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Abstract—In this paper, we develop a novel method to enable
robust sparsity-based time-frequency representation of multi-
component frequency modulated signals in the presence of burst
missing samples, where the amplitudes of the different signal
components are generally different. Unlike existing methods
which require cross-term presence to be sparse in the time-
frequency domain, the proposed method permits effective time-
frequency representation reconstruction even when undesired
cross-terms take a high occupancy. A key enabling procedure
is the high-fidelity missing entry recovery of the instantaneous
autocorrelation function that is insensitive to cross-terms. By
designing instantaneous autocorrelation function patches such
that their Doppler-frequency domain representation is sparse,
we formulate the instantaneous autocorrelation function recov-
ery problem as a patch-based low-rank block Hankel matrix
completion problem. This approach effectively suppresses the
effects of burst missing data samples and is robust to the
amplitude differences. A data-adaptive time-frequency kernel is
then applied to further mitigate the undesired cross-terms and
the residual artifacts due to the burst missing samples. We prove
the superiority of the proposed method over the state of the
art for both multi-component linear and nonlinear frequency
modulated signals. Simulation results confirm that the proposed
method outperforms the state of the art for different types of
frequency modulated signals with varying signal-to-noise ratios
and missing sample rates.

Index Terms—Time-frequency analysis, burst missing samples,
low-rank structured matrix completion, nonstationary signal,
annihilating filter.

I. INTRODUCTION

ONSTATIONARY signals are widely observed in many

real-world applications, such as radar, sonar, radio as-
tronomy, communications, acoustics, and vibration systems
[1]-[5]. One important class of nonstationary signals is fre-
quency modulated (FM) signals, which are characterized by
time-varying instantaneous frequencies (IFs) [6]-[10]. Com-
pared to signals represented in either the time or frequency
domain, joint time-frequency (TF) domain representation pro-
vides a time-varying spectrum to enable effective signal anal-
ysis, discrimination, and classification [9], [11].

In practice, missing data samples frequently occur during
signal reception due to various reasons, e.g., propagation
fading, measurement obstruction, removal of impulsive noise
or narrowband interference, and intentional undersampling.
For example, there are strong interests in radar applications
to reduce the sampling rate in order to simplify the system
complexity [12]-[14], and radar and radio astronomical data
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are often processed after removing strong clutter and inter-
ference signals [15]-[17]. Electroencephalogram (EEG) data
signals are often processed after removal if unrelated artifacts
due to, e.g., eye movement and blink [18], [19]. Conventional
methods are difficult to achieve reliable TF analysis and IF
estimation in the presence of such missing or removed data.

Missing data samples in the time domain lend themselves
to be missing entries in the instantaneous autocorrelation
function (IAF) and induce artifacts in the TF representation
(TFR). Recently, robust TFRs have been developed to han-
dle the existence of random missing samples [20]-[23]. In
these methods, it is revealed that TF kernels, in addition to
their traditional functions of suppressing TF cross-terms, also
effectively mitigate artifacts induced by the random missing
samples. By taking advantages of the signal sparsity in the
TF domain, these works also show that the effects of random
missing samples can be further reduced by employing sparsity-
based TFR reconstruction methods. In particular, an IAF slice
vector (either a column or a row) can be represented as
the summation of finite sinusoidal components. As such, the
Fourier transform of an IAF slice along the time or the lag
direction exhibits sparsity in the TF or ambiguity function
(AF) domain. This fact enables effective sparsity-based TF
analysis that mitigates the effects of missing samples. Note that
it has been shown in [24], [25] that completing missing entries
in the IAF domain is more effective than the counterpart
carried out in the time domain.

In practice, missing samples are likely to appear as clusters
when, e.g., the propagation fading and measurement obstruc-
tion periods exceed the sampling interval. Unlike the effects
of random missing samples, which cause the artifacts to be
uniformly spread over the entire TF domain, the artifacts due
to burst missing samples are highly localized around the true
IFs, rendering extremely challenging TF analyses for which
the existing methods become ineffective [25]-[27].

To enable effective TF analyses in the presence of burst
missing samples, the missing data iterative adaptive approach
(MIAA) [28] is employed to achieve missing data recovery
in the IAF domain under burst missing samples [25]. MIAA
is designed to retrieve missing data of stationary signals by
utilizing the Capon estimator with a least-squares spectral
fitting criterion. The missing data iterative sparse reconstruc-
tion (MI-SR) approach [26] extends the work in [25] by
utilizing iterative sparse reconstruction procedures, in lieu
of the single Capon estimation, to provide more robust and
improved TFR reconstruction performance. However, such a
grid-based IAF data interpolation procedure inevitably causes
a basis mismatch issue [29], when the actual frequencies
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are not aligned on the grid. Another issue with the MI-SR
approach is that it does not properly handle signals with
weak components which are easily obscured by the residual
artifacts induced by the stronger signal components. In [27],
an adaptive local filtering-based directional TF distribution
is developed to handle multi-component signals with distinct
magnitudes in the presence of burst missing samples. This
method obtains robust TFR by exploiting local peak detection
and filtering within a window around a time instant. However,
this method heavily relies on the quality of the kerneled TFR
obtained from the incomplete data. It would fail to work if the
IFs are seriously misguided by the excessive artifacts.

To address the above-mentioned issues, we recently de-
veloped a robust TFR reconstruction method [30] for multi-
component FM signals with distinct amplitudes in the presence
of burst missing samples. This method is based on the recovery
of the IAF missing entries through an atomic norm-based
method. This method models an IAF slice, either along the
time axis or the lag axis, as the sum of a small number
of complex sinusoids in a continuous frequency set, thereby
avoiding the basis mismatch issue in IAF interpolation as
observed in [26]. Unlike [26] and [27], a TF kernel is applied
after performing IAF domain interpolation to suppress cross-
terms such that its cross-terms suppression capability is not
compromised by the presence of burst missing samples.

It is important to point out that, in all these methods,
the TIAF interpolation requires a high sparsity of the signal
representations in the TF and/or the AF domains, i.e., most
of their entries are vacant. While such sparsity requirement is
commonly satisfied for auto-terms, cross-terms usually spread
over the TF and AF domains before they are effectively
mitigated, thus violating this requirement. As a result, the
existing methods work well only for certain signals which
do not have a high cross-term occupancy in the TF and
AF domains, such as mono-component or multi-component
parallel linear FM (LFM). On the other hand, their perfor-
mance significantly degrades for signals with nonlinear FM
(NLFM) components or nonparallel FM components whose
cross-terms take a high occupancy and thereby invalidate the
signal sparsity requirement.

Motivated by this fact, in this paper, we propose a novel
approach which can reconstruct the IAF missing entries even
in the presence of high-occupancy cross-terms. In this ap-
proach, IAF patches are designed to ensure its spectrum in the
associated Doppler-frequency (DF) domain to be sparse. IAF
patches are then formulated as block Hankel matrices via a
partition-and-stacking process, and the annihilating filter-based
low-rank Hankel matrix (ALOHA) approach is used to inter-
polate the IAF and recover missing entries. We then apply the
adaptive optimal kernel (AOK) [31] to the interpolated IAF to
further mitigate the effects of cross-terms and residual artifacts
due to missing samples. Finally, we obtain the high-resolution
TFR by implementing sparse reconstruction using orthogonal
matching pursuit (OMP) [32]. We refer to the proposed TFR
reconstruction method as the AAO (ALOHA+AOK+OMP)
method.

The exploitation of IAF patches in the proposed method,
instead of using single IAF slices as in [30], offers several

important advantages. First, as cross-terms oscillate with fast
phase variation over time [11], whereas auto-terms render
positive values around the signal IFs which do not drastically
vary within a short time window, concurrently exploiting mul-
tiple IAF slices significantly suppresses cross-terms without
compromising the auto-term concentrations. Second, applying
the patch amounts to placing a window in the IAF domain
with respect to lag (similar to the kernel defining the pseudo
Wigner-Ville distribution [11]), thus enabling the utilization of
moving average to further improve the IAF recovery perfor-
mance. As a result, the problems encountered by the atomic
norm-based approach [30] are effectively eased, particularly
for complicated signals with high cross-term occupancy.

