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Abstract—Exploitation of group sparsity under multipath propagation
enables high-resolution ghost-free imaging in urban sensing and through-
the-wall radar imaging applications. Multipath exploitation schemes
typically require exact prior information of the indoor scene layout and
transceiver locations to eliminate ghosts targets. Imperfections in the
prior knowledge lead to performance degradation of such schemes. In
this paper, a novel autofocus Bayesian compressive sensing approach is
proposed for joint scene reconstruction and correction of phase errors
resulted from transceiver position uncertainties. Supporting simulation
results are provided to demonstrate the effectiveness of the proposed
algorithm.

Index Terms—Through-the-wall radar imaging, autofocus, multipath
exploitation, Bayesian compressive sensing.

I. INTRODUCTION

A major challenge in urban sensing and through-the-wall radar
imaging (TWRI) is the presence of multipath. Multipath returns
originate from reflections of electromagnetic (EM) waves off the
targets of interest in conjunction with the building walls, floor, and/or
ceiling. Such secondary reflections gives rise to false targets or
“ghosts” at positions other than those of the actual targets, which
clutter the imaged scene and compromise target detection [1–5]. If
precise knowledge of the room layout and transceiver locations is
available a priori, the multipath returns can be exploited to improve
the imaging performance [6–9]. However, as the transceivers are
often hand-held or mounted on moving platforms, it is inevitable to
introduce transceiver location errors in practical operational scenarios.
Therefore, it is imperative to develop autofocus multipath exploitation
techniques that can provide accurate imaging in the presence of
location uncertainties.

Various studies have been presented for autofocus problems in
radar imaging applications. One of the most well-known techniques,
i.e., phase gradient autofocus (PGA) [10], estimates the phase error
using the data obtained by isolating many single defocused targets via
center-shifting and windowing operations. It is based on the assump-
tion that there exist prominent scatterers in the range cell. An alternate
technique is based on the optimization of a sharpness metric of the
defocussed image intensity [11, 12]. However, these conventional
techniques are invalid in TWRI, because it is difficult to distinguish
the ghost targets from the true targets, especially when the targets of
interest are stationary. Recently developed compressive sensing (CS)
based autofocus approaches [13, 14] form a different class of effective
tools for sparse signal reconstruction in the presence of phase errors.
Both approaches, which introduce a diagonal matrix to model the
phase errors, involve an iterative scheme including consecutive steps
of sparse signal recovery and phase error estimation.

In this paper, inspired by [13, 14], a novel autofocus Bayesian
compressive sensing (ABCS) scheme is proposed to achieve high-
resolution imaging with multipath exploitation in the presence of
uncertain transceiver locations in TWRI. To the best of our knowl-
edge, autofucus imaging with multipath exploitation has not been
investigated previously. We first develop a forward model under mul-
tipath propagation in the presence of imperfect transceiver locations.

It is observed that the phase errors generally differ across multipath
propagations, whereas all the pixels share similar phase errors in each
path, due to the relative large propagation distance and finite size of
the region of interest. Based on this forward model, a novel autofocus
imaging approach is proposed to jointly acquire high-resolution im-
age reconstruction and implement the phase error corrections within
the nonparametric sparse Bayesian learning framework. Simulation
results verify the effectiveness of the forward model and superiority
of the proposed ABCS method.

Notations: We use lower-case (upper-case) bold characters to de-
note vectors (matrices). p(·) denotes the probability density function
(pdf). CN (x|a, b) represents a random variable x that follows a
complex Gaussian distribution with mean a and variance b, and
U(x|a, b) describes that random variable x is uniform distributed
between a and b. dx/ye denotes the modulus after x over y, and
bx/yc denotes the remainder after x over y. In addition, (·)T and
(·)H , respectively, denote transpose and conjugate transpose of a
matrix or vector, IN denotes the N × N identity matrix. “�” and
“⊗” denote element-wise (Hadamard) and kronecker multiplication,
respectively. Im(x) and Re(x) are respectively the imaginary and real
components of x.

