A r   denote the AF of the n-th sensor in 

the polar coordinate with respect to the radius r and angle 

, where 1, ,n N . The modified AOK solves the 

following optimization problem which replaces the sensor 

AF by the average AF, i.e.,  
2

0 0

2

0

2

2

21

2

max | ( , ) ( , ) |

subject to ( , ) exp ,
2 ( )

| ( ) | ,

A r r rdrd

r
r

rd









   

 
 

   





 
  
 
 



 



            (7) 

where the averaged AF over all sensors is obtained as 

1

1
( , ) ( , )

N

n
n

A r A r
N

 


   ,                      (8) 

and  is a constant which influences the tradeoff 

between cross-term suppression and auto-term preser-

vation. 

The improvement of kernel design through such 

average is due to the phase invariance of the jammer auto-

terms with respect to the sensors, whereas the cross-terms 

between different jammer signal components as well as 

between the jammer signals and noise change phases with 

respect to the sensors [7, 20, 21].  That is, averaging the 

AFs across all array sensors enhances the jammer auto-

terms and mitigates the effects of cross-terms, noise, and 

missing samples artifacts. The effectiveness of artifact 

suppression is particularly pronounced when the different 

sensors have distinct missing sample patterns [14].   

 

INSTANTANEOUS FREQUENCY ESTIMATION 

THROUGH SPARSE RCONSTRUCTION 
 

Once the TF kernel is obtained from (8) for a multi-sensor 

platform, the TFD can be computed as the 2-D Fourier 

transform of the kernelled average AF, ( , ) ( , )A r r  


, 

i.e.,  
1( ) = { ( ( , ))}x xD t, f A  

F F .                (9) 

Alternative to the Fourier transform, we can obtain the TF 

signal representation (TFSR) through sparse recons-

truction from the same kernelled average AF. While 

earlier sparse TFSR reconstructions were based on the 2-

D Fourier transform relationship between the AF and the 

TFSR [22], it is shown in [12, 13] that the 1-D Fourier 

transform relationship between the instantaneous 

autocorrelation function (IAF) and the TFSR yields 

simpler computations and enables the exploitation of local 

sparsity in the TF domain. 

The 1-D inverse Fourier transform of ( , )A  


 with 

respect to   yielding the kernelled IAF, 

1
( , ) ( , ){ }C t A


  




 F .                   (10) 

Denote 
[ ]t

c  as a vector that consist of all IAF entries 

along the   dimension corresponding to time t , and 
[ ]t

w  

as a vector contains all the TFSR entries with respect to 

the frequency for the same time t . According to the 

relationship between AIF and TFSR, the following 

equation can be obtained 

 [ ] [ ] [ ]
, 1, ,

t t t
t T c w  ,           (11) 

where the dictionary matrix   is an inverse Fourier 

matrix. Because the IF of the jammers is sparse in the 

frequency domain corresponding to a constant t , the non-

zero entries of 
[ ]t

w  in (11) can be obtained through sparse 

reconstruction, formulated as  

[t]

[ ]

1

[ ] [ ]

min || ||

subject to 0,   .

t

t t t  

w

w

c w
           (12) 

Many sparse reconstruction algorithms can solve the 

above problem, such as OMP, LASSO and Bayesian 

compressive sensing [23-26]. In this paper, we utilize the 

OMP algorithm to perform sparse reconstruction of the 

TFSR, which is repeated for each time instant. Then, we 

can attain the frequency estimation ˆ ( )f t  of the jammer 

signal. 
 

SF-MUSIC FOR SPATIAL JAMMER SIGNATURE 

ESTIMATON 
 

In order to estimate the spatial jammer signature using the 

SF-MUSIC algorithm, we stationarize the array data using 

the IF estimated from the above sparse reconstruction 

approach. 

Denote ˆ ( )f t  as the estimated jammer IF, the 

corresponding phase trajectory ca be estimated as 

0

ˆˆ( ) 2 ( )
t

t f u du   .           (13) 

Note the estimated phase trajectory is shared by all the 

antennas, up to the ambiguity of the initial phase which 



differs for each antenna.  

The stationarization of the jammer signal is achieved 

by multiplying the received signal vector to the 

conjugated jammer signal, i.e.,  

ˆ( )( ) ( )e j tt t y y .   (14) 

As such, the stationarized jammer signal lies in or around 

the direct-current (DC) or zero-Doppler region. 

Performing the Fourier transform and selecting the DC 

component will accumulate the jammer power while de-

emphasizing the other components. Utilizing the MUSIC 

algorithm to estimate the jammer DOA yields the signal 

filtering MUSIC (SF-MUSIC) [15] that outperforms the 

conventional MUSIC because of the underlying signal 

discrimination capability. In the underlying problem 

where a portion of data samples are missing, the proposed 

approach ensures that all the measured data are utilized. 