The ALOHA approach was originally developed for image
inpainting [33], i.e., filling in missing pixels in an image,
and has demonstrated its effectiveness in image deconvolution
[34], compressed sensing magnetic resonance imaging [35],
and binary shape reconstruction from subsampled and blurred
images [36]. Within the context of ALOHA, we formulate
the problem of IAF recovery as a low-rank block Hankel
matrix completion problem. Unlike image inpainting for nat-
ural images, where the patch size is chosen by trial and
error since the spectral contents of a patch depend on image
properties and it is difficult to obtained explicit rules to guide
the selection of the patch size [37], the IAF can be analytically
represented in the underlying TFR reconstruction problem, and
prior information related to the FM signals being processed
can be used to optimize the patch size.

The main contributions of this paper are summarized below:

1) We develop a novel approach which can reconstruct
the IAF missing entries even in the presence of high-
occupancy cross-terms.

2) By inheriting the advantages of the existing methods, the
proposed method avoids the basis mismatch problem and
is robust to amplitude differences among multiple signal
components.

3) We provide theoretical performance analyses for different
FM signals. Guided by these results, rules for patch size
optimization are provided.

It is noted that the proposed patch-by-patch ALOHA-based
IAF recovery method can be considered as a pre-processing
method for TFR reconstruction in the presence of missing sam-
ples. Therefore, it can be easily implemented in conjunction
with other TF kernels (e.g., [38]) and TF filtering techniques
(e.g. [39)).

The rest of this paper is structured as follows. Section II
describes signal model and demonstrates the effects of burst
missing samples. Section III provides a brief introduction
of the atomic norm-based TFR reconstruction method in
[30]. The proposed robust TFR reconstruction algorithm is
described in Section IV. Section V provides simulation results,
and finally conclusions are drawn in Section VI.

Notations: Lower-case (upper-case) bold characters are
used to denote vectors (matrices). | - | denotes the cardinality
of a set. (-)*, ()" and ()" denote the complex conjugation,
transpose and Hermitian transpose, respectively. F,(-) and
F,1(-) represent the discrete Fourier transform (DFT) and

xT

inverse DFT (IDFT) with respect to x, respectively. || -

L)
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|I-|| 7 and |- ||o respectively denote the nuclear norm, Frobenius
norm, and fyp-norm. [-] denotes the ceiling function. 7 ()
denotes a Hermitian Toeplitz matrix with & as its first column.
Tr(.) denotes the trace operation.

II. SIGNAL MODEL AND TIME-FREQUENCY

REPRESENTATIONS
A. Signal Model

Consider a discrete-time P-component FM signal as
t) :Zapej¢p(t)7t: ]-a 7T7 (D

where a, and ¢,(t) respectively denote the amplitude and the

phase law of the pth component for p =1,--- , P. The IF of

the pth signal component is expressed as follows:
1 dg,(t)

t) = ———+. 2

1(t) 2 dt @

In practice, the signal is corrupted by the additive white

Gaussian noise n(t), resulting the following noisy signal:
x(t) = s(t) + n(t). 3)
Denote 7(t) as its observation data with L missing data bursts,
and B = ZzL:1 B as the total number of missing samples with
B; missing samples in the [th burst, where 0 < B; < T for
l =1,---,L. The bursts of missing samples are randomly

distributed over time and do not overlap with each other.
The received signal r(¢) can be represented as the product
of the noisy signal x(¢) and an “observation mask” m(t), i.e.,

r(t) = x(t) - m(t), 4)
where m(t) is a binary sequence with element 1 for ¢ € S and
0 for t €S. Here, |[S| =T — B and [S| = |U_,Si| = B

B. Effects of Missing Samples
1) Instantaneous Autocorrelation Function: The IAF of the
noise-free signal s(t) is defined as [11]

Res(t,7) = s(t +7)s*(t — 1), %)
where 7 denotes the time lag.
Following (4), the IAF of r(t) can be formulated as
Ry (t,7) = Raa(t, 7) R (8, 7), (6)
where R, (t,7) is the IAF of the noisy signal z(t), and
Ryum(t,7) is the IAF of the observation mask m(t¢). Given

=1- Z S(t—t;),t; €S
P ) @
=1-> 3 6(t—tw),tw €S
1=1 b=1
Thus, the IAF of the observation mask is formulated as
B
Ry (t,7) = [ Zét t+r” 5(t—tj—7)}
o 8)
- Rﬁgn(t, T) - Rfﬁzn(t’ T) + Rgr:?n(t’ T)a
where
B T
Rsrllm( ):Zzé(tith’r#»t]itl)a (9)
i=1 j=1
B T
RO)L(7) =Y 6(t—tjm—t;+t), (10)

@
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5 Z t; +t; t; —t;
=2 2 0t S5t rE S,

=1 j=1
From (8), we observe that missing positions in r(t) are cor-
respondingly linked with the missing IAF entries. Moreover,
one missing sample in 7(t) results in two intersecting missing
diagonal lines in IAF, i.e., R\n) m(t,T) and Rgzn(t,T), which
meet at Rgnzn(t, 7). In the presence of burst missing samples,
(9)—(11) can be further expressed as

Y

L B, T

RGO (¢ ﬂZ[ZZé(ttj,wtjm)}, (12)
1= 1 b 1; 1

RE). (¢, Z[ZZé tlb)} (13)
=1 “p=1j=1
L L By, B

AR IS
11=112=1b1=1by=1 (14)

6 (t _ tllbl + tlsz T i tllbl B tl2b2)
2 7 2 '

Each burst of missing samples will induce two missing IAF
strips intersecting at 7 = 0. When dealing with a finite data
sequence, the IAF has a diamond shape with a time-varying
width of Q@ =T —|T + 1 — 2t| due to the zero-padding effect.

2) Ambiguity Function: The AF is the one-dimensional (1-
D) DFT of IAF with respect to ¢, expressed as

A (0,7) = F | ZR” (t,7)e 920t
where 6 denotes the frequency shlft or Doppler.

In the presence of missing samples, the AF of the partially
observed signal r(t) is formulated as

Ay (0,7) = Raa(t,7) Ry (¢, 7)e 227"
t

=A,.0,7)+ Ap(0,7),
where Ap(0,7) = —A1(0,7) — A2(0,7) + A3(0,7) denotes
the artifacts caused by missing samples, with

7) =Y Rau(t, 7)RY),(t,7)e 2™ 1< i < 3. (17)

(15)

mtT

(16)

t
3) Wigner-Ville Distribution: The Wigner-Ville distribution
(WVD) is often referred to as the prototype bilinear TF
distribution. The WVD of z(¢) can be obtained via the DFT
of the IAF R, (t,7) with respect to 7, i.e.,

sz(t, f) :‘FT[R:L‘:B t T ZRZI t 7‘)6 j4‘ﬂ'f‘f'

Note here that 47 is used in the DFT instead of 27 to make
T an integer With missing samples, the resulting WVD is

Wr(t, f) = ZRm (t, 7) Ry (t, T)e 4™

(18)

19)

= sz(ta f) + WD(ta f)a
where Wp (¢, f)=—-Wi(t, f) — Wa(t, f) + Ws(t, f) denotes
the artifacts in the WVD due to the missing data samples, with

Wi(0,7)=_ Rax(t, T)RD, (£, 7)e ™7, 1 <i < 3. (20)

t
Even though the WVD is mathematically similar to the AF,
we should note that the WVD is real-valued, whereas the AF
is complex in general since the IAF is conjugate symmetric
only with 7. From (16) and (19), we also notice that each
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missing burst in the time domain is analogous to a rectangular
function in the time-lag domain, which results in a convolving
sinc function applied to both the TF and AF domains.

C. Time-Frequency Kernel

Because of the bilinear nature of WVD, cross-terms are
unavoidable for NLFM signals or multi-component signals. It
is difficult to obtain an accurate analysis and interpretation of
the signal IF signatures with the existence of cross-terms [11].
To address this underlying issue, TF kernels are designed to
suppress cross-terms while preserving auto-terms. Essentially,
TF kernels are two-dimensional (2-D) filters, which provide
low-pass filtering characteristics in the AF domain. They can
be classified into two types, i.e., data-independent (fixed) ker-
nels and data-dependent (adaptive) kernels. Popular examples
of fixed kernels include the Choi-Williams distribution kernel
[40] and the cone kernel [41]. For adaptive kernels, the AOK
[31] is commonly used, which is designed based on a radially
Gaussian kernel with an angle-dependent size. In general,
adaptive kernels provide a better performance, compared to
the fixed counterparts since they are optimized based on the
signal characteristics.

