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ABSTRACT
In this paper, we discuss high-resolution target sensing

through the exploitation of multi-frequency sparse array pro-

cessing. By using simple design examples of a three-element

sensor array coupled with the sensing signals consisting

of three well-designed frequencies, we provide insights to

achieve a high number of consecutive lags, unique lags, and

array aperture. Such multi-frequency sensor arrays with

reduced number of sensors can be attractive in many applica-

tions to achieve effective sensing with a low cost.

Index Terms— Sparse array, multi-frequency sensing,

group sparsity, DOA estimation.

1. INTRODUCTION

Sparse array design and the associated signal processing

methods have attracted significant research interests because

of their desirable capabilities to achieve O(N2) degrees-

of-freedom (DOFs) using only N sensors [1, 2]. Recently,

inspired by the coprime and nested array structures [3–5],

a number of systematical sparse array design schemes have

been developed [6–16]. A class of direction-of-arrival (DOA)

estimation methods applied on sparse arrays have been de-

veloped based on the MUSIC as well as compressive sensing

methods [6, 9, 15, 17–19].

In [20], the concept of constructing a virtual coprime ar-

ray using a uniform linear array (ULA) with two frequencies

that are associated with a coprime relationship was devel-

oped. This extends the coprime array and filter concept in

either the spectral or spatial domain to a joint spatio-spectral

domain, thereby achieving high flexibility in array structure

design to meet both DOF and system complexity constraints.

The extension to multiple coprime frequencies, together with

the analysis of the achievable number of DOFs, are provided

in [21–25]. In [26], the Cramer-Rao lower bound of the dual-

frequency coprime array is analyzed. It is pointed out in [26]

that such arrays can resolve signals that have identical DOAs

or with close spatial separations.

In this paper, we consider a general framework of multi-

frequency sparse arrays at the node level which can be further

applied to distributed sensing. In such a system, the multi-

frequency sensing signals may be emitted by a distant trans-

mitter with adequate power resources, whereas the receiver
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array is located at the passive sensor nodes which are low-

cost and stealthy.

Compared to the previous coprime-frequency ULA-based

array design [20], we consider nonuniform linear array in this

paper to avoid the lag redundancies intrinsically due to the

uniform linear nature. We provide design examples that re-

spectively achieve difference coarrays with a high number of

consecutive correlation lags and a high number of unique cor-

relation lags. For the latter, the rendered difference coarray

does not have lag redundancies. Effective DOA estimation

using group sparse reconstruction is demonstrated.

Notations: We use lower-case (upper-case) bold charac-

ters to denote vectors (matrices). In particular, IL denotes the

L × L identity matrix. Notations (.)T and (.)H respectively

denote the transpose and conjugate transpose of a matrix or

vector, whereas (·)∗ represents the complex conjugate oper-

ator. vec(·) stands for the vectorization operator that turns a

matrix into a vector by stacking all columns on top of one an-

other. ‖ · ‖2 denotes the l2-norm of a vector, and | · | denotes

the absolute value. E(·) denotes the statistical expectation op-

erator, and ⊗ denotes the Kronecker product.

2. MULTI-FREQUENCY SENSOR ARRAY

2.1. Signal Model
In a multi-frequency sensor array, multiple continuous-wave

(CW) signals with their respective frequencies of fi, i =
1, · · · , I , are transmitted from a single transmit sensor or a

phased array, which may be located at a distance. For the

ith CW waveform with frequency fi, the return signal vector

scattered from the K far-field targets, respectively located at

DOAs θk, k = 1, 2, ...,K, is expressed as:

x̃i(t) = ej2πfit
K∑

k=1

ρ
(k)
i (t)ai(θk) + ñi(t), (1)

where ρ
(k)
i (t) is the reflection coefficient which is in general

frequency-dependent because both phase delay and target re-

flectivity vary with frequency. In addition, ai(θk) is the steer-

ing vector corresponding to θk expressed as:

ai(θk) =

[
1, e

−j
2πd1
λi

sin(θk), ..., e
−j

2πdL−1
λi

sin(θk)

]T
, (2)

where λi=c/fi denotes the wavelength corresponding to fre-

quency fi, c is the velocity of wave propagation, dl is the lo-

cation of the lth element with respect to the reference sensor,



and L is the number of sensors. The sensor located at l = 0
is defined as the reference sensor, i.e., d0 = 0. Furthermore,

ñi(t) ∼ CN (0, σ
(i)
n IL) is the additive Gaussian noise vector,

whose elements are assumed to be spatially and temporally

white.