II. SIGNAL MODEL

We assume monostatic stepped-frequency radar operation [3] and
consider a few stationary targets enclosed by two side walls and a
back wall. For simplicity, the front wall is ignored. Extensive studies
are available on the parameter estimation and compensation of the
front wall [1, 15, 16]. A wideband transceiver is mounted on a
vehicle moving parallel to the x-axis at downrange y0 to synthesize
an N -element aperture, and transmits a stepped-frequency signal
consisting of M frequencies at each position. The M frequencies, fm,
m ∈ {1, · · · ,M}, are uniformly spaced over the signal bandwidth
B. Under monostatic operation, the target returns can be expressed
in baseband as [8],

y(m,n) =

NxNy∑
l=1

wl exp(−j2π rln
λm

), (1)

rln = 2
√

(xl − xn)2 + (yl − y0)2, (2)

where Nx and Ny , respectively, denote the number of pixels in
crossrange and downrange within the region of interest, rln represents
the round-trip propagation distance between the lth scatterer and nth
transceiver position, wl is the complex reflectivity corresponding to
the lth pixel, and λm = fm/c with c being the speed of light. The
location of the nth synthetic aperture position is denoted by (xn, y0).

The measurement data vector y = [y(1, 1), · · · , y(M,N)]T ∈
CMN is obtained by stacking all measurements y(m,n) into a single
column vector, i.e.,

y = Dw, (3)
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Fig. 1: (a) Multipath propagations via reflections at interior walls. (b)
Multipath propagation with transceiver position errors.

with the (i, l)th element of the sensing matrix D ∈ CMN×NxNy

given by

[D]il = exp

(
−j2π rln

λm

)
(4)

for i ∈ {1, · · · ,MN}, m = di/Me, and n = bi/Nc, and w ∈
CNxNy represents the target reflectivity vector. Note that most of
elements in w are zero due to limited spatial occupancies in practice.
As such, CS can be used for sparse signal reconstruction.

A. Interior Wall Multipath

The transmitted signal may reach the target via reflections at one
or more secondary reflectors (typically an interior wall), as depicted
in Fig. 1(a). Assuming one direct path and a maximum of K − 1
multipath returns, the forward model under multipath propagation can
be expressed as [8],

y = D0w0 + D1w1 + · · ·+ DK−1wK−1, (5)

where D0 ∈ CMN×NxNy and w0 ∈ CNxNy , respectively, denote the
sensing matrix and complex reflectivities for the direct path (defined
in eqs. (3) and (4)), while Dk and wk with k ∈ {1, · · ·K−1} are the
respective sensing matrix and the complex reflectivities corresponding
to the kth multipath. The elements of Dk, k ∈ {1, · · ·K − 1},
are phase terms, analogous to (4), which incorporate the propaga-
tion distances associated with the kth multipath return. Assuming
knowledge of the room geometry, these distances can be readily
computed from geometric considerations [7, 8]. The target reflectivity
vectors wk, k = 0, ...,K−1, share a common support, i.e., they have
the same respective positions of nonzero entries, although the exact
values of the reflectivity coefficients generally differ [8].

B. Multipath Propagation with Uncertain Transceiver Positions

Assuming (∆xn,∆yn) to be the uncertainties in the nth
transceiver position, the propagation distance between the nth
transceiver and the lth scatterer for the direct path is expressed as,

r̃ln = 2
√

(xl − xn −∆xn)2 + (yl − y0 −∆yn)2

≈ rln − 2 sin θln∆xn − 2 cos θln∆yn

= rln − 2∆rn sin(θnl + ∆θn), (6)

∆rn =
√

∆x2
n + ∆y2

n, ∆θn = arccos(∆xn/∆rn), (7)

where 2∆rn sin(θnl + ∆θn) denotes the deviation from the hypoth-
esized propagation distance rln under ∆xn � rln and ∆yn � rln.
Considering the finite room size and relatively large rln, Eq. (6) can
be further approximated as,

r̃ln ≈ rln − 2∆rn sin(θn + ∆θn), (8)

where θn is the squint angle from the nth hypothesized transceiver
position to a reference scatterer in the observed scene. The phase er-
rors generally differ for each multipath due to the diverse propagation
geometries. As such, the forward model under multipath propagation
in the presence of uncertain transceiver positions is given by,

y = A0D0w0 + A1D1w1 + · · ·+ AK−1DK−1wK−1, (9)

where Ak denotes the phase error matrix for the kth multipath, which
is determined by the frequency and the path errors and is given as

Ak = diag(ek), ek =

[
ejψ

(k)
1 , · · · , ejψ

(k)
MN

]T
. (10)

