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ABSTRACT
Increased demand on spectrum sensing over a broad fre-
quency band requires a high sampling rate and thus leads to
a prohibitive volume of data samples. In some applications,
e.g., spectrum estimation, only the second-order statistics are
required. In this case, we may use a reduced data sampling
rate by exploiting a low-dimensional representation of the
original high-dimensional signals. In particular, the covari-
ance matrix can be reconstructed from compressed data by
utilizing its specific structure, e.g., the Toeplitz property. In
this paper, we propose a general coprime sampling concept
that implements effective compression of Toeplitz covariance
matrices. Given a fixed number of data samples, we examine
different schemes on covariance matrix acquisition, based on
segmented data sequences. The effectiveness of the proposed
technique is verified using simulation results.

Index Terms— Compressive covariance sampling, struc-
tured matrix, coprime sampling, overlapping segmented data

1. INTRODUCTION
Various applications require spectrum sensing over a broad
frequency band, which demands a high sampling rate and
yields a large volume of data. In some of these applications,
the signal is known to be sparse. This property allows the
exploitation of compressive sensing and sparse sampling ap-
proaches that enable effective sparse signal reconstruction [1,
2], with no loss of information.

In addition to such applications that require signal recon-
struction, there is also an important class of applications, e.g.,
spectrum estimation, where only the second-order statistics
are interested. In this case, the covariance function and the
covariance matrix can be constructed as low-dimensional rep-
resentations of high-dimensional signals [3, 4]. This fact mo-
tivated the development of an alternative framework, referred
to as compressive covariance sampling, in which the signal
sparsity is not a requirement [5–8].

In this paper, we focus on spectrum estimation of wide-
sense stationary (WSS) processes, utilizing the Toeplitz prop-
erty of the covariance matrix. Several methods have been de-
veloped to tackle similar compressive Toeplitz matrix sam-
pling. For example, a minimal sparse sampler and a gener-
alized nested sampler were respectively proposed in [9] and
[10] to recover Toeplitz matrices from a compressed covari-
ance matrix. However, these papers assume an infinite num-
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ber of data samples, whereas the achievable performance of
the reconstruction under a finite number of data samples is
not considered. In addition, their minimum sampling inter-
val still needs to be Nyquist. As such, the methods developed
therein are infeasible to implement low sampling rate systems
for wideband spectrum estimation.

The recent proposed coprime sampling [11] is attractive
because it achieves a much lower sampling rate and thus facil-
itates low-cost implementations. In this paper, our focus is on
the effective estimation of the Toeplitz covariance matrix and
signal spectrum from a finite number of samples of a WSS
sequence. We generalize the coprime sampling approach to
achieve a higher number of degrees-of-freedom (DOFs) and
lower estimation error. Different schemes for acquisition of
covariance matrix entries are analytically derived for quanti-
tative evaluation, comparison, and optimal design.

Notations: We use lower-case (upper-case) bold charac-
ters to denote vectors (matrices). In particular, IN stands for
the N × N identity matrix. (·)∗ implies complex conjuga-

tion, whereas (·)T and (·)H respectively denote the transpose
and conjugate transpose of a matrix or a vector. R denotes
the set of real values, while N

+ represents the set of positive
integers. Also, E(·) is the statistical expectation operator, and
�·� denotes the floor function which returns the largest integer
not exceeding the argument.

2. SIGNAL MODEL
Assume that a zero-mean WSS process X(t), t ∈ R, which
consists of signals corresponding to a number of sparse fre-
quencies, is confined within a bandwidth Bs. To obtain
its power spectral density (PSD), the covariance matrix
needs to be obtained from a specific realization of X(t),
t = 0, . . . , T −1. It suffices to consider the discrete-time ran-
dom process, X[l], obtained by sampling the analog signal
X(t), with a Nyquist sampling rate fs = 2Bs. Note that the
discrete-time process X[l] remains WSS in the discrete-time

sense. Let xL[l] = [x[l], x[l + 1], . . . , x[l + L− 1]]
T

. Then,
the resulting semi-positive definite and Hermitian covariance
matrix can be given by

Rx = E
[
xL[l]x

H
L [l]

]

=

⎛
⎜⎜⎜⎜⎜⎝

r[0] r[−1] . . . r[−L+ 1]
r[1] r[0] . . . r[−L+ 2]

...
... . . .