D. Effects of Amplitude Difference

When the received signal consists of multiple components
with different amplitudes, it is much more challenging to
retrieve the weaker signal components. Without loss of gener-
ality, let us consider a two-component FM signal as follows:

s(t) = ed1(t) peyti>2(t)7 1)
where 0 < p < 1 is the amplitude ratio. The IAF of the
noise-free signal s(t) is

Rys(t, 7) = 101 () =01 (=) 02 03l6 () 2(t7)

SS

Auto-terms

Ll (90 4 pealéaamrr-m) )

Cross-terms
Therefore, the average cross-term power is stronger than that
of the auto-term associated with the weaker signal component,
thus indicating difficulties in recovering the weaker signal
component, given that the residual artifacts could be stronger
than the auto-terms of the weaker signal component.

E. Demonstration Example

We consider a two-component intersecting LFM signal in a
noise-free case. The instantaneous phase laws are given by
¢1(t) = 2m (0.05¢ 4 0.20t*/T) ,
¢o(t) = 2 (0.45¢ — 0.20t*/T)) .
Fig. 1 illustrates the effects of burst missing samples and
amplitude difference. 52 out of 128 samples are missing. The
first row of Fig. 1 presents the AF, whereas the second row
presents the AOK.

Fig. 1(a) and Fig. 1(d) are obtained by the two-component
LFM signal with the same amplitude in the presence of random
missing samples. We notice that the artifacts in the AF as
shown in Fig. 1(a) are distributed evenly. A relative clean TFR
is achieved after applying the AOK.

Fig. 1(b) and Fig. 1(e) depict the AF and the AOK under
the same amount of missing samples as in the first column of

(23)

20 40 60 80 100 120
t t t

(d) (e) ®

20 40 60 80 100 120 20 40 60 80 100120

Fig. 1. Comparison of the AF ((a)—(c)) and AOK ((d)—(f)) for the noiseless
two-component intersecting LFM signal. (a) and (d) are obtained with the
same amplitude (p = 1) under random missing samples; (b) and (e) are
obtained with the same amplitude (p = 1) under burst missing samples; (c)
and (f) are obtained with different amplitudes (p = 0.5) under burst missing
samples.

Fig. 1, but the missing samples occur in bursts, where the
52 missing samples are grouped into 13 bursts, with each
burst containing 4 missing samples. Compared to Fig. 1(a),
the sinc function artifacts in the AF are highly concentrated
near the auto-terms. Fig. 1(e) demonstrates that it is much
more difficult to suppress the cross-terms in the presence of
burst missing samples. The cross-terms are chunk-like, and the
auto-terms are more severely distorted compared to Fig. 1(d),
especially when 64 < ¢t < 128.

Fig. 1(c) and Fig. 1(f) are obtained with the same phase laws
and burst missing pattern as in the second column of Fig. 1,
but with the amplitude ratio p = 0.5. Due to the amplitude
difference, it is difficult to identify the auto-term associated
with the weak signal component from the residual artifacts of
the cross-terms, compared with Fig. 1(e).

III. ISSUES IN ATOMIC NORM-BASED IAF RECOVERY

In this section, we first provide a brief summary of atomic
norm-based IAF recovery in [30]. Then, its limitations, and the
motivations for the proposed method are thoroughly discussed.

A. Atomic norm-based IAF recovery

Let g, and y, respectively denote the TF slice and the IAF
slice at time instant ¢. P, non-zero entries in g, are considered.
The IAF is the IDFT of WVD with respect to f, given by

Py
v, = (g = Y e
p=1

where ¢! denotes the complex amplitude of the pth signal
component at time instant ¢, ff denotes the associated signal
frequency, and 7 = [y, ,7q]" is the time lag vector. A
Hankel matrix constructed from y, is expressed as

(24)

— 1
yi P ytZ ql;
2 3 —q1
Yi Yt Yy
H,=H(y, ¢1) : : . , (25)
: » :
yit oyt ye

where ¢; is the pencil parameter, which is usually set to
[Q/2]. The same P, frequency components are shared among
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all the columns in H ;. The atom set representing H, can be
expressed as

A= {A(f, b) = a(f)bY|f € [0,1), |b]l» = 1}. (26)
where A(f,b) denotes one atom, a(f) = €’?™/7 ¢ C%, for
f € 10,1), and b € CO 0+l with ||b]ls = 1. Here, the
basis mismatch issue is avoided since the frequency set is

continuously defined. Following the recipe in [42], the atomic
norm of H; is defined as

|H¢||4 =inf{f >0: H; € fconv(A)}

27
— inf {Z ) Hy = |cf|a(ff,bf)} , @7

p p

where conv(A) is the convex hull of A.

Denote z: = [Ry(t,71), " 7RTT(t,TQ)]T as the tth
slice of the IAF of the observed signal r(t), and Q; =
[Rim (t,71), - ,Rmm(t,TQ)]T as the observation pattern,
i.e., the tth IAF slice of the observation mask m(t), and ¢;
denotes the upper bound of the noise. Then, the recovery of
missing entries in the IAF slice y, can be formulated into an
atomic norm minimization problem as

g =argmin [H(y, q)lla sty = 2" < e @8)
t

In general, the atomic norm minimization is converted into a
semidefinite programming (SDP) [43] problem as follows:

min  Tr(7 (u)) + Tr(W)
u,W,y,
oL T(u)  Hy,a) =0, (9

H(ytaql)H w
lye* — 28 [l2 < et

The same procedure can be also applied to the IAF slice y.,
along the lag direction 7, since the AF slice can be viewed
sparse and there is a similar DFT relationship between the
IAF and the AF according to (15). We denote RAT(t,T) as
the interpolated IAF via atomic norm-based method. Note that
RAT(L‘,T) is referred to as “stage 1 IAF” in [30]. As proved
in [43], the missing entries can be recovered with a guarantee
under some mild conditions. One key assumption is that P,
should be small.

B. Effects of Cross-Terms on Sparsity

In the existing literatures including [30], the TF domain
is assumed to be sparse. However, for bilinear TF analysis,
this assumption underestimates the effects of cross-terms. As
a result, the performance of [30] degrades dramatically when
the signal consists of nonlinear or nonparallel FM signal
components. Because in such cases, the cross-terms do not
appear as single-frequency components, but span a large region
in the TF domain. To demonstrate the impact of cross-terms
on the sparsity clearly, without loss of generality, we consider
two examples. The first example involves a two-component
LFM signal, whereas the second example deals with a two-
component NLFM signal for illustration.

1) Two-Component LFM: For two-component LFM with
different amplitudes, we consider the phase laws as follows:

¢1 (t) =27 (alt + b1t2) 7gf)2(t) =27 (azt + b2t2) . (30)
The IAF of s(t) is
Rss(t77—) — e]2w(2a1+4b1t)7' + p26]27r(2a2+4b2t)7'
Auto-terms (3 1 )

+2p COS(?WﬂL)eﬂ’T(“lﬂlz+2b1t+2b2t)7"

Cross-terms
where [, = (a1 — ag)t + (bl — bg)t2 + (bl — b2)7'2.
If the two LFM signal components are parallel, i.e., by = bo,
then i can be simplified to (a; — as)t. Following (31), when
t is fixed, the IAF slice y, is expressed as

P,=3

_ p_2m f{T

Y = § c eIt
p=1

where ¢} = 1, f} = 2a; +4bit, & = p?, f? = 2ay + 4bit,
¢} = 2pcos(2m(a; — az)t), and f = ay + as + 4byt.
Similarly, when 7 is fixed, the IAF slice y_ is expressed as

P,=3
_ E : D )27 f2t
yT - C-re )
p=1

where ¢l = e27(mi7) 4 p2e2m(a27) £l — gb7 2 =
pel?rlantae)t 2 — g1 qy +4by7, €3 = per?T(ata2)T and
ffzag — a1 +4bi7.

