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ABSTRACT

We propose a new scheme to estimate the directions-of-arrival

of mixed coherent and uncorrelated signals exploiting a nested

multiple-input multiple-output (MIMO) system. In the proposed

scheme, the DOAs of the uncorrelated sources are first estimated us-

ing subspace-based methods, whereas those of the coherent sources

are resolved using compressive sensing techniques. The proposed

approach works for nonuniform linear sum coarrays and may resolve

more sources than the number of coarray elements.

Index Terms— Nested array, sum coarray, MIMO, direction-

of-arrival estimation, compressive sensing

1. INTRODUCTION

Direction-of-arrival (DOA) estimation is an important array process-

ing technique that determines the spatial spectra of the impinging

electromagnetic waves. Such techniques find broad applications in

wireless communications and radar systems. Among the many DOA

estimation methods that have been developed, subspace-based ap-

proaches, such as MUSIC [1] and ESPRIT [2], are broadly used due

to their low complexity and superior performance. A problem with

these methods is that they often fail to perform reliable DOA esti-

mation when multiple signal arrivals are coherent. Coherent signal

arrivals are commonly encountered in practice due to, for example,

multipath propagation. Some techniques have been developed to

decorrelate coherent signals at the expense of reduced number of

degrees-of-freedom. The problem becomes even more challenging

when a mix of coherent and uncorrelated signals is present.

In [3], a deflation method is proposed for DOA estimation in

such a scenario with both uncorrelated and coherent signals appear

in the filed of view. In this method, a uniform linear array (ULA)

is considered, and the DOAs of the uncorrelated sources are esti-

mated by directly applying the MUSIC algorithm. The uncorrelated

signals are then eliminated from the received data by exploiting the

symmetry property of the ULA. Elimination of uncorrelated signals

can also be achieved using oblique projection. A Toeplitz matrix

is then constructed to estimate the DOAs of the remaining coherent

signals.

In this paper, we consider the DOA estimation exploiting a

multiple-input multiple-output (MIMO) system configuration and

dealing with both uncorrelated and coherent signals. The MIMO

system is assumed to have a symmetric sum coarray [4]. In par-

ticular, a nested MIMO structure [5] is demonstrated in this paper,

where the transmit array is a ULA with half-wavelength spacing,

whereas the receive array is a sparsely located ULA. The DOA
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estimation is performed at the sum coarray of the MIMO system

evaluated at its matched filter outputs. In our approach, while the

DOA estimation of the uncorrelated signals and their elimination

follow the same step as in [3], but compressive sensing (CS) tech-

niques are used in the DOA estimation of the remaining coherent

signals. Because CS methods can handle coherent sources with a

general array structure [6, 7, 8], the Toelitz matrix structure becomes

unnecessary, thereby facilitating the use of general symmetric sum

coarray structures, instead of the ULA requirement. The proposed

approach achieves better use of the covariance matrix entries for

improved DOA estimation performance.

Notations: We use lower-case (upper-case) bold characters to

denote vectors (matrices). In particular, IN denotes the N × N
identity matrix. (.)∗ implies complex conjugation, whereas (.)T and

(.)H , respectively, denote transpose and conjugate transpose; ‖ · ‖2
and || · ||1 respectively represent the Euclidean (l2) and l1 norms, and

E(·) is the statistical expectation operator.
⊗

denotes the Kronecker

product.

2. SIGNAL MODEL FOR NESTED MIMO SYSTEM

Consider a nested MIMO system consisting of an M -element ULA

with an interelement spacing d = λ/2 for transmit array and an N -

element ULA with interelement spacing Xd for receive array, where

X ≥ M , as shown in Fig. 1, and λ denotes the wavelength. The

transmit and receive arrays are colocated, i.e., targets are located in

the far-field are observed at the same direction by both arrays.
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Fig. 1. A nested MIMO system.

Assume that Q narrowband far-field signals impinge on the ar-

ray from angles Θ = [θ1, ..., θQ]
T , and their discritized baseband

waveforms are expressed as sq(t), t = 1, ..., T , for q = 1, ..., Q.