C. Compressed Data Collection

Within the CS framework, we perform sparse reconstruction using
only a subset of the full measurements. Mathematically, the data
reduction operation can be expressed as a measurement or downsam-
pling matrix B ∈ RL×MN acting on the full measurements, where
L�MN is the number of reduced measurements. For stepped fre-
quency radar system, a binary measurement matrix B ∈ {0, 1}L×MN

is a reasonable choice [8, 17]. As such, we acquire an undersampled
measurement vector s ∈ CL as

s=By=E0D0w0+E1D1w1+· · ·+EK−1DK−1wK−1+ε,
(11)

where Ek = BAk ∈ CL×MN . Without loss of generality, a
measurement noise vector ε ∈ CL is added to the reduced data.

III. AUTOFOCUS BAYESIAN COMPRESSIVE SENSING

A. Generative model

From (11), the following three observations are in order: 1) Direct
and multipath returns may be unresolvable; 2) The reflectivity coeffi-
cients share the same sparsity pattern across multipath propagations;
and 3) There exist separate phase errors for each multipath. These
unique properties are utilized to propose a novel ABCS method
below.

Following the sparse Bayesian learning technique, we place a
hierarchical structure on W = [w0, · · · ,wK−1] to encourage group
sparsity:

p(W |α ) =

NxNy∏
i=1

CN (wi· |,0, αiIK )

=

NxNy∏
i=1

K−1∏
k=0

CN (wki |0, αi ) , (12)

where wi· = [wi,0, · · · , wi,K−1] ∈ C1×K is the reflectivity co-
efficient collection corresponding to the ith scatterer across the K
propagation paths, and αi is the variance shared by each element of
wi·. When αi approaches zero, its corresponding element in wi· will
approach zero and be pruned away from the model.

To promote sparsity over the reflectivity coefficients wi·, a Gamma
prior is placed on α−1

i [18], i.e.,

α−1
i ∼ Gamma(α−1

i |a, b), (13)

where
Gamma(x−1|a, b) = Γ(a)−1bax−(a−1)e−

b
x , (14)

and Γ(·) denotes the Gamma function.
Without loss of generality, a complex Gaussian prior is placed on

the additive measurement noise, i.e.,

ε ∼ CN (ε |0, β0 ), (15)



where β0 is the noise variance. Similar to α, we place β−1
0 on the

Gamma prior with parameters c and d. We use a = b = c = d = 0
as a default choice [18].

A noninformative prior is placed on the stochastic error phase as

ψ
(k)
l ∼ U

(
ψ

(k)
l

∣∣∣ 0, 2π) , (16)

with k ∈ [1, · · · ,K] and l ∈ [1, · · · , L].
According to the Bayesian theorem, the posterior distribution can

be expressed as,

p (w̄,α, β0,Ψ |s ) =
p(s|w̄,Ψ, β0)p(w̄|α)p(α)p(β0)p(Ψ)

p(s)
, (17)

where w̄ = [wT
1·, · · · ,wT

NxNy·] ∈ C
KNxNy is an aligned reflectivity

coefficient vector, and Ψ = [e0, · · · , eK−1] ∈ CL×K . The computa-
tion of p(s) is often intractable due to the multidimensional integral.
We introduce a Monte Carlo Markov Chain (MCMC) method to
perform the posterior inference [19].

B. Bayesian Inference Based on MCMC

In this section, we perform the posterior inference based on the
MCMC sampling scheme, which suggests an iteration procedure.
We can acquire analytical posterior distribution of W, given other
parameters {α, β0,Ψ}, due to the conjugacy. The effective bound
optimization technique is introduced to perform the point estimation
for α and β0. The phase error can be estimated by the maximum a
posterior (MAP) technique.

1) Updating w̄: The posterior distribution of w̄ can be analytically
obtained due to the conjugate property. Given α, β0 and Ψ, we have

wi· ∼ CN (wi· |µi·,Σi ), 1 ≤ i ≤ NxNy, (18)

µi· = β−1
0 ΣiD̃

H
i s, (19)

Σi =
(
β−1

0 D̃H
i D̃i + α−1

i IK
)−1

, (20)