Egs. (32) and (33) indicate that the IAF with partial ob-
served entries can be recovered via the atomic-norm based
approach with a guarantee under mild conditions. However, if
b1 #ba, OL is no longer a constant neither for y, nor for y..
In the case of the signal consisting of P non-parallel LFM
components, P, or P, is much larger than 2P — 1, which
compromises the sparsity and degrades the performance of
the atomic norm-based IAF recovery method [30].

2) Two-Component NLFM: For a two-component NLFM
signal, we have the phase laws as follows:

(]51 (t) =27 (a1 + b1t2 + Clt3) ;

(32)

(33)

34
¢2(t) =27 (CLQ + b2t2 + 62t3) . ( )
The IAF of s(t) is expressed as
Rys(t,7) = A1 + Ag + As, (35)
where ) ,
Al _ 6]277(2a1+4b1t+661t )‘r . 6]27r~2c17' , (36)
A2 _ p26J2ﬂ(2a2+4b2t+6C2t2)T . 63J27r~2cQ’r37 (37)
Az = 2p cos(2m By )e?2m(erte2)T
3 = 2pcos(27mPnL) (38)

. 63271'((11 +as+2b1t+2bst+3cy t2+3C2t2)T

)

ﬂNL:(Gq—az)t-i-(bl—bz)t2+<01—62)t3+(b1—b2 +3c1 t—362t)7'2 . (39

If the two signal components are parallel, we have b; = bs
and c; = ca. IAF column y, can be expressed as

T, 2 327(2a0+4byt+6c1t3) T
Y, =e +p e’ ( 2 1 1 )

+2pcos(2m(ar — az)t)eﬂ"(al+“2+4b1t+661t2)7]
_P=3
A 6]2#42517"3 Z CfGZWftI]T’

p=1

3271-~2c1‘r3 [6J27T (2a1+4b1t+661 t2)

(40)
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WVD obtained from full data

20 60 100
t t t
TAF obtained from full data

50 e

20 60 100 20 60 100 20 60 100 20 60 100
t t t t
IAF recovered via atomic norm-based method

Fig. 2. IAF recovery performance via atomic norm-based method in [30].

whereas IAF row y.. can be described as

927 2cq 7'36]27r(6c1 T)t2 [eg2w(4b1 T)t (6]27r»2a11' 2 ]271'-20,27')

y, =ec +p’e

+ peﬂﬂ'('ll +a2)7 g2m(a1—az+4b17)t

+ pej27r(a1+a2)7—e]27r(a2—a1+4b17)t] 1)

R Pr=3
A 6]2#(6c17')t z : C£G2Wf£t.

p=1

We notice that y, and y, cannot be described as the
sum of only a few complex sinusoidal terms, even though
when the two NLFM signal components are parallel. In other
words, the spectrum sparsity of y, and y, has been greatly
compromised by the effects of the cross-terms. Therefore, we
can conclude that the atomic norm-based IAF recovery method
[30] can achieve a near-optimal recovery performance in the
case of the signal containing single or multiple linear parallel
FM components in noiseless cases and reconstruct the IAF
with a bounded error in noisy environments. However, for
the cases including the signal which consists of the NLFM
signal component or intersecting FM signal components, the
performance will suffer.

Fig. 2 demonstrates the effects of cross-term on TF sparsity,
which result in performance degradation of the atomic norm-
based IAF interpolation in [30]. For illustration visually, four
different kinds of signals are employed (for detailed signal
expressions and parameter settings, please refer to Section
V-A1-V-A4). All signals have the same observation pattern.
As analyzed before, we notice that the atomic norm-based
method obtains a near-optimal recovery performance in the
case of parallel two-component LFM signal. However, its per-
formance degrades with the increasing cross-terms. Because
in the cases of the signal consisting of NLFM or intersecting
FM signal components, the resulting cross-terms span a large
portion of the TF domain, which prohibit y, or y. to be the
sum of a small number of complex sinusoids. Therefore, the
assumption of atomic norm-based method becomes less valid
in such cases.

IV. PROPOSED METHOD

Based on the fact that we can suppress the artifacts due

to missing samples by interpolating the associated missing

entries in the IAF, and the effects of cross-terms can be
mitigated by using TF kernels, the proposed method aims to
improve the IAF estimate such that it is close to the adaptively
kerneled IAF obtained from the full data. In this section, we
describe the proposed AAO algorithm, which improves the
TFR reconstruction performance in detail.

A. IAF Interpolation via Patch-based ALOHA

1) Ensuring IAF Spectrum Sparsity via Windowing: A key
difference between auto-terms and cross-terms in the TF do-
main is that cross-terms oscillate with an oscillation frequency
being proportional to the distance between corresponding
terms, whereas the IFs of an FM signal do not change rapidly
over a short time period. By applying the 2-D DFT, the IAF
defined in the time-lag domain (¢, 7) is converted to the DF
domain with a Doppler-frequency pair (0, f). The selection of
an IAF patch would limit its ranges in time and lag to ensure
the spectral sparsity in the DF domain.

Given the spectral sparsity of a small IAF patch, we apply
the data interpolation procedure in a patch-by-patch manner.
It is equivalent to applying a window function g(¢,7) in the
IAF, which is described as

1, it Mg+1<7< My+ M and
g(t,T): N0+1§t§N0+N, (42)
0, otherwise.

where M, and Ny denote the offsets respectively in the lag
direction and time direction, and M and N determine the
selected patch size. The IAF patch can be expressed as

Y (Mo, No, M, N) = [y1,Ys, - ,Yn] € CMXN

with

(43)

Y = [Res(ENgtns TMo41)s -+ 5 Rss(tNg s Targrar)] 5 (44)
for n € [1, N]. For notational convenience, we will abbreviate
Y (Mo, Nog, M,N) as Y.

The associated spectrum of Y can be modeled as the sum
of 2-D Dirac functions:

D
SO, 1) = cad(0 — b4, f — fa),

d=1

(45)

where D is the number of non-zero spectral components
respectively located at (04, f4),d = 1,---,D. A low value
of D is used by properly selecting the patch size defined by
M and N and will be discussed in Section IV-A(2).

Given (49), it is clear that there is a corresponding annihi-
lating filter [44] in the time-lag domain which leads to

h(8, £)S(0, f)=0. (46)

Note here that, the underlying frequencies of the IAF patch
are not restricted on the grid and can assume any continuous
values in the normalized frequency domain such that the basis
mismatch issue is avoided just as [30]. We recall a result
that there is a fundamental duality between the sparsity in the
primary space and the low-rankness of a structured matrix in
the corresponding spectral domain. We construct the following
block Hankel matrix H with pencil parameters ki, ko, from
the IAF entries within the patch Y:
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TABLE I
NUMERICAL RANK COMPARISON OF BLOCK HANKEL MATRIX FOR
DIFFERENT TWO-COMPONENT PARALLEL LFM SIGNALS

m Afo Auto Cross  Auto+cross CR%
0.05 2 2 4 2.37%

0.002  0.10 2 2 4 2.37%
0.15 2 2 4 2.37%

0.05 6 6 9 5.33%

0.02  0.10 6 6 12 7.10%
0.15 6 6 12 7.10%

0.05 13 13 16 9.47%
0.2 0.10 16 16 26 15.38%
0.15 16 16 30 17.75%
0.05 20 20 22 13.02%
0.4 0.10 25 25 34 20.12%
0.15 28 28 46 27.22%

TABLE II

NUMERICAL RANK COMPARISON OF BLOCK HANKEL MATRIX FOR THE
PARALLEL TWO-COMPONENT LFM SIGNAL AND THE INTERSECTING
TWO-COMPONENT LFM SIGNAL

m Afo Auto Cross  Auto+cross CR%
Parallel 01 01 12 12 21 12.43%
Intersecting ’ ’ 12 12 16 9.47%
Parallel 14 14 27 13.61%
Intersecting 0.15 015 14 14 23 13.61%
Parallel 02 02 16 16 32 18.93%
Intersecting ’ ’ 16 16 31 18.34%
Parallel 18 18 36 21.30%
Intersecting 0.25 025 20 20 38 22.49%
H= (Y ,k1,k2)
H(yy k1) H(ya k) H(Y N1 K1)

H(y2> k1) H(y3, kl) ,H(nylc2+27 kl)

(47
H(Yry k1) H(Ypopas k) H(yn, k2)
c Cklkg X (M*k?lJrl)(ka‘ngl)’

where H(y,,, k1) € CH*(M=Fki+1) j5 a Hankel matrix as
defined in (25) for n = 1,---, N. The rank of the block
Hankel matrix constructing from Y is at most D [45], [46].