The M transmit antennas transmit M orthogonal waveforms. The

matched filter at the output of the nth receive antenna, correspond-

ing to the mth transmit waveform, generates

x̃m,n(t) =

Q∑

q=1

at(m)
(θq)ar(n)

(θq)sq(t) + nm,n(t), (1)



where

at(m)
(θq) = e−jπmd sin(θq),

ar(n)
(θq) = e−jπnXd sin(θq),

and nm,n(t) is assumed to be independent and identically distributed

(i.i.d.) random variables following the complex Gaussian distribu-

tion NC(0, σ2
n). Stacking them into a vector yields

x̃(t) =[x̃1,1(t), x̃2,1(t), . . . , x̃M,1(t), x̃1,2(t), x̃2,2(t), . . . ,

x̃M,2(t), . . . , x̃1,N (t), x̃2,N (t), . . . , x̃M,N (t)]T

=

Q∑

q=1

at(θq)
⊗

ar(θq)sq(t) + n(t), (2)

where

at(θq) = [at(1)(θq), at(2)(θq), . . . , at(M)
(θq)]

T ,

ar(θq) = [ar(1)(θq), ar(2)(θq), . . . , ar(N)
(θq)]

T ,

are the transmit and receive steering vectors corresponding to θq , re-

spectively, and n(t) = [n1,1(t), n2,1(t), ..., nM,N (t)]T is the noise

vector. As a result of Eqn. (1), an MN -element ULA sum coarray

is formed at the output of the receiver matched filters, as illustrated

in Fig. 2.
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Fig. 2. The sum coarray of the nested MIMO system.

3. FORMULATION OF THE PROBLEM

The coherent sources are grouped together and the number of groups

is denoted as P . The sources within each group are coherent to

each other and are uncorrelated to signals in other groups. In the cth

group, there are Lc coherent arrivals and the DOA corresponding to

the lth arrival of the signal sc(t) is denoted as θcl for l = 1, . . . , Lc.

The total number of coherent arrivals is L = ΣP
c=1Lc and the re-

maining D = Q−L sources su(t), u = L+1, . . . , Q, are uncorre-

lated to each other. For the convenience of presentation, we assume

MN to be odd and express it as MN = 2K + 1. However, MN
can take an even value and the problem can be similarly formulated.

Let the index of the central element of the array to be 0. The

(2K + 1) × 1 signal vector received at the sum coarray can be ex-

pressed as

x(t) =[x−K(t), . . . , x0(t), . . . , xK(t)]T

=
P∑

c=1

Lc∑

l=1

a(θcl)ρclsc(t) +

Q∑

u=L+1

a(θu)su(t) + n(t)

=ACsC(t) +AUsU (t) + n(t), (3)

where a(θ) is the steering vector corresponding to θ and ρcl is

the complex fading coefficient of the lth arrival in the cth group.

In addition, ρc = [ρc1, . . . , ρLc ]
T , Ac = [a(θc1), . . . ,a(θcLc)],

AC = [A1ρ1, . . . ,APρP ], AU = [a(θL+1), . . . ,a(θQ)], sC =
[s1(t), . . . , sP (t)]

T , and sU = [sL+1(t), . . . , sQ(t)]
T .

As a consequence, the covariance matrix of the coarray can be

expressed as

Rxx = E{x(t)xH(t)} = ACRCA
H
C +AURUA

H
U + σ2

nI2K+1,
(4)

where RC and RU are the covariance matrix of sC(t) and sU (t),
respectively. Note that RU is a diagonal matrix, whereas RC is a

block diagonal matrix with P blocks, and the rank is P .

4. DOA ESTIMATION

The DOA estimation is separately performed for coherent and uncor-

related sources in two steps. Similar to [3], the uncorrelated signals

are estimated by directly appling the MUSIC algorithm. To estimate

the DOAs of the coherent signals, we first eliminate the presence of

uncorrelated sources by exploiting the property of a symmetric array

that the received signal vector is conjugate symmetric. The CS tech-

nique is then applied, which outperforms the subspace-based DOA

estimation techniques. In addition, the CS-based approach only re-

quires symmetric sum coarray structure instead of a ULA one.

4.1. The proposed approach

All arrivals corresponding to the same coherent source yield a single

rank. Therefore, the covariance matrix Rxx can be written as

Rxx = UsΛsU
H
s +UnΛnU

H
n , (5)

where Us represents the signal subspace consisting of the D + P
dominant eigenvectors of Rxx and Un represents the noise subspace

with the remaining 2K + 1 −D − P eigenvectors. Λs and Λn are

diagonal matrices containing corresponding eigenvalues. The uncor-

related sources can be estimated by exploiting the MUSIC algorithm

directly. Because the combined array steering vector from multiple

coherent arrivals, denoted as ac =
∑Lc

l=1 a(θcl)ρcl, does not rep-

resent a valid array manifold, the coherent sources generally do not

demonstrate a strong presence in the estimated MUSIC spectra.