D̃i = [E0d0,i, · · · ,EK−1dK−1,i], (21)

where D̃i ∈ CL×K denotes the collection of the ith column across
the K matrices {EkDk}K−1

k=0 , and dk,i is the ith column in Dk.
2) Updating α and β0: With known α and β0, the mean and

covariance of each scattering coefficient are respectively derived in
(19) and (20). The associated learning problem, thus, becomes a
search for the parameters α and β0. The empirical Bayesian estimate
for α and β0 is determined by maximizing the marginal likelihood,
or equivalently, its logarithm,

{α, β0} = argmax
α,β0

L(α, β0) (22)

where

L(α, β0) =

L∑
l=1

log p(s|α, β0) =

∫
p(s|w̄, β0)p(w̄|α)dw̄

≡ −[log |C|+ sHC−1s],

C = β0IL + D̄(A⊗ IK)D̄H , (23)

D̄ = [D̃1, · · · , D̃NxNy ], (24)

in which C ∈ CL×L, and D̄ ∈ CL×KNxNy with L � KNxNy .
A type-II maximum likelihood (ML) approximation [20] employs
the point estimates for β0 and α to maximize (22), which can
be implemented via the expectation maximization (EM) algorithm.
However, the method based on EM technique has slow convergence
[18]. Several effective approaches have been proposed to speed up the
convergence [18, 21, 22]. It is proved that the approach based on the

bound optimization technique (known as Majorization-Minimization
method) can be used to achieve better sparse solutions [22–24].

In this paper, we derive α by following the bound optimization
technique. We use the supporting hyperplane of the second term
log |C| in (23). Let α∗ be a given point in the α-space. Then,

L(α)
M
= log |C| = log |β0IL + D̄(A⊗ IK)D̄H |

≤ log |C∗|+
NxNy∑
i=1

Tr
[
(C∗)−1D̃iD̃

H
i

]
(αi − α∗i )

4
= L̃(α), (25)

where

C∗ = β0IL + D̄(A∗ ⊗ IK)D̄H , (26)

A∗ = diag(α∗1, · · · , α∗NxNy
). (27)

Note that the function L̃(α) defined in (25) is convex over α and,
when α = α∗, we have L(α∗) = L̃(α∗). Further, for any αmin

which minimizes L̃(α), we have L(αmin) ≤ L̃(αmin) ≤ L̃(α∗)
[23]. Furthermore, based on the identity property, we have a surrogate
function for the third term in (23), expressed as

sHC−1s ≡ min
w̄

β−1
0 ‖s− D̄w̄‖22 + w̄H(A−1 ⊗ IK)w̄. (28)

Substituting (25) and (28) in (23), we can define a new function as

G(α, w̄)
4
= β−1

0 ‖s−
NxNy∑
i=1

D̃iw
T
i·‖22 +

NxNy∑
i=1

α−1
i wi·w

H
i·

+ log |C∗|+
NxNy∑
i=1

Tr
[
(C∗)−1D̃iD̃

H
i

]
(αi − α∗i ). (29)

It is important to note that G(α, w̄) is convex in both {w·i}i=1,L

and α. It is easily shown that the solution α of L̃(α) in (25) is the
solution {wi·}i=1,L of G(α, w̄) in (29). Thus, G(α, w̄) is our final
cost function.

Setting the derivative of G with respect to αi to zero, we obtain

α(new)
i =

√√√√ wi·wH
i·

Tr
[
(C∗)−1D̃iD̃H

i

] . (30)

It is proved that the updated formulation in (30) based on this bound
optimization technique requires far fewer iterations than the one used
in the EM algorithm [18, 22, 23]. We acquire the closed-form α
by solving a surrogate convex function. Furthermore, we take the
derivative of (23) with respect to β0, and acquire [18],

β
(new)
0 =

‖s− D̄w̄∗‖22 + Tr(Σ0D̄D̄H)

L
, (31)

w̄∗ = β−1
0 Σ0D̄

Hs, (32)

Σ0 =
(
β−1

0 D̄HD̄ + A−1 ⊗ IK
)−1

. (33)

3) Updating error phase Ψ: The solution to the error phase Ψ
can be formulated as the following maximization problem,

Ψ̂ = arg max
Ψ

log p(s|w̄,Ψ, β0)p(Ψ)

≡ arg min
Ψ
‖s−E0D0w0 −E1D1w1

− · · · −EK−1DK−1wK−1‖22. (34)

By taking the derivative of (34) with respect to Ψ, we obtain,

ψ(k) = arctan
Im(Dkµk· � s\k)

Re(Dkµk· � s\k)
, (35)
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Fig. 2: Simulated geometry in TWRI and motion trajectory.

where µk· denotes the posterior mean of the reflectivity coefficients
wk, and s\k is the measurement data excluding the contribution from
the kth propagation path.