2) Patch Size Selection: In principle, the patch size param-
eters M and N should be chosen to ensure the sparsity of
the spectrum of the IAF patch. It is usual to choose M = N
to make the block Hankel matrix as square as possible [47].
However, it is noted that the spectral sparsity of the IAF patch
is less sensitive to the selection of M than N since, for each
IAF slice y,, the frequency components do not change.

For illustration, we consider a two-component parallel LFM
signal in which only two variables, i.e., frequency slope m and
the initial frequency difference A fy, are involved. The instant
frequencies are described as:

Fi(t) = 0.05 +mt/T, fo(t) = 0.05+ Afy+mt/T. (48)

Due to the duality between the IAF spectrum sparsity and
the low rankness of the block Hankel matrix, we choose the
numerical rank to examine the effectiveness of cross-term
mitigation via the patch-based manner. The numerical rank
is calculated as the number of singular values above 0.5%

Frequency Frequency difference
slope Af;=0.05 Af,=0.1 Af,=0.15
0.4 04
m=0.02 -, 02
0 0 0
-0.5 -0.! -0.5 0 0.5
[
04 0.4
m=02 -,
0
-0.5 0 0.5
[
m=0.4 +
0.5
y 0
f,=0.05+mt/T; f,=0.05+Af, +mt/T
Fig. 3. DF obtained from the IAF patch.

of the maximum singular value for the block Hankel matrix
H(Y , k1, ko). The compressive ratio CR% is defined as

numerical rank
min(kle, (M*kl -+ 1)(N7k‘2 + 1))
For fair comparison, the same patch size 27 x 27 with pencil
parameters k1=ko =15 is adopted throughout the paper, and
the resulting dimension of the block Hankel matrix is 225x169.

The numerical rank comparisons with different frequency
slopes m and frequency differences A fj are presented in Table
I. The formulas for auto-terms and cross-terms can take (31)
as a reference. It is observed that the rank generally increases
when frequency slope m and difference A fj increase. Inter-
estingly, the auto-terms and cross-terms lead to the same rank,
if we check the block Hankel matrix generating from the auto-
terms and cross-terms individually. The impacts of cross-terms
are mitigated more when the two components are closer.

Fig. 3 compares the DF obtained from the IAF patch
for signals listed in Table I. Each column represents the
same frequency difference with different frequency slopes,
whereas each row represents the same frequency slope with
different frequency differences. We notice that slope m makes
a greater impact than the frequency difference between the two
components, regarding the spectral sparsity of the IAF patch.
When the slope is large, the effects of frequency difference
become more pronounced. A small frequency difference can
help to obtain a sparse DF from the IAF patch.

For the atomic-norm based IAF interpolation method [30],
the interpolation performance severely degrades when the
signal components are not parallel since, in such cases, the
effects of cross-terms become more pronounced. Selecting an
IAF patch, however, amounts to windowing the IAF domain to
render its DF domain representation to be sparse. Therefore,
having parallel IF signatures is not a key factor in the proposed
method. We illustrate this by comparing the numerical rank
between a two-component parallel LFM signal s;(¢) and a
two-component intersecting LFM signal so(t). s1(t) consists
of IFs f1(t) and fa(t) as described in (48), and s2(t) consists
of IFs f1(t) and f3(t), where f3(t) = 0.054+m—mt/T. Table
II provides the numerical rank comparison between the two-
component parallel LFM signal s;(¢) and the two-component
intersecting LFM signal s5(¢). We notice that the performance

CR% =

x 100%. (49)
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of the proposed method does not degrade when the two LFM
signal components have intersecting IFs.

The frequency span in the DF domain along the f direction
is equivalent to the one in the TF domain. Similarly, the
frequency span in the DF domain along the 6 direction is
equivalent to the one in the AF domain. For a desired patch
size, the frequency span along both the f and 6 directions
should be kept small. Let ff, = fP,. — fP. denote the
dynamic frequency range for the pth signal component and
Afpd = fb  — fl. the maximum frequency difference
between the pth signal component and the gth signal compo-
nent in the patch for 1 < p,q < P. Here, we provide a rule
of thumb to select a suitable patch size,

Jor (14 for )mOAf <,

(50
where Af - max([Afmax’ A rzr)l'ng max]) fDR -
max([f3g, -, fir])> and i denotes a threshold value. For the
two-component parallel LFM, fpr = mNt/T, and a typical
value for 7 is 0.3. In summary, the variation of the IFs should
be kept small in the selected patch.

3) ALOHA Implementation: To achieve an IAF estimate as
close to Rys(t,7), i.e., the IAF obtained from the full data of
the noise-free signal s(t), we need to suppress not only the
artifacts introduced by the missing samples but also the effects
of additive noise. Denote Z € CM*V as a patch of IAF R,
obtained using the incomplete and noisy data. An interpolated
and denoised IAF is obtained by solving the following low-
rank Hankel matrix completion problem:

min

rank (J2(Y , k1, k2))
s.t. ||YQ — ZQ”% <eg,

(G

where () denotes the observation pattern within the associated
IAF patch of the observation mask m(t) € RM*N  and
€ is a constant determined by the noise level. Because the
optimization problem of (51) is NP-hard, we relax the rank
constraint in (51) by utilizing the nuclear norm instead [48]:

| 7(Y k1 ,ka) || = U2+ V|3 (52)

min
UV:H(Y ki,k2)=UVH
Therefore, problem (51) is reformulated as

min - [U|E + V& (53)
s.t. HYQ — ZQ||2F <eg,
HY ki, ko) =UVH

The augmented Lagrangian form of (53) is formulated as

A
LOVY A)=5[Ya- ZQHF+ (IUIE+IVIE)

+g H%(Y,k:l,kg)—UVH—i-AHF,

where \ and p are the regularization parameters.

The block Hankel structure increases the matrix dimension
and memory requirements, while retaining the intrinsic low-
rank property. To reduce the computational complexity, prob-
lem (54) is solved using an alternating direction method of
multipliers (ADMM)-based technique [49]. More specifically,

y () ) v+ Jand the Lagrangian update ACTY at

the (¢ + 1)th iteration are sequentially updated by solving the
following optimization problems:

: A
y i+ = inZ||Yq — Zql|?
argmin 5 |[¥Yo — Zo|/r

_ ‘ _ (55)
+DIA Y ko) = U (VO AD 7,
) 1
U =argmin - |U 1%
) U 2 ' 4 ' 56)
+ LAY D k) U (V)T A,
) 1
VD —arg min o |V |3
‘ ‘ 57)
CIAY D ey ) U OV L AD 3,
AHD) :%(Y(zﬂ)’kh;@)_U(wl)(V(i+1))H+A(i), (58)

Egs. (56) and (57) can be easily computed by taking the
derivative with respect to U and V, leading to the following
closed-form update equations:

U =2 (Y Ok, ko) + AD)
V(T 4 (VO HYy @)1
u(%(Y(H_l), k1, k2) + A(z))HU(z—H)
I+ MU(iH)H(U(iH))H)A
We utilize a low-rank factorization model (LMaFit) algo-
rithm [50] to initialize U and V, which is singular value
decomposition-free, so that the computation burden is further
reduced.

In this paper, we average the estimated values of overlapping
patches in case of the boundary discontinuity among patches.
The reconstructed IAF exploiting the patch-by-patch ALOHA-
based method is referred to as “stage 1 IAF” Rﬁ) (t, 7).