After downconverting the received signal vector to the

baseband form through low-pass filtering, we obtain:

xi(t) =
K∑

k=1

ρ
(k)
i (t)ai(θk) + ni(t) = Aipi(t) + ni(t), (3)

where Ai = [ai(θ1), ...,ai(θK)] and pi(t) = [ρ
(1)
i (t), · · · ,

ρ
(K)
i (t)]T.

2.2. Difference Coarray of Sparse Linear Array
We begin with the consideration of an L0-sensor ULA with

interelement spacing d. The frequencies fi, i = 1, 2, · · · , I ,

are chosen such that all Mi values are integer and satisfy

Miλi/2 = d. Then, the set Si containing the sensor positions

for the ith frequency are expressed as:

Si = {Mild̄ | l ∈ P}, (4)

where P = {0, 1, 2, · · · , L0 − 1} and d̄ denotes half-

wavelength in a normalized frequency sense (i.e., no specific

frequency is referred to).

For multi-frequency array configurations based on a ULA,

redundancies in the resulting difference coarray cannot be

avoided [22]. Therefore, to achieve redundancy-free coarrays,

in this paper, we consider sparse array designs by choosing l
from P

′ ⊂ P such that the cardinality of P′ is L < L0. In this

case, the sensor locations are given by:

Si = {Mild̄ | l ∈ P
′}. (5)

The set S of the combined sensor positions, incorporating the

virtual sensors due to all I frequencies, is given as:

S =

I⋃
i=1

Si =

I⋃
i=1

{Mild̄ | l ∈ P
′}. (6)

Note that the reference sensors of all I arrays overlap at the

zeroth position. Therefore, the number of unique virtual sen-

sor positions is given by |S| ≤ (L−1)I+1, where the equality

is achieved when all virtual sensors do not overlap except at

the reference position.

Define the self-lag set as the different coarray sensor po-

sitions obtained from the same frequency, i.e.,

Cself =

I⋃
u=1

Su � Su =

I⋃
u=1

{Mu(l1 − l2)d̄}, (7)

where � computes the lags between two sets. Similarly, the

corresponding cross-lags are obtained from the different fre-

quency pairs, defined as

Ccross =
⋃

∀u,v,u �=v

Su � Sv =
⋃

∀u,v,u �=v

{(Mul1 −Mvl2)d̄}, (8)

where l1, l2 ∈ P
′ and 1 ≤ u, v ≤ I . The complete set of

the coarray positions constituting all the correlation lags are

represented by C = Cself ∪ Ccross, and the corresponding set

of all non-negative correlation lags is denoted as C+.

2.3. Remarks
The multi-frequency sensor array considered in this paper

shares similar spirit with the coprime and nested arrays such

that multiple subarrays are formed, rendering effective con-

struction of difference coarrays. However, they differ in

several ways: (a) Comparing to coprime and nested arrays

which require multiple physical subarrays, a multi-frequency

array uses a single physical array and thus is much more eco-

nomically beneficial; (b) Unlike coprime and nested arrays

where the two subarrays may have different numbers of array

sensors, the subarrays in a multi-frequency array stem from

the same physical array and thus have the same number of L

sensors; (c) Since the target reflection coefficient ρ
(k)
i (t) is

frequency-dependent, we cannot directly compute the corre-

lation and determine the phase difference between the data

observed at different frequencies. Processing of the data ob-

served at different frequencies can be effectively carried out

using group sparse reconstruction methods [20, 22, 25, 27]

and is summarized in Section 4; (d) The array designs con-

sidered in this paper differ to the multi-frequency coprime

arrays considered in [20, 22] because the physical arrays are

not uniform linear to render redundancy-free coarrays.

3. DESIGN EXAMPLES
In this section, we provide three design examples, all using

L = 3 sensors and I = 3 frequencies. In all examples, the rel-

ative bandwidth given by 2(f3 − f1)/(f3 + f1) is set to 40%.

In this case, the highest frequency is given by f3 = 3f1/2,

whereas different values of f2 will be considered. Extension

to scenarios with more sensors, more frequencies, or a differ-

ent bandwidth is straightforward.