...

r[L− 2] r[L− 3] . . . r[−1]
r[L− 1] r[L− 2] . . . r[0]

⎞
⎟⎟⎟⎟⎟⎠ , (1)



in which the entry r[τ ] = E [x[l]x∗[l − τ ]] only depends on
the lags τ = −L + 1, . . . , L − 1. It is clear from (1) that
r[−τ ] = r∗[τ ]. In addition, the Toeplitz structure of Rx im-
plies that many of its elements are redundant. As a result, Rx

can be obtained from a sparsely sampled data sequence.
In this paper, we consider the problem of estimating an

L×L covariance matrix of xL[l] and the signal PSD from an
observation of X(t) with an available length of KTs, where
K ∈ N

+ and K ≥ L. When sampled at the Nyquist inter-
val Ts = 1/fs, it yields K samples of discrete-time observa-
tions x[k], k = 0, . . . ,K − 1. A common practice for covari-
ance matrix estimation is to segment the entire discrete-time
observation of length K into multiple length-L blocks, and
the covariance matrix is estimated by averaging the sample
covariance over different blocks [12]. As shown in Fig. 1,
we segment the entire observation period into multiple, pos-
sibly overlapping blocks. In this section, we first consider the
non-overlapping segmentation to illustrate the signal model,
as shown in Fig. 1(a), whereas the overlapping case depicted
in Fig. 1(b) will be discussed in the sequel. Denote B as
the number of data blocks obtained for the non-overlapping
case, each of length L. We assume for convenience that the
B blocks cover the entire recorded sequence, i.e., BL = K.

Denote by xb[l] = x[l+ (b− 1)L], l = 0, . . . , L− 1, and

xb = [xb[0], . . . , xb[L − 1]]T for b = 1, . . . , B. We sparsely
sample each data block using a V × L sampling matrix As

to obtain yb = Asxb, where V � L. The estimated covari-
ance matrix obtained by averaging the available B blocks is
expressed as

R̂y =
1

B

B∑
b=1

yby
H
b

= As

(
1

B

B∑
b=1

xbx
H
b

)
AH

s = AsR̂xA
H
s , (2)

where R̂x is an estimated covariance matrix of Rx. As such,

the compressed covariance matrix R̂y with size V ×V can be

exploited to reconstruct the L×L matrix R̂x, provided that it
includes all lags τ = −L+1, . . . , L−1 by designing a proper
sampling matrix As. Note that, since there are V 2 entries in

R̂y, the sampling size which enables reconstruction of the

Toeplitz matrix R̂x is lower bounded by
√
L, i.e., V ≥ √

L.

In the end, R̂x can be reconstructed as

R̂x =

⎛
⎜⎜⎜⎜⎜⎝

r̂[0] r̂[−1] . . . r̂[−L+ 1]
r̂[1] r̂[0] . . . r̂[−L+ 2]

...
... . . .

...

r̂[L− 2] r̂[L− 3] . . . r̂[−1]
r̂[L− 1] r̂[L− 2] . . . r̂[0]

⎞
⎟⎟⎟⎟⎟⎠ , (3)

where r̂[τ ], τ = −L+1, . . . , L−1 are estimated by averaging

all the entries with the same lag τ in R̂y.

3. GENERALIZED COPRIME SAMPLING

Coprime sampling amounts to exploiting two uniform sub-
Nyquist samplers with sampling period being coprime multi-
ples of the Nyquist sampling period [11, 13]. In this section,
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(a) Non-overlapping segmentation
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(b) Overlapping segmentation

Fig. 1. Illustration of segmentations.

the generalized coprime sampling scheme is depicted, which
is presented in two operations. A multiple coprime unit factor
p ∈ N

+ [14], aiming to enhance the number of lags in the
compressed covariance matrix, is first introduced, and then
the utilization of overlapping samples between blocks is de-
scribed to yield a reduced estimation variance through the use
of a non-overlapping factor q ∈ N

+.

