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ABSTRACT 

A new approach for sparse nonstationary signal reconstruction 
based on multiple windows is introduced. Signals which are 
localizable in the time-frequency (TF) domain give rise to 
sparsity in the same domain. When combined, sparse recon-
structions, applied to randomly sampled data and corresponding 
to different selected windows, provide enhanced TF signature 
estimation. Among possible orthogonal windows, we consider 
those which characterize the eigen-decomposition of reduced-
interference quadratic time-frequency distribution kernels. The 
highly overlapping TF support of the windows’ full-data 
spectrograms inspires the use of the multiple measurement 
vectors, in lieu of individual windowed signal recovery. It is 
shown that the proposed approach outperforms other 
reconstruction methods when only a single window is applied 
and is superior to reduced interference time-frequency 
distributions of random observations. 

Index Terms — Time-frequency distribution, multiple 
measurement vector, compressive sensing, random sampling 

 
1. INTRODUCTION 

Nonstationary signals arise in a broad class of active sensing 
modalities, including sonar, radar, and ultrasound. They also 
characterize many passive sensing problems such as speech and 
electromyographic recordings. Time-frequency signal represen-
tations (TFSRs) enable separations of nonstationary signals that 
are mixed in both time and frequency domains [1-4]. 
Windowing and filtering based approaches do not allow the 
capture and separation of individual nonstationary signal 
components. TFSRs are mainly obtained using quadratic time-
frequency distributions (QTFDs) which have their roots in the 
nonparametric Wigner-Ville distribution (WVD).  

Owing to their power concentrations over the joint time-
frequency (TF) variables, the signatures of a large class of non-
stationary signals occupy small regions in the TF domain. This 
property casts the signals as sparse in the joint-variable 
representations. As such, it invites sparse signal reconstruction 
and compressive sensing techniques [5, 6] to play an important 
role in revealing the time-frequency signal analysis and 
processing of single- and multi-component signals [7-12]. 

In this paper, we consider QTFDs applied to randomly 
sampled signals where the averaging sampling frequency is 
below Nyquist. We focus on reduced-interference distribution 
(RID) kernels which act on eliminating, or at least considerably 

attenuating, the cross-terms. These interference terms are 
highly pronounced in WVD and tend to clutter and obscure the 
true signal power concentrations signified by the auto-terms 
[13,14].  

QTFDs typically face challenges in implementation 
stemming from the need to perform convolution operations, at 
each sample, followed by the Fourier transform (FT). This 
motivated the representations of QTFD as a combination of 
spectrograms, which are both positive and amenable to fast FT 
computations. The spectrogram, or squared-magnitude of the 
sliding-window short-time Fourier transform (STFT), is the 
principal tool used to estimate the time-dependent spectral 
energy density in many applications. While there are many 
ways and criteria guiding the selection of the spectrogram 
windows [15-21], we deal, without loss of generality, with  
those which are obtained as eigenvectors of desirable time-
frequency distribution (TFD) kernels, an approach known as 
spectrogram decompositions of TFDs [22, 23]. 

In this paper, we perform sparse reconstruction of TFSRs 
from random time-domain samples using multiple windows, 
reminiscent of the multiple window spectrograms and 
spectrogram decompositions of TFDs. In so doing, we avoid 
any smoothing or convolution operations and operate directly 
on the data. Further, the reconstructions corresponding to the 
different windows can be averaged to provide an improved 
TFSR over a single window-based reconstruction. The 
overlapping nature of the different window reconstructions 
amounts to a common sparse support property and inspires the 
use of multiple measurement vectors (MMV) techniques within 
the compressive sensing paradigm. This enables achieving 
enhanced signal localization in the TF domain over single 
measurement vectors (SMVs) corresponding to individually 
reconstructions. The MMV problem is solved using the 
complex multitask Bayesian compressive sensing method. 

In Section 2 of this paper, we motivate the problem and 
show examples of possible orthogonal windows for use in SMV 
and MMV TF reconstruction. Section 3 discusses the MMV 
reconstruction using Bayesian compressive sensing techniques, 
and Section 4 includes computer simulations, covering different 
frequency modulated (FM) signals and showing results corres-
ponding to observations with full and missing data samples.  

 
2. MOTIVATION AND SIGNAL MODEL 

In classical nonparametric spectral analysis and estimation, 
multi-window FTs and their respective square magnitudes, 



known as periodograms, bear the advantage, when averaged, 
over a single-window based FT in providing reduced variance 
and stable estimates. These windows were chosen to possess 
particular characteristics such as orthogonality and optimality 
within certain signal bandwidth. The same hold true in non-
stationary signal analysis and processing. It was shown that 
multiple windows outperform single-window spectrograms in 
terms of localization and power concentration properties in the 
TF domain. One approach was to approximate QTFDs by a 
weighted sum of spectrograms. The result enjoys the fast 
computations of the fast FT (FFT) and the high cross-term 
attenuation of the RIDs. This was achieved by eigen-
decomposition of a rotated RID kernel and considering only the 
eigenvalues and eigenvectors of the dominant components [22, 
23].  