In summary, it is observed that µ in (19) and Σ in (20) are
functions of α in (30), β0 in (31) and ψ in (35), and vice versa.
It suggests an iterative approach, which iterates between (19), (20)
and (30), (31) and (35), until a convergence criterion is satisfied.

IV. SIMULATION RESULTS

A typical TWRI scenario is simulated, as shown in Fig. 2(a).
A transceiver mounted on a ground vehicle, moving at vx=15 m/s
along the x-axis, transmits and receives the stepped-frequency signal,
consisting of 200 equally spaced frequency steps from 1 GHz to
2 GHz, and the pulse repetition frequency (PRF) is 150 Hz. The
data collection time is one second, and thus the length of synthetic
aperture is 1 m and the number of synthetic positions is 10. The
origin of the coordinate system is chosen to the initial location of
the transceiver. The initial squint angle is θ0 = 45◦ and the size of
illuminated room is 6 m × 6 m. The distance Rs from the center
of room to the x-axis is 50 m. The distance between two adjacent
discretized image pixels along both crossrange and downrange is 0.1
m. The received signal comprises the direct returns and the multipath
returns via secondary reflections at the three interior walls, yielding
a total of K = 4 paths. The scattering coefficients for the direct
paths are drawn from CN (0, 1), and the signal amplitudes of the
multipath returns are assumed to decay with the distance. Complex
white Gaussian noise is added to the measurements with a signal-
to-noise ratio (SNR) of 10 dB. Only 25% frequencies are randomly
selected at each transceiver location for CS-based imaging.

The first simulation is to verify the effectiveness of the proposed
forward model in Eq. (9). In the above TWRI geometry, random
location errors with standard deviation of vx/(2PRF) are added at
each synthetic aperture position, as depcited in Fig. 2(b), which
clearly shows the deviations from the hypothesized trajectory. Fig.
3(a) shows the error bar plot with means and standard deviations of
phase errors in diverse multipath propagations. The average phase
errors in Fig. 3(a), which are calculated based on all the pixels in
the region of interest, generally differ across multipaths reflected from
interior walls and transceiver locations, when the uncertain transceiver
locations are used. However, the standard deviations of phase errors
are much less than π/4 across multipath propagations, no matter the
transceiver location, as shown in Fig. 3(b). Therefore, it is reasonable
to consider the corrupted phase error in each multipath propagations
in the forward model.

The second simulation is to verify the effectiveness of the proposed
ABCS algorithm. The sparse scene, shown in Fig. 4(a), is considered.
Figs. 4(b) and 4(c), respectively, show the reconstructed results from
BOMP [25] with the true sparsity, and block sparse Bayesian learning
approach (BSBL) [22], which only take the group sparsity into
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Fig. 3: Average phase errors and standard deviation. (a) Errorbar plot
for phase errors. (b) Standard deviations of phase error in multipath
propagations
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Fig. 4: Reconstructed results based on these CS approaches. (a)
Original scene. (b) Result from BOMP with true sparsity. (c) Result
from BSBL. (d) Result from the proposed ABCS method.

account. Due to the corrupted phase errors caused by the antenna
location errors, both algorithms fail to reconstruct the sparse targets.
However, by exploiting the joint sparse reconstruction and phase error
correction, the proposed ABCS algorithm correctly reconstructs the
sparse scene, as shown in Fig. 4(d).

V. CONCLUSION

In TWRI, compressive sensing based multipath exploitation tech-
niques enable high-resolution imaging given accurate knowledge of
the physical geometry. However, the quality of the reconstructed
image degrades under imperfect prior knowledge. We have prposed
a novel autofocus Bayesian compressive sensing approach with mul-
tipath exploitation to perform through-the-wall scene reconstruction
in the presence of uncertain transceiver locations. We first develop a
forward model under multipath propagation, and then propose auto-
focus Bayesian compressive sensing algorithm to jointly reconstruct
the sparse targets of interest and implement phase error correction in
a nonparametric Bayesian framework. Simulation results are provided
to validate the proposed forward model and reconstruction algorithm,
and show superiority over conventional CS imaging techniques.
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