Next, the estimation of the coherent sources is performed by

using the symmetric configuration of array. As in [3], define

R = Rxx − σ2
nI2K+1, (6)

whose (i, k)th element is expressed as

r(i, k) =

P∑

c=1

Lc∑

l=1

bli,ce
jπk sin(θcl) +

Q∑

u=L+1

di,ue
jπk sin(θu), (7)

where bli,c = σ2
cρ

∗
cl

∑Lc
p=1 ρcpe

−jπi sin(θcp) and di,u = σ2
ue

−jπi sin(θu).

It is noted that the uncorrelated components in r(i, k) are conjugate

symmetric, with respect to i and k, while the coherent components

are not because of the complex fading coefficient ρ.

Define

g(i, k) = r(i, k)− r∗(−i,−k) =

P∑

c=1

Lc∑

l=1

qli,ce
jπk sin(θcl), (8)

for the symmetric configuration i, k = −K, . . . ,K, where qli,c =

σ2
c

∑Lc
p=1(ρ

∗
clρcp − ρclρ

∗
cp)e

−jπi sin(θcp). Note that only the coher-

ent part remains in g(i, k), whereas the uncorrelated components are

eliminated. Stacking g(i, k) for all k results in g(i), denoted as

g(i) = Acr, (9)



where r = [q1i,c, . . . , q
Lc
i,c ] . Eqn. (9) can be solved using the CS

approaches [6]. The desired result of r is represented as the solution

to the following constrained l1-norm minimization problem

r̂◦ = argmin
r◦

||r◦||1 s.t. ||g(i)−A◦
cr

◦||2 < ε, (10)

where ε is a user-specific bound, A◦
c is a dictionary matrix consisting

of the searching steering vectors and r◦ is the sparse entries to be

determined. The positions of nonzero entries in r̂◦ represent the

DOAs of the coherent arrivals.

This type of problems has been the objective of intensive studies

in the area of CS, and a number of effective numerical computation

methods have been developed. We use the batch Lasso algorithm

[10] in this paper, but other methods may also be used.

4.2. Analysis of degrees of freedom

In the first step, the uncorrelated signals are estimated by the MUSIC

algorithm directly. Hence, the number of dominant eigenvectors in

Us, D + P , must be valid under the requirement of D + P ≤ 2K.

The total number of coherent sources L = ΣP
c=1Lc is no more than

the number of sensors, 2K+1, in the second step. Then the degrees

of freedom, i.e., the maximum number of resolvable sources, can be

as high as 4K + 1 = 2MN − 1.

5. SIMULATION RESULTS

We first consider a nested MIMO system with M = 5, N = 3
and X = 5 in Fig. 3, yielding a uniform linear sum coarray of

MN = 15 elements (i.e., K = 7). D = 12 uncorrelated sources are

uniformly distributed between −60◦ and 60◦. In addition, P = 2
sources with L1 = L2 = 2 coherent arrivals, whose fading co-

efficients are ρ = [0.7085 + 0.5550i,−0.0487 − 0.9988i] and

[−0.6524 + 0.2537i, 0.8000 + 0.0039i], respectively, arrive from

−12◦, 9◦, 12◦, and 42◦. As such, the total number of the sources

is Q = 16, which is higher than the number of coarray elements

as well as that of the physical sensors. 500 snapshots are used in

the presence of noise with a 0 dB signal-to-noise ratio (SNR) for all

signal arrivals. The results demonstrate that all 16 sources are re-

solved, whereas the MUSIC-based approach fails to resolve part of

the coherent signal arrivals from 9◦ and 12◦.

In the next example, we demonstrate that the proposed technique

can exploit non-uniform linear sum coarrays whereas the method de-

veloped in [3] fails. We keep the same M = 5 and N = 3, but

change X to 6. The signals are assumed the same as those in Fig.

3, but the directions of the coherent arrivals are changed to −40◦,

−12◦, 9◦, and 42◦, so that the MUSIC-based technique in [3] would

work if a uniform linear coarray were used. It is evident from Fig.

4 that, because of the non-uniform linear coarray structure, the ap-

proach developed in [3] yields incorrect estimates, whereas the pro-

posed technique offers a good estimation performance.

6. CONCLUSIONS

We have examined the direction-of-arrival (DOA) estimation prob-

lem of both uncorrelated and coherent signals in a multiple-input

multiple-output (MIMO) platform. The proposed approach succeeds

to separate coherent and noncoherent sources. Then, by applying

the subspace-based approaches for uncorrelated signals and com-

pressive sensing based methods for coherent signals, the proposed

technique achieves superior performance with a flexible array con-

figuration.
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Fig. 3. Estimated spatial spectra using uniform linear sum coarray
(X = 5).
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Fig. 4. Estimated spatial spectra using non-uniform linear sum coar-
ray (X = 6).
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