For the underlying low-rank structured matrix completion
problem, the Hermitian symmetry property of the IAF is used
to further reduce the computational complexity. Let ¢, denote

the IAF entries of RST) (t,7) along the 7 dimension at time
instant ¢. ¢, has a Hermitian symmetric structure, given as
AT—1 AT (AI—l *

T

@t:[gtlv"'vyt y Y (Y ) a’(gtl)*} ) (61)
where [ is the index of the central element in 7. As such, the
computational complexity is reduced to the half since we only
need to recover half of the IAF with missing samples.

The low-rank matrix completion performance is decided
by the incoherence condition, which depends only on the
frequency locations regardless of the amplitudes of their
respective coefficients. Therefore, the ALOHA-based IAF in-
terpolation method is robust to amplitude differences among
different signal components.

(59)

v+ —
(60)

B. Cross-term Mitigation via Kerneled IAF

Because the IAF interpolation cannot suppress cross-terms
which exist even in absence of the missing samples, we use
the AOK, a signal-adaptive kernel, denoted in the AF domain
as U(6#,7), and obtain the interpolated and kerneled IAF as

B2 (t7) = 7t [RGB E)ee.n] . 6
The use of AOK can further mitigate the effects of miss-
ing samples as well as noise. The resulting “stage 2 IAF”
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RPR (t,7) is expected to be close to the kerneled IAF obtained
using the full data in a noise-free case. Note that, the inter-
polated IAF ]:Zw can also be used in conjunction with any
other kernels such as the adaptive directional TF distribution
(ADTFD) [38] and multi-directional distribution (MDD) [9].

C. Sparse Reconstruction of Time-Frequency Representation
After successful suppression of artifacts due to missing
samples, cross-terms and reduction of noise, the TFR recon-
struction can be viewed as a sparse reconstruction problem by
utilizing the sparsity of the FM signals in the TF domain [20],
[26], [51]. The non-zero entries of g, can be estimated by

9= argn;in gl st g, =Pg,, VY, (63)

where ® denotes thetIDFT dictionary matrix. Commonly used
compressive sensing techniques, such as the OMP [32], and
least absolute shrinkage and selection operator (LASSO) [52],
can be used to solve problem (63). In this paper, OMP is
chosen since it allows us to specify the sparsity at each time
instant ¢.

It is noted that, applying a TF kernel widens the auto-term
ridges due to the width and the non-rectangular shape of the
kernel. Therefore, for a P-component signal, the occupancy
at each time instant ¢ is several-fold higher than P. As such,
when the OMP method is used, the sparsity used for sparse
reconstruction should be higher than the actual number of
signal components, P, to ensure proper recovery of the weak
signal component.

D. Computational Complexity Analysis

The computational complexity of ADMM implementation
is mainly determined by the matrix inversions in (59) and (60).
More specifically, each matrix inversion involves O(M —k; +
1)(N — ko + 1)k1koD + D? multiplications. For (58), the
required number of multiplications is O(M — ky + 1)(N —
ko + 1)k1koD. Denote J as the number of output frequency
samples for AOK at each time constant. The computational
cost of the AOK is O(TJ?). For sparse reconstruction, the
computation cost of the OMP is O(KT?), where K is the
defined sparsity. It is usual to take the value of K slightly
higher than P for a P-component with distinct amplitudes
since the resolution of auto-terms is comprised due to the
mitigation of cross-terms.

V. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed method,
we consider both synthetic and real-world signals. For syn-
thetic signals, we adopt two-component FM signals with
distinct amplitudes, expressed as:

z(t) = el () 0.5e]¢’2(t), (64)
where different forms of ¢1(t) and ¢2(t) are considered. For
real-world signals, we consider measured new-born electroen-
cephalogram seizure signal and bat echolocation signal.

Unless otherwise specified, we assume 7' = 128 and each
missing burst contains 4 missing entries. 52 samples are
missing in total and no noise is considered. The default patch
size is 27 x 27, and the pencil parameters are chosen as
ki = ko = 15, resulting in 57 (Y, ky, ko) € C225%169 50
iterations are used for the ADMM. For LMaFit, the initial

rank used in the increasing strategy is one and the tolerance is
1.25 x 104, For the two-component signals being considered
in this paper, the sparsity is empirically chosen between 14 to
20.

A. Case Studies

1) Two-Component Parallel LFM Signal: The instanta-
neous phase laws of the two components are are respectively
given as:

¢1(t) = 2 (0.05¢ + 0.15¢%/T)

¢o(t) = 2m (0.10t + 0.15¢t%/T) .
As a baseline, we first show respectively in Figs. 4(a) and
4(b) the IAF and WVD when all data samples are observed
without missing samples. The IAF demonstrates a periodic
structure since the frequency difference between the two signal
components is a constant. When missing samples are present,
the missing entries in the IAF are clearly seen in Fig. 4(c) and
cause strong artifacts scattered around the signal IFs as shown
in Fig. 4(d). In Fig. 4(e), the TFR is obtained from the kerneled
IAF using the AOK, with substantial improvement but residual
artifacts remain. Fig. 4(f) shows the sparsely reconstructed
TFR of Fig. 4(e) via OMP. We notice further improvement
with remaining artifacts around the true IFs.

Fig. 4(g) depicts the IAF after atomic norm-based interpo-
lation [30]. Compared to Fig. 4(c), the result is very close to
the full IAF shown in Fig. 4(a). The final TFR obtained by
[30] is shown in Fig. 4(h), where the weak signal component
is clearly recovered.

Figs. 4(i) and 4(j) show the well recovered IAF and WVD
via the patch-based ALOHA method. Fig. 4(k) shows that the
use of AOK substantially mitigates the cross-terms, yielding a
clean TFR. Finally, applying the OMP yields a high-resolution
TFR with a high fidelity, as shown in Fig. 4(1), where the
weaker component is clearly detected. Comparison to Fig. 4(h)
obtained using the method in [30], the proposed AAO method
provides a smoother TFR, especially at the two ends.

It is noted that the colorbar depicted in Fig. 4 is scaled by
the maximum value of the corresponding figure and applies to
all plots in Fig. 5 through Fig. 10.

2) Two-Component Intersecting LFM Signal: In this case,
the instantaneous phase laws of the two components are
described in (23).

Fig. 5 shows the results for this signal. Compared to the
parallel LFM case depicted in Fig. 4, the IAF in Fig. 5(a) does
not have a periodic structure because the frequency difference
between the two signal components varies with the time, and
the cross-terms have a higher presence and are more difficult to
be suppressed as indicated in Fig. 5(f). In this case, we cannot
detect the weak signal component, even after the application
of the AOK and OMP.

As analyzed in Section III-B2, the atomic norm-based IAF
recovery method [30] does not offer a satisfactory performance
in such a challenging case with intersecting signals due to
strong cross-terms. As shown in Fig. 5(g), it fails to fill in
the missing entries of the IAF properly. In Fig. 5(h), we
observe that only the strong signal component is detected in
the resulting TFR obtained by [30].

(65)
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Fig. 4. Results for a noiseless two-component parallel LFM signal. (a) IAF in the absence of missing samples; (b) WVD in the absence of missing samples;
(c) IAF with burst missing samples; (d) WVD with burst missing samples; (e) TFR using AOK with burst missing samples; (f) TFR using AOK and OMP
with burst missing samples; (g) IAF recovered by atomic norm [30]; (h) TFR proposed in [30]; (i) IAF for stage 1 (patch-based ALOHA); (j) WVD for stage
1 (patch-based ALOHA) (k) TFR for stage 2 (patch based ALOHA + AOK); (I)The proposed AAO TFR (patch-based ALOHA + AOK + OMP).
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Fig. 5. Results for a noiseless two-component intersected LFM signal. (a) IAF in the absence of missing samples; (b) WVD in the absence of missing
samples; (c) IAF with burst missing samples; (d) WVD with burst missing samples; (e) TFR using AOK with burst missing samples; (f) TFR using AOK and
OMP with burst missing samples; (g) IAF recovered by atomic norm [30]; (h) TFR proposed in [30]; (i) IAF for stage 1 (patch-based ALOHA); (j) WVD
for stage 1 (patch-based ALOHA) (k) TFR for stage 2 (patch based ALOHA + AOK); (I)The proposed AAO TFR (patch-based ALOHA + AOK + OMP).