3.1. The concept of coprime sampling

In coprime sampling, the sampling matrix As can be denoted
as As = [AT

s1 AT
s2]

T , where As1 and As2 are the sub-
sampling matrices corresponding to the coprime samplers.

Definition 1: The (i, j)th entry of the sampling matrices As1

and As2 can be designed as:

[As1]i,j =

{
1, j = Mi, i ∈ N

+,

0, elsewhere,

and

[As2]i,j =

{
1, j = Ni, i ∈ N

+,

0, elsewhere,
(4)

where M ∈ N
+ and N ∈ N

+ are coprime integers. As such,
from a data acquisition perspective, there are two sets of uni-
formly spaced samples of the input WSS signal X(t), t =
0, . . . , T using two samplers, with sampling intervals MTs

and NTs, respectively, as illustrated in Fig. 2. Without loss of
generality, we assume M < N . Then, the highest sampling
rate of the system is 1/(MTs) = fs/M and the two sampled



stream outputs can be given as

y1[k1] = x[Mk1] = X(Mk1Ts),

y2[k2] = x[Nk2] = X(Nk2Ts). (5)

 

 

 
 

 

Fig. 2. Coprime sampling structure.

Note that, there are no overlapping outputs between such
two sets other than x[bMN ] for any non-negative integer b,
due to the coprime property of M and N . The outputs of
length of MN between x[(b− 1)MN ] and x[bMN − 1] are
referred to as the coprime unit, positioned at

Pb = {bMN +Mk1} ∪ {bMN +Nk2}. (6)

Denote yb1 = [yb1 [0], . . . , yb1 [N − 1]]T as an N × 1 vec-

tor, and yb2 = [yb2 [0], . . . , yb2 [M − 1]]T as an M × 1 vector,
with yb1 [k1] = x[(b − 1)MN +Mk1] and yb2 [k2] = x[(b −
1)MN+Nk2], where 0 ≤ k1 ≤ N−1 and 0 ≤ k2 ≤ M−1,

for 1 ≤ b ≤ K/(MN). In addition, let yb = [yT
b1

yT
b2
]T . As

such, the (M +N)× (M +N) covariance matrix Ry can be
expressed as

Ry =

⎛
⎝Ry11 Ry12

Ry21
Ry22

⎞
⎠ =

⎛
⎝E[yb1y

H
b1
] E[yb1y

H
b2
]

E[yb2y
H
b1
] E[yb2y

H
b2
]

⎞
⎠ .

(7)
In Ry, matrices Ry11

and Ry22
contains self-lags of the two

sampler output streams, while their cross-lags are included in
matrices Ry12

and Ry21
. Note that, Ry21

= R∗
y12

. In addi-
tion, because the two sampled outputs share the first sample
in each coprime unit, the self-lags can be taken as cross-lags
between every sample from one sampler and the first sample
from the other sampler. As such, the self-lags form a subset
of the cross-lags. Thus, Rx can be reconstructed by using
only Ry12 , whose cross-lags (including the negated ones) are
given by the following set,

L = {τ |τ = Mk1 −Nk2} ∪ {τ |τ = Nk2 −Mk1}, (8)

where 0 ≤ k1 ≤ N − 1 and 0 ≤ k2 ≤ M − 1.
The prototype scheme uses one coprime unit samples to

generate all lags in L. However, it should be noticed that
there are missing integers in the range [−MN,MN ], that

is, they are not sufficient to reconstruct R̂x with dimension
L = MN . To achieve this, two coprime units from the first
sampler and one coprime unit from the second sampler are
used to form one block in [11], and the resulting lags are con-
tinuous in the range [−MN − N + 1,MN + N − 1]. This
scheme is referred to as the conventional scheme in this paper.
In this case, the maximum achievable L is Lmax = MN+N .