The Cohen’s class of discrete-time TFD of a signal x(t), 
when characterized by an ambiguity-domain kernel ( , )   , is 
expressed as 
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where  is the Doppler shift and  is the delay. Define the auto-
correlation-domain kernel as the FT of the ambiguity-domain 
kernel with respect to , expressed as  
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which, for a real-valued TFD with a real-valued ambiguity 
domain kernel, is conjugate-symmetric in both t and  [23]. 
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we can denote the rotated autocorrelation-domain kernel as 
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where ( )ke n  is the nth element of 
k

e . As such, the TFD is 

obtained as the weighted sum of the spectrograms, each is 
generated by the magnitude square of the FT of the data 
weighted by one of the eigenvectors of the rotated kernel. In 

practice, the eigen-decomposition of Ψ  can be well 
approximated by a small number ( 0L L ) of dominant terms, 

yielding fast RID reconstruction.  
As an example, Figs. 1 and 2 show the eigenvalues and the 

six dominant eigenvectors of Choi-Williams kernel, which is 
given in the ambiguity domain as [13] 

2 2 /( , ) e       ,                                (7) 

where  is a parameter determining the kernel support in the 
ambiguity domain.  = 100 is used to generate the figures. In 
addition, time and frequency smoothing Hanning windows, 
respectively of lengths 15 and 123, are applied. It is clear that 
the eigenvalues decay very fast, and those after the 6th term are 
negligible. As such, six terms are considered in the sequel for a 
high-fidelity TFD reconstruction. Note that the eigen-
decompositions are data-independent and thus can be computed 
only once prior to TFD reconstructions.  

As an example, consider a noise-free signal which consists 
of two components, one sinusoid and one chirp. The signal 
waveform, the spectrogram and the CWD are shown in Fig. 3, 
where a Hanning window of 63 is used in computing the 
spectrogram. The CWD is computed using the same parameters 
mentioned above. The sinusoidal frequency is 0.1, whereas the 
initial and end frequencies of the chirp are 0.2 and 0.45, 
respectively. The spectrograms corresponding to the six 
eigenvectors, which respectively multiply the observed data, 
are shown in Fig. 4. The eigenvectors act as modulators to 
generate a single or multiple components around the true time-
frequency signatures. Their sum, weighted by the respective 
eigenvalues, is shown in Fig. 5(a). Clearly the combined 
spectrogram is superior to each of the six spectrograms acting 
alone. The positive and negative eigenvalues allow the multiple 
spectrograms to interplay such that the weighted sum has better 
localization signal properties.  

It is important to note that only the dominant eigenvectors 
can closely approximate the RID TFD with a small number of 
terms. As a counterexample, we show in Fig. 5(b) the sum of 
the six terms that correspond to the least significant 
eigenvalues. The results are highly cluttered and do not 
represent the proper TF power distribution of the data. This 
underscores the importance of proper selections of the multiple 
windows for enhanced TFD.  
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Fig. 1.  The first 20 dominant terms of the eigenvalue of the 
rotated autocorrelation-domain kernel, sorted by the magnitude. 
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Fig. 2.  Eigenvectors of the first six dominant terms. 
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Fig. 3.  Signal waveform with its Spectrogram and CWD. 
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Fig. 4.  The spectrogram of the six components.

 
3. TFD RECONSTRUCTION EXPLOITING  

MULTIPLE-MEASUREMENT VECTOR 

Inspired by the multiple window spectrograms and motivated 
by the fact that the local signal behavior of multicomponent FM 
signals has a sparse TF representation, as evident from Fig. 4, 
we apply multiple windows for FM signal construction from 
few random observations. The windows are selected to be the 
same as those in Fig. 2 resulting from eigen-decomposition of 
TF RID kernels. Other window choices and kernels are possible 
and can be motivated by different arguments [24].  

For the convenience of notation, we express the STFT inside 
the magnitude-square in (6), for each t, in a vector format as  

( ) ( )k kt ts Fy , k = 1, …, L,                          (8) 

where the ith element of ( )k ts  is *( ) ( ) ( )k ki
t x t i e i   s , F  is 

the inverse FT matrix, and ( )k ty  is the kth column of the TFD 

matrix to be reconstructed. Note that the rows corresponding to 
the missing data are removed from ( )k ts  and F  for each t. 