3.1. Design Example 1: High number of consecutive lags
In the first example, we select f2 = 5f1/4 so that the three

carrier frequencies are equally spaced. To avoid fractional

half-wavelength spacing, we select the sensor positions as:

S1 = {0, 4, 12}λ1/2, (9)

i.e., M1 = 4 and P
′ = {0, 1, 3}. From the frequency ratios,

we have M2 = f2M1/f1 = 5 and M3 = f3M1/f1 = 6. The

resulting virtual sensor positions corresponding to these two

frequencies are expressed as:

S2 = {0, 5, 15}λ2/2, S3 = {0, 6, 18}λ3/2. (10)

Collecting all virtual sensor positions and expressing them in

terms of half-wavelength d̄, regardless of the actual frequency,

we obtain the collective sensor positions as:

S = S1 ∪ S2 ∪ S3 = {0, 4, 5, 6, 12, 15, 18}d̄. (11)

The yielding non-negative difference coarray positions of the

correlation lags are given as:

C
+ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18}d̄.

(12)



(a) Design Example 1: High number of consecutive lags

(b) Design Example 2: High number of unique lags

(c) Design Example 3: Excessively large array aperture

Fig. 1. Virtual sensor positions and the histogram of corre-

sponding non-negative difference coarray lags.

For this case, the collective sensor positions and the coarray

positions are illustrated in Fig. 1(a) using Eqs. (7) and (8).

Note that the lags with respect to the reference sensor for

different frequencies are counted only once. We observe in

Fig. 1(a) that the number of non-negative consecutive lags is

16, and the number of non-negative unique lags is 17. Con-

sidering the fact that we only use three physical sensors, the

coarray obtained from this design is impressive. On the other

hand, due to the equal separation between the three carrier fre-

quencies, there are redundancies in multiple difference coar-

ray sensor positions (at lags 1, 3, 6, and 12). For instance,

consider the lag 6, one self-lag exists due to the {0d̄, 6d̄} pair

in S3, and two cross-lags are rendered due to the difference

between the {6d̄, 12d̄} pair and the {12d̄, 18d̄} pair between

S1 and S3. Such redundancies can be avoided by using sparse

nonlinear arrays as illustrated in Design Examples 2 and 3.

3.2. Design Example 2: High number of unique lags
In this example, we choose f2 = 7f1/6 so that the three

frequencies are unequally spaced. We also modify the inter-

element spacing such that there are no lag redundancies. The

sensors positions chosen for the first frequency are:

S1 = {0, 6, 24}λ1/2, (13)

and the corresponding sensor locations at the other two fre-

quencies become:

S2 = {0, 7, 28}λ2/2, S3 = {0, 9, 36}λ3/2. (14)

As a result, the collective sensor positions are given by:

S = S1 ∪ S2 ∪ S3 = {0, 6, 7, 9, 24, 28, 36}d̄. (15)

The corresponding non-negative difference coarray positions

are obtained as:

C
+ = {0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 15, 17, 18,

19, 21, 22, 24, 27, 28, 29, 30, 36}d̄. (16)

The collective sensor positions and the difference coarray po-

sitions are shown in Fig. 1(b). This design does not provide

a high number of consecutive lags, but achieves the highest

number of unique lags (i.e., 22 non-negative lags), as there

are no redundancies in all lags except the unavoidable ones

for lag 0. Moreover, the array aperture is higher than that of

Design Example 1.

3.3. Design Example 3: Excessively large array

The third example presents an array design that also exhibits

no lag redundancies but has a much larger array aperture. We

choose unequally spaced frequencies with f2 = 4f1/3. The

sensor positions considered for the first frequency in this ex-

ample are given by:

S1 = {0, 6, 96}λ1/2, (17)

and the corresponding sensor locations at the other two fre-

quencies are given as:

S2 = {0, 8, 128}λ2/2, S3 = {0, 9, 144}λ3/2. (18)

The collective sensor positions become:

S = S1 ∪ S2 ∪ S3 = {0, 6, 8, 9, 96, 128, 144}d̄, (19)

and the non-negative difference coarray positions for this ar-

ray design are obtained as:

C
+ = {0, 1, 2, 3, 6, 8, 9, 16, 32, 48, 87, 88, 90, 96,

119, 120, 122, 128, 135, 136, 138, 144}d̄. (20)

The collective sensor positions and the resulting difference

coarray positions are shown in Fig. 1(c). This array design

achieves 22 unique lags which is the same as Design Exam-

ple 2. However, this array is sparser and has a much larger

aperture. Compared to Design Example 2, it is expected that

this array provides a higher resolution but may yield higher

sidelobe effects.