Figs. 5(1) and 5(j) respectively present the IAF and the
corresponding WVD obtained using the patch-based ALOHA
method. The results are very close to the baseline IAF and
WYVD as shown in Figs. 5(a) and 5(b). The TFR, after further
using the AOK, is shown in Fig. 5(k). Fig. 5(1) shows the
final TFR obtained through sparse reconstruction using OMP.
The signal IFs both can be clearly identified in Figs. 5(k) and
5(1). This result aligns with the conclusion observed in Table
IT and further confirms that the proposed ALOHA-based IAF
recovery method is insensitive to the effect of complicated
cross-terms due to the signal components with intersecting IF
signatures. This represents one of the key advantages of the
proposed method over [30].

3) Two-component Parallel NLFM Signal: The instanta-
neous phase laws of the two components are given as:

¢1(t) = 2m (0.25¢ — 0.15t* /T + 0.15¢% /T?)
¢a(t) = 27 (0.15¢ — 0.15¢/T + 0.15¢*/T?) .
The baseline IAF and WVD without missing samples are

shown in Figs. 6(a) and 6(b). Similar to the case of a two-
component parallel LFM signal, the IAF also demonstrates a

(66)

periodic structure. However, cross-terms are more prominent
since the nonlinearity of the IF laws contributes to the cross-
terms. Thus, it is difficult to recover the IFs faithfully, as shown
in Fig. 6(f), even with the utilization of AOK and OMP.

The atomic norm-based IAF recovery method mitigates the
effects of the burst missing samples to some extent in this case,
as shown in Fig. 6(g). While the TFR showing in Fig. 6(h)
provides some improvement from Fig. 6(f), the weak signal
component still cannot be clearly observed.

Figs. 6(i) and 6(j) show the IAF and WVD reconstructed
by the proposed ALOHA-based method. All missing entries
of the IAF are properly recovered, and the effects of the
burst missing samples are effectively mitigated. The TFR after
applying AOK and its corresponding sparse reconstruction
result using OMP are presented in Fig. 6(k) and Fig. 6(1),
respectively. We observe that, in this case, the proposed
method provides desirable TFR reconstruction performance,
which is not affected by the nonlinearity of the IF laws.
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Fig. 6. Results for a noiseless two-component parallel NLFM signal. (a) IAF in the absence of missing samples; (b) WVD in the absence of missing samples;
(c) IAF with burst missing samples; (d) WVD with burst missing samples; (e) TFR using AOK with burst missing samples; (f) TFR using AOK and OMP
with burst missing samples; (g) IAF recovered by atomic norm [30]; (h) TFR proposed in [30]; (i) IAF for stage 1 (patch-based ALOHA); (j) WVD for stage
1 (patch-based ALOHA) (k) TFR for stage 2 (patch based ALOHA + AOK); (I)The proposed AAO TFR (patch-based ALOHA + AOK + OMP).
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Fig. 7. Results for a noiseless two-component intersected NLFM signal. (a) IAF in the absence of missing samples; (b) WVD in the absence of missing
samples; (c) IAF with burst missing samples; (d) WVD with burst missing samples; (¢) TFR using AOK with burst missing samples; (f) TFR using AOK and
OMP with burst missing samples; (g) IAF recovered by atomic norm [30]; (h) TFR proposed in [30]; (i) IAF for stage 1 (patch-based ALOHA); (j) WVD
for stage 1 (patch-based ALOHA) (k) TFR for stage 2 (patch based ALOHA + AOK); (I)The proposed AAO TFR (patch-based ALOHA + AOK + OMP).

4) Two-Component Intersecting NLFM Signal: The instan-
taneous phase laws of the two components are given as:

¢1(t) = 2m (0.05¢ + 0.025¢* /T + 0.10¢* /T?)
¢a(t) = 2m (0.32¢ — 0.035t> /T — 0.07¢ /T*) .

Fig. 7 shows the results in this case. The baseline IAF and
the corresponding WVD in the absence of missing samples
are respectively shown in Figs. 7(a) and 7(b). Figs. 7(c) and
7(d) respectively show the IAF and the WVD in the presence
of burst missing samples. Similar to the case of the two-
component intersecting LFM signal in Section V-A2, the weak
signal component is difficult to be detected after applying the
AOK and OMP, as indicated by Figs. 7(e) and 7(f).

The IAF recovered via the atomic norm-based method is
presented in Fig. 7(g), which shows the IAF is not properly
recovered. The weak signal component is not detected in the
obtained TFR, as shown in Fig. 7(h).

Fig. 7(i) shows the recovered IAF via the proposed
ALOHA-based method, where most of the missing entries are
successfully recovered. As shown in Fig. 7(j), the resulting
WVD is very close to the baseline WVD obtained without
missing samples. The effects of cross-terms are effectively
mitigated after further applying the AOK, as shown in Fig.
7(k). The sparse reconstruction results are shown in Fig. 7(1)

(67)

with a high fidelity. As such, the proposed AAO method
successfully reconstructs the TFR with clear IF signatures.

5) Sinusoidal FM and LFM Signal: In this case, the instan-
taneous phase laws of the two components are as follows:

¢1(t) = 27 (T'/20m cos (2mt/T + w) + 0.25¢) ,

¢a(t) = 2 (0.07¢ + 0.20¢%/T) .
The baseline IAF and WVD in the absence of missing samples
are shown in Figs. 8(a) and 8(b), respectively. The IAF
with burst missing samples and the corresponding WVD are
respectively presented in Figs. 8(c) and 8(d). Compared to the
previous four cases, this case consisting of a sinusoidal FM
and a LFM signal is much more challenging because of the
rapid frequency variation of the former and the complicated
cross-terms. The TFR obtained after applying the AOK and
OMP, as shown in Fig. 8(f), does not clearly recognize the
strong signal component, not to mention the weak one.

The atomic norm-based IAF and the resulting TFR are
depicted in Figs. 8(g) and 8(h), respectively. By mitigating
the effects of burst missing samples, the strong sinusoidal FM
component can be better recognized, but the weak LFM signal
component remains not clear.

Fig. 8(i) shows the interpolated IAF via the proposed
ALOHA-based method, which is close to the baseline IAF and

(68)
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Fig. 8. Results for a noiseless sinusoidal FM and LFM. (a) IAF in the absence of missing samples; (b) WVD in the absence of missing samples; (c) IAF
with burst missing samples; (d) WVD with burst missing samples; (¢) TFR using AOK with burst missing samples; (f) TFR using AOK and OMP with
burst missing samples; (g) IAF recovered by atomic norm [30]; (h) TFR proposed in [30]; (i) IAF for stage 1 (patch-based ALOHA); (j) WVD for stage 1
(patch-based ALOHA) (k) TFR for stage 2 (patch based ALOHA + AOK); (1)The proposed AAO TFR (patch-based ALOHA + AOK + OMP).
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Fig. 9. Results for a real-life EEG seizure signal. (a) IAF in the absence of missing samples; (b) WVD in the absence of missing samples; (c) IAF with burst

missing samples; (d) WVD with burst missing samples; (e¢) TFR using AOK with burst missing samples; (f) TFR using AOK and OMP with burst missing
samples; (g) IAF recovered by atomic norm [30]; (h) TFR proposed in [30]; (i) IAF for stage 1 (patch-based ALOHA); (j) WVD for stage 1 (patch-based

ALOHA) (k) TFR for stage 2 (patch based ALOHA + AOK); (I)The proposed AAO TFR (patch-based ALOHA + AOK + OMP).

better recovered as compared to Fig. 8(g). Correspondingly,
the resulting WVD shown in Fig. 8(j) is close to the baseline
WVD as well. After applying the AOK and OMP, a high-
resolution TFR is obtained and is shown in Fig. 8(1). Again
the superiority of the proposed AAO method is confirmed.
6) Real-life EEG Seizure Signal: IF estimation plays an
important role in the phase synchrony measure for multi-
channel EEG signals. In EEG signal processing, missing
samples may occur due to the intentional removal of artifacts,
such as the commonly observed eye blink, which usually
takes between 100 and 500 ms. We consider a segment from
newborn EEG seizure database, which consists of piecewise
LFM signal components with harmonics [53], [54]. The total
time period is 8 seconds which results in 128 samples. Three
375-ms (or 6-sample) data, separated by approximately 2
seconds, are removed as the result of eye blinks. The missing
positions are 20 : 25, 57 : 62 and 94 : 99 samples, respectively.
The baseline IAF and WVD of the full-data signal are
provided in Figs. 9(a) and 9(b). The corresponding results
in the presence of burst missing samples are respectively
presented in Figs. 9(c) and 9(d). It is observed that the cross-
terms are difficult to be suppressed due to the strong artifacts
induced by the burst missing samples, even after applying the

AOK and OMP, as depicted in Figs. 9(e) and 9(f).