Expression (8) represents a SMV when solved for each k 
separately. It can also define a MMV model, exploiting the 
approximately common support of ( )k ty  in the TF domain for 

different k. This characteristic is also referred to as the block 
sparsity or group sparsity, which can be effectively solved 
using techniques that account for such property.  Group sparsity 
solvers include block-sparsity based compressed sensing [25], 
multi-task compressed sensing [26, 27], and distributed com-
pressed sensing [28].   

The Bayesian based compressive sensing algorithms, 
which are based on the relevance vector machine (RVM), gene-
rally achieves better reconstruction performance than others. In 
this approach, ( )k ty  is treated as weight vector whose mth 

element is drawn from the following zero-mean Gaussian 
distribution: 

, ,( ) ~ ( ( ) | 0, ( ))k m k m my t N x t t ,                       (9) 

where ( )m t  is the variance of the Gaussian probability den-

sity function. The group sparsity of ( )k ty  over different values 

of k is considered by forcing ( )m t  to be shared by the L 

measurements (windows). Multi-task Bayesian compressing 
sensing techniques effectively solve the distribution of the 
sparse entries as well as the noise characteristics through 
iterations [26, 27].  

The Bayesian algorithms have originally been designed to 
recover real-valued sparse solutions [26]. An effective exten-
sion to complex problems is proposed in [27] to recover 
complex signals in the MMV model. Therefore, in this paper, 
the complex multitask Bayesian compressive sensing method 
[27] is used. 

 
4. SIMULATION RESULTS 

Simulations results are provided to demonstrate the effective-
ness of the proposed multiple window sparse reconstruction of 



TF signatures of nonstationary signals. Both SVMs and MMV-
based sparse reconstruction techniques are applied and 
compared. In the former, the TFD is separately reconstructed 
using the SMV for each window k in (8), and the results are 
weighted with the respective eigenvalues and then averaged.    

The TFSR based on the MMV is shown in Fig. 6(a), 
whereas that corresponding to the weighted sum of the SMV 
results is shown in Fig. 6(b). The data considered is all 
observations of the two-component signal described previously. 
Both results provide accurate reconstructions with insignificant 
cross-terms, with the MMV results depicting slightly better 
localization at the two ends. 

Now we consider a case where only 25% random time-
domain samples (i.e., 32 out of the 128 samples) of the data are 
available. All other parameters remain unchanged. Fig. 7 shows 
the observed signal waveform as well its spectrogram and 
CWD. In this case, neither the spectrogram nor the CWD 
shows clear TF signatures. The TFSR obtained from the MMV 
model through the multi-task Bayesian algorithm yields much 
cleaner results, as evident in Fig. 8(a), whereas the weighted 
sum of the individually reconstructed TFD results, as depicted 
in Fig. 8(b), shows inferior TF signatures and a high level of 
undesired artifacts. For comparison, the sparse reconstruction 
result when using a single 64-point Hanning window is 
depicted in Fig. 8(c), which does not show a clear signature of 
the chirp component. 

 
5. CONCLUSION 

Wideband frequency modulated (FM) signals are sparse in 
frequency when considered locally and, as such, can be 
reconstructed from random observations. The paper showed 
that sparse reconstruction can benefit from applying multiple 
windows to the data prior to solving the underdetermined linear 
equations with the dictionary made of Fourier atoms. We 
applied a set of windows which are the eigenvectors of 
reduced-interference distribution kernels. We demonstrated the 
advantages of both combining the reconstruction results 
corresponding to the different multiple-measurement vectors 
(MMVs) and the simultaneous reconstruction using MMVs. 
The proposed approach was shown to outperform time-
frequency distributions using spectrograms and reduced-
interference distributions when applied to random observations 
of multi-component FM signals. It was also shown that the 
proposed approach is superior to reconstruction based on only a 
single window.  
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(a)                                           (b) 

Fig. 5. (a) Sum of the six dominant component spectrograms. (b) 
Sum of the six least significant component spectrograms.  
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(a)                                      (b) 

Fig. 6. (a) TFD reconstructed from MMV; (b) Sum of the TFDs 
individually reconstructed from the respective SMV.  
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Fig. 7.  Signal waveform of 25% observation data with its 
Spectrogram and CWD. 

 

time

fr
eq

ue
nc

y

20 40 60 80 100 120
0

0.5

1

 time

fr
eq

ue
nc

y

20 40 60 80 100 120
0

0.5

1

 
 

(a)                                      (b) 

time

fr
eq

ue
nc

y

20 40 60 80 100 120
0

0.5

1

 
 

(c) 

Fig. 8.  TFD reconstructed using 25% of observed data. (a) 
sparse reconstruction from MMV approach; (b) sum of the six 
individually reconstructed component TFD; and (c) sparse 
reconstruction using a single rectangular window.  
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