4. GROUP SPARSITY-BASED DOA ESTIMATION

In this section, we address the DOA estimation by employing

the group lasso algorithm [27]. In this context, we construct

the correlation matrices of the received signals at the array by

exploiting Eq. (3) as follows:

R̂u,v =
1

T

T∑
t=1

xu(t)x
H
v (t) ≈ AuPAv + σ2

nIL. (21)

The different combinations of u and v values in the above

equation result in I2 correlation matrices from the received



(a) Design Example 1, Case I (b) Design Example 2, Case I (c) Design Example 3, Case I

(d) Design Example 1, Case II (e) Design Example 2, Case II (f) Design Example 3, Case II

Fig. 2. Group sparsity-based DOA estimation performance for the array structures under consideration.

array data corresponding to the I frequencies. By vectorizing

the correlation matrices, we obtain [22, 25]:

zu,v = vec(R̂u,v) = Ãu,vru,v + σ2
ñi, (22)

where Ãu,v = [ãu,v(θ1), · · · , ãu,v(θK)] with ãu,v(θk) =

a∗u(θk) ⊗ av(θk), and ĩ = vec(IL). In addition, ru,v =

E{[ρ(1)u (t)(ρ
(1)
v (t))∗, · · · , ρ(K)

u (t)(ρ
(K)
v (t))∗]T}. We con-

sider uncorrelated targets such that E{ρ(k1)
u (t)ρ

(k2)
v (t)} =

0, ∀k1 �= k2.

For group sparsity-based lasso, we introduce I2 optimiza-

tion vectors rou,v of size G × 1, where G is the search grid

for DOAs. The dictionary matrix for the G-point search grid

corresponding to Ãu,v is given by Bu,v . The resulting group

sparse optimization is formulated as [27, 28]:

r̂ou,v = arg min
rou,v

I∑
u=1

I∑
v=1

‖zu,v −Bu,vr
o
u,v‖2 + ζ‖rou,v‖1,2,

(23)
where ζ is the regularization parameter and the mixed �1,2-

norm is given by:

‖rou,v‖1,2 =

G∑
a=1

⎛
⎝ I2∑

b=1

R(a, b)R∗(a, b)
⎞
⎠

0.5

. (24)

Here, R is a matrix constructed by concatenating all the vec-

tors rou,v whereas R(a, b) denotes its element located at the

ath row and the bth column. The final G-point grid of DOA

estimates is obtained as:

r̂ =

I∑
u=1

I∑
v=1

|̂rou,v|. (25)

5. SIMULATION RESULTS

In this section, we present simulation results illustrating the

DOA estimation performance for the three design examples

discussed in Section 4. In all the simulations, the input signal-

to-noise ratio is kept at 0 dB and 10,000 data snapshots are

taken. All targets are assumed to be uncorrelated.

Case I: In this case, we assume 5 signals that are uni-

formly spaced between −6o and 6o. Fig. 2(a) illustrates the

DOA estimation results for Design Example 1. Note that the

array structure resolves all the sources successfully. However,

a bias in the estimates is observed, implying the low resolu-

tion performance of this array design. Fig. 2(b) shows the

superior DOA estimation results for this case using Design

Example 2 which achieves the highest number of unique lags.

The result of Design Example 3 in Fig. 2(c) shows similar per-

formance but with clear spurious peaks in the estimates due

to the high sidelobe effects of this highly sparse array design.

Case II: In this case, we consider 7 sources that are uni-

formly spaced between −9o and 9o. For this case, the DOA

estimates for Design Example 1, shown in Fig. 2(d), fail to

resolve all the sources due to its small number of unique lags

and smaller array aperture. Fig. 2(e) shows the DOA estima-

tion results for Design Example 2 which successfully resolves

all the sources due to its high number of unique lags and much

larger array aperture, leading to significantly improved reso-

lution capabilities. The results for design Example 3, shown

in Fig. 2(f), present more accurate DOA estimates but the es-

timated spectrum is highly distorted by the large number of

spurious peaks.

These examples illustrate that the number of unique lags

and the array aperture play an important role in DOA estima-

tion performance for multi-frequency arrays. Adequate de-

sign of the array geometry and appropriate frequency selec-

tion allow us to trade off between the spatial resolution and

spurious peaks. On the other hand, the number of consecutive

lags is less important in this design because subspace-based

DOA estimation methods, e.g., MUSIC, do not directly apply.

6. CONCLUSION

We presented the multi-frequency sparse array concept that

achieves effective sparse array with desirable difference coar-

rays. It is demonstrated through analysis and design exam-

ples that a careful combination of nonuniform linear array and

unequally spaced frequencies enables redundancy-free differ-

ence coarrays and thus achieves a high number of unique cor-

relation lags. The selection of different array apertures trades

off between the achieved spatial resolution and the likelihood

of having spurious peaks in the resulting spectrum.
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