3.2. Generalized coprime sampling scheme

In the sequel, a multiple coprime unit factor p ∈ N
+ is first

introduced to achieve a larger achievable value of L. In each
block, p coprime unit outputs from both samplers, i.e., p(M+
N) physical samples in the length of pMN , are used to es-
timate the covariance matrix. In this case, the resulting lags
fall into the following set,

L̃ = {τ |τ = Mk1 −Nk2} ∪ {τ |τ = Nk2 −Mk1}, (9)

for 0 ≤ k1 ≤ pN − 1 and 0 ≤ k2 ≤ pM − 1. Note that

varying p changes the set L̃. The following proposition about

the set L̃ reveals the property of the resulting lag positions.

Proposition 1: The set L̃ contains all integer lags in the range
−(p−1)MN−M−N+1 ≤ τ ≤ (p−1)MN+M+N−1.

Note that, all resulting lags using conventional scheme are

included in L̃ as a special case of p = 2. For the general-
ized scheme, the maximum achievable value of L becomes
L̃max = (p− 1)MN +M +N , and the number of the corre-

sponding non-overlapping blocks is given by B = � K
pMN �.

An example for different values of p is illustrated in Fig.
3, where K = 120, M = 3, and N = 4 are assumed. For the
case of p = 2, i.e., the conventional scheme, each block forms

consecutive lags within [−18, 18]. That is, the R̂x can be

reconstructed with a maximum of dimension L̃max = 19 by

averaging B = 5 blocks. For the case of p = 5, L̃max = 55
can be obtained by a consecutive lag range of [−54, 54] in
each block, as a trade-off of a reduced B = 2.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102105108111114117

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116

Block 1 Block 2 Block 3 Block 4 Block 5

−55 −50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35 40 45 50 55

(a) p = 2

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102105108111114117

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116

Block 1 Block 2

−55 −50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35 40 45 50 55

(b) p = 5
Fig. 3. Example for different values of p (K = 120, M = 3,

and N = 4; 
: first sampler outputs; ∇: second sampler

outputs; •: lags; ×: holes.)

The variance of the estimated covariance and spectrum is
generally reduced by utilizing a higher number of blocks used
for averaging. In addition to averaging over non-overlapping
segments, as discussed earlier, a more general and effective
alternative for spectrum estimation is to exploit overlapping
segments. In so doing, the number of applicable blocks for
sample averaging can be substantially increased. As a result,
the variance of the estimated covariance and spectrum can be
reduced. In the second operation of the generalization, over-
lapping samples are used to increase the number of available
blocks, yielding a reduced estimation variance through a use
of non-overlapping factor q ∈ N

+.



As shown in Fig 1(b), we maintain the same segment

length pMN , and take B̃ (B̃ ≥ B) blocks with the starting
points of these blocks D (D ≤ pMN) units apart. Similarly,

we assume, for convenience, that (B̃ − 1)D + pMN = K
covers the entire recorded sequence.

Definition 2: Assume that D consists of the length of q co-
prime units, i.e., D = qMN , where 1 ≤ q ≤ p. Then, the

number of blocks can be expressed as B̃ = �p
qB − p

q �+ 1.

It is straightforward to confirm that B̃ ≥ B since q ≤ p,

as shown in Fig. 4 (B̃ = 6 in Fig. 4 versus B = 2 in Fig 1(b)).
Note that in the non-overlapping case, B can be considered as

a special case of B̃, i.e., when q = p. In addition, B̃ increases
as q decreases and is maximized when q = 1.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102105108111114117

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116

Block 1
Block 2

Block 3
Block 4

Block 5
Block 6

Fig. 4. Example of utilization of overlapping samples (K =
120, M = 3, N = 4, p = 5, and q = 1.)