The IAF obtained via the atomic-norm-based method fill
in the missing entries to some extent, as indicated in Fig.
9(g). However, in Fig. 9(h), we notice that there are still some
residual artifacts.

As shown in Fig. 9(i), the proposed ALOHA-based method
recovers the missing IAF entries near perfectly. The corre-
sponding WVD depicted in Fig. 9(j) is similar to the baseline
WYVD. In Figs. 9(k) and 9(1), we notice that with the further
utilization of the AOK and OMP, the proposed method detects
all three components with accurate IF estimates.

7) Real-life Bat Echolocation Signal: In the last example,
we consider a real-life bat echolocation exponential chirp
signal emitted by Eptesicus fuscus '. The data contains 400
samples with a sampling period of 7 ps. This pulse contains
three harmonics, which are nearly linear in the logarithmic
time [55]. We consider the same 40% of missing data as in
the first five examples of Section V-A, rendering a total number
of 160 missing samples.

IThe authors wish to thank C. Condon, K. White, and A. Feng of
the Beckman Institute of the University of Illinois for the bat data and for
permission to use it in this paper.
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Fig. 10. Results for a real-life bat echolocation signal. (a) IAF in the absence of missing samples; (b) WVD in the absence of missing samples; (c) IAF
with burst missing samples; (d) WVD with burst missing samples; (¢) TFR using AOK with burst missing samples; (f) TFR using AOK and OMP with
burst missing samples; (g) IAF recovered by atomic norm [30]; (h) TFR proposed in [30]; (i) IAF for stage 1 (patch-based ALOHA); (j) WVD for stage 1

(patch-based ALOHA) (k) TFR for stage 2 (patch based ALOHA + AOK); (1)The proposed AAO TFR (patch-based ALOHA + AOK + OMP).
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The baseline IAF and WVD obtained from full-data pulse
are provided in Fig. 10(a) and Fig. 10(b), respectively. The IAF
and WVD obtained under burst missing samples are shown in
Figs. 10(c) and 10(d), respectively. As observed in Figs. 10(e)
and 10(f), artifacts still exist even after applying the AOK and
OMP.

For the atomic norm-based method, we see that most of the
missing IAF entries are filled properly and the resulting TFR
consists of less artifacts, as depicted in Figs. 10(g) and 10(h).
However, some residual artifacts exist due to the nonlinearity
of the signal components. In Figs. 10(j) and 10(1), the results
of the proposed method verify that all three harmonics are
correctly recovered.

B. Energy Concentrations Analysis
In this subsection, we use the energy concentration measure
to evaluate the seven case studies in Section V-A. The energy

concentrated TFD occupies a smaller support region.

The energy concentration measures of the WVD, the atomic
norm-based method [30], and the proposed AAO method are
compared in Table III, where ¢ = 2 is used. The proposed
AAO method consistently provides the highest energy con-
centration for all examples being considered in Section V-A.

C. Robustness Analysis

In this subsection, we quantitatively compare the perfor-
mance of the proposed AAO method with the WVD and the
atomic norm-based method [30]. Because the implementation
of IAF interpolation is vital to mitigate the artifacts due to
burst missing samples, the mean squared error (MSE) between
the interpolated IAF and the baseline IAF (obtained from
the noiseless signal with no missing samples) is used as a
performance indicator of IAF recovery. We also compare the
occupancy rate of the auto-terms, where the TFR obtained
from AOK using full data is used as the reference mask
area of the auto-terms. Three factors, namely, frequency slope,
frequency difference, and SNR, are discussed.
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TABLE IV
MSE COMPARISON BETWEEN THE BASELINE IAF AND THE IAF
OBTAINED WITH INCOMPLETE DATA (MISS), ATOMIC NORM-BASED IAF
[30] (AT), AND THE PROPOSED ALOHA-BASED IAF

SNR 40.63% 50%

(dB) Miss AT  ALOHA Miss AT  ALOHA
Inf 0.58 048 0.02 0.69  0.65 0.19
25 0.59 049 0.03 0.69  0.65 0.21
15 0.60 0.52 0.09 0.70  0.68 0.27

5 076  0.73 0.51 0.82 0.78 0.69

1) Frequency Slope: For a better focus on the frequency
change, we choose a two-component parallel LEM signal with
the following phase laws,

é1(t) = 27 (0.05t n %ﬁQ/T) ,

71)
da(t) = 27 (0.10t + %tQ/T) . (

Fig. 11(a) reports the MSE of the IAF with respect to
the frequency slope. We notice that the slope does not affect
the performance of IAF recovery via the atomic-norm based
method in [30]. For the ALOHA-based method, the MSE
slightly increases as the slope increases, but the MSE is still
lower than the atomic norm counterpart [30].

The occupancy rate is compared in Fig. 11(b). We observe
that the proposed method provides the highest TF occupancy
rate compared with the WVD and the atomic norm-based TFR
reconstruction method in [30].

2) Frequency Difference: Now we consider a two-
component parallel LFM signal, where the frequency differ-
ence is a constant. The phase laws are expressed as

¢1(t) = 27 (0.05¢ 4 0.05¢%/T) ,

2
¢o(t) = 2 (0.05¢ + A fot + 0.05t%/T) . 72)

Fig. 12(a) compares the MSE of the IAF with respect to
the frequency difference. As discussed in Section IV-A, the
ALOHA-based method consistently outperforms the atomic
norm-based method in its TAF reconstruction performance.
The improvement is more evident when the frequency dif-
ference A fy is smaller.

3) Signal-to-Noise Ratio: We consider noisy signal mea-
surements with different values of the input SNR and missing
sample rate. 50 independent trials are performed for each
scenario. For the convenience of presentation, we select the
most challenging case with the instantaneous phase laws
defined in (68), i.e., the signal consisting of one sinusoidal
FM and one LFM. Two missing samples rates, i.e., 40.63%
(52 missing samples) and 50% (64 missing samples), are
considered.

As shown in Table IV, the proposed AAO method pro-
vides much lower MSE between the baseline IAF and the
reconstructed TAF, especially in high SNR cases, compared
to the method [30]. The occupancy rate of the auto-terms is
compared in Table V. Compared to [30], the proposed method
improves the TFR reconstruction performance with a higher
occupancy rate.

TABLE V
TFR OCCUPANCY RATE (%) OF THE WVD, ATOMIC NORM-BASED TFR
RECONSTRUCTION METHOD [30], AND THE PROPOSED AAO METHOD

SNR 40.63% 50%

(dB) WVD [30] AAO WVD [30] AAO
Inf 3839 8582 99.25 13.17  70.87 90.14
25 3202 7837 9520 11.37 7052  88.99
15 31.79 7673  94.53 10.69  69.73  86.38

5 30.73  70.68  89.08 1037  61.79  75.54

VI. CONCLUSION

In this paper, we proposed a novel approach to achieve high-
fidelity TFR reconstruction for multi-component FM signals
with distinct amplitude differences in the presence of burst
missing samples. We overcome the limitation of the existing
sparsity-based TFR reconstruction methods that require cross-
term presence to be sparse in the TF domain. We formulate the
IAF reconstruction problem as a rank minimization problem
of a block Hankel matrix that effectively mitigates the effects
of burst missing samples and is robust to the amplitude
differences between signal components. A data-adaptive TF
kernel is then applied to further suppress the cross-terms and
reduce the residual effects of missing samples. We provided
performance analyses for different types of FM signals and a
guiding rule for patch size optimization. Extensive simulation
results were provided to verify the superiority of the proposed
method over the existing state-of-the-art method.
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