On the contrary, the conventional MUSIC can only obtain 

samples to compute the sensor-array covariance matrix 

when none of the sensors have missing samples. As such, 

the advantage of the SF-MUSIC becomes more 

pronounced when different missing patterns are assumed 

in each antenna.      

It is noted that, when the estimated jammer IF is 

inaccurate due to noise perturbation or frequency 

discretization error, such integral may yield a high phase 

error. In practice, the entire time period can be partitioned 

into multiple segments so that the phase deviation in each 

segment is insignificant.   

For the stationatized signal vector ( )ty , the temporal 

signature is changed to T[1, ,1]j s , and the 

corresponding spatio-temporal signature is expressed as   
Tˆ ˆ( ) [1, ,1] ( )

j j i i
    v s a a .                  (15) 

The orthogonal projection follows the same expression of 

(4) except that 
j

v  is used in lieu of 
j

v .  

 

SIMULATION RESULTS 
 

Simulations are carried out to verify the effectiveness of 

the proposed method. Without loss of generality, we only 

consider one GPS signal because different GPS signals 

are well isolated due to their orthogonal spreading codes. 

The array consists of two antenna elements (N=2) which 

are separated by a half-wavelength interelement spacing. 

We set the input signal-to-noise ratio (SNR) of the GPS 

waveform as –16 dB, and the input jammer-to-noise ratio 

(JNR) as 25 dB. 

The normalized IF law of the FM jammer is 

expressed as, 

2 2
( ) 0.025 0.025 0.15/ /f t t T t T   ,       (20) 

for t = 1, ..., T, where the block size of the signal is 

chosen to be T = 512. The DOAs of the GPS waveform 

and the jammer signal are 0  and 5 , respectively. We 

assume that 50% of the received data samples are 

randomly missing and the missing sample positions are 

uniformly distributed. In the simulations, the entire data 

observation period is divided into half-overlapping 

segments of length 32 for phase trajectory estimation and 

jammer suppression.   

Identical Sampling Patterns  

First, we show the simulation where identical sparse 

sampling patterns across the array are utilized. Fig.1 

depicts the WVD of the received data samples from the 

first sensor. Due to the missing data samples, the WVD is 

cluttered by the artifacts which make it difficult to 

accurately estimate the IF of the jammer signal. To 

suppress the effect of the artifacts, the AOK is applied 

and the corresponding TFD is presented in Fig. 2(a), 

whereas the estimated IF signature utilizing the OMP is 

shown in Fig. 2(b). It is clear that the reconstructed IF 

closely follows the true one.  

Fig. 3 compares the estimated spatial spectra of the 

jammer obtained from the SF-MUSIC and MUSIC. The 

conventional MUSIC does not provide accurate DOA 

estimate, whereas the SF-MUSIC achieves an accurate 

result. The WVD of the received signal in the first 

antenna after orthogonal projection operation is given in 

Fig. 4. It is clear from this figure that the jammer is 

effectively suppressed. 

Different Sampling Patterns  

In the following simulation, we examine the situation 

with different sparse sampling patterns in the two 

antennas. Due to the diversity in the sampling patterns, 

the effect of the artifacts due to missing data samples 

becomes less significant in the reconstructed TFD through 

the proposed sparse reconstruction. On the other hand, for 

the conventional MUSIC, a less number of data pairs can 

be obtained for the computation of the sensor-array 

covariance matrix, yielding degradation in the perfor-

mance of the estimated spatial spectrum. The estimated 

jammer IF and spatial spectrum are respectively shown in 

Figs. 5 and 6.  

 

CONCLUSIONS 
 

In this paper, we developed a sparse sampling FM jammer 

suppression method in the multi-sensor GPS receiver 

platform. Due to the effect of the missing data samplings, 

the conventional time-frequency techniques fail to 

estimate the IF of the jammers which makes it difficult to 

suppress their FM signals. The proposed method first 

utilized the multi-sensor data-dependent kernel to 

suppress the artifact. Then, the IF of the jammer signals 

based on the sparse reconstruction algorithm is recovered 

and used to stationarize the jammer, enabling high 

esolution DOA estimnation to be undertaken. Utilizing 

the spatial degree of freedom offered by the multi-sensor 

array, a spatio-temporal subspace projection technique is 

proposed to achieve an effective jammer excision.   



 

Fig. 1   WVD of the received data from the first sensor 

 

 

(a) TFD using the modified AOK 

 

(b) Estimated jammer IF signature 

Fig. 2  TFD utilizing modified AOK and the estimated 

jammer IF signature (same missing pattern) 

 

 

Fig. 3  Estimated spectra from SF-MUSIC and MUSIC 

(same missing pattern) 

 

Fig.4 WVD of the signal after jammer suppression 

 

 

(a) TFD using the modified AOK 

 

(b) Estimated jammer IF signature 

Fig. 5  TFD utilizing modified AOK and the estimated 

jammer IF signature (different missing patterns) 

 

  
 

Fig.6  Estimated spectra from SF-MUSIC and MUSIC 

(different missing patterns) 
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