Denote ỹb1 [k1] = x[(b − 1) × qMN + Mk1] and
ỹb2 [k2] = x[(b−1)×qMN+Nk2], where 0 ≤ k1 ≤ pN−1

and 0 ≤ k2 ≤ pM − 1, for 1 ≤ b ≤ B̃. In addi-
tion, let ỹb1 = [ỹb1 [0], . . . , ỹb1 [pN − 1]]T and ỹb2 =

[ỹb2 [0], . . . , ỹb2 [pM − 1]]T . The covariance matrix R̂ỹ12
,

using the generalized scheme, can be estimated as R̂ỹ12
=

1
B̃

∑B̃
b̃=1 ỹb1 ỹ

H
b2

. Then, R̂x with dimension L × L, where

L ≤ L̃max, can be reconstructed.

3.3. Compression factor

We examine the compression factor, which is defined as the

ratio of the number of entries in R̂x over the corresponding

number in R̂ỹ12
, expressed as κ = L2/(pM × pN). Because

the maximum value of L is L̃max = (p− 1)MN +M +N ,
the maximum achievable value of κ is given by

κmax =
[(p− 1)MN +M +N ]

2

pM × pN
. (10)

Notice that, while the number of entries in R̂ỹ12 increases
with p, κmax does not significantly change. It asymptotically
approaches MN when p � 1.

4. SIMULATION RESULTS

For illustrative purposes, we demonstrate the key distinctions
on the performance of spectrum estimation between differ-
ent choices of arguments in the generalized coprime sampling
scheme, based on the same sampling rates and compression
factor, i.e., the same values of M = 3 and N = 4. Assume
that I sinusoidal signals with identical powers are distributed
in the frequency band [−500, 500] MHz, and the ith signal is
located at [−450+(i− 1)δf ] MHz for i = 1, . . . , I , where δf

is the frequency separation. Assume that K = 50000 sam-
ples are generated with a Nyquist sampling rate fs=1 GHz.
In addition, the noise power is assumed to be identical across
the entire spectrum. The MUSIC method [15] is used to esti-
mate the power spectrum. Our benchmarks are the spectrum
identifiability and their statistical performance. The latter is
evaluated in terms of average root mean square error (RMSE)
of the estimated frequencies, based on 500 independent runs.

Fig. 5 examines the performance for different choices of
p. In Fig. 5(a), the distinction on spectrum identifiability is
depicted for the cases of p = 2 and p = 5. We consider
I = 12 frequencies with δf = 20 MHz separation in the
presence of noise with a 0 dB SNR. It is evident that only
the scenario of p = 5 can resolve all frequencies correctly,
although the case of p = 2 also has a sufficient number of
DOFs. Fig. 5(b) presents the statistical performance with re-
spect to p, where I = 5 is assumed. It is observed that the es-
timation performance is improved, as p increases. As a sum-
mary, a larger p can improve the identifiability and estimation
performance in the spectrum. However, the requirement of
storage space and the computational load become higher, due
to the resulting larger L.
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Fig. 5. The performance for different choices of p. (a) Esti-

mated spectra for the cases of p = 2 and p = 5 (I = 12); (b)

RMSE versus p (I = 5).

The advantage of utilization of the overlapping blocks is
demonstrated in Fig. 6, where p = 12 is assumed and I = 5
frequency is considered with a 0 dB SNR. In addition, q is
chosen within the range of {1, 2, 3, 4, 6, 12}. It is evident that
the estimation performance can be improved as q decreases,
compared to the non-overlapping case, i.e., q = p = 12.
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Fig. 6. RMSE versus q (p = 12 and I = 5).

5. CONCLUSIONS

We proposed an effective approach to compressively sample
wide-sense stationary processes. A coprime sampling ma-
trix was used to obtain a compressed representation for their
second-order statistics. Using a fixed number of data, differ-
ent schemes for covariance matrix acquisition based on data
sequence segmentation were evaluated and compared. The ef-
fectiveness of the proposed technique was verified using sim-
ulations.
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