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Abstract—In this paper, we address a challenging problem
of accurate instantaneous frequency (IF) estimation of multi-
component non-linear frequency modulated (FM) signals with
distinct amplitude levels in the presence of missing data samples.
In such scenarios, it is often difficult to resolve the weaker signal
components. Besides, missing data-induced artifacts spread in the
time-frequency (TF) domain, further complicating IF estimation.
We propose a method that iteratively performs missing data
recovery in the time-lag domain based on the least squares
criterion in conjunction with signal-adaptive TF kernels. The
proposed technique successfully resolves signal components with
distinct amplitude levels, preserves a high resolution of the auto-
terms and achieves robust TF distributions by mitigating the
undesired effects of cross-terms and artifacts due to missing data
samples. The effectiveness of the proposed method is verified
through various simulation results.

Index Terms—Instantaneous frequency estimation, missing
samples, non-stationary signals, time-frequency distribution.

I. INTRODUCTION

Many practical signals encountered in radar, sonar, wire-

less communications and biomedical applications are non-

stationary frequency modulated (FM) signals that can be

characterized by their instantaneous frequencies (IFs) [1]–[3].

In particular, radar target returns are often modeled as multi-

component non-linear FM signals. Magnitudes of such signals

may significantly differ due to, e.g., different target sizes.

In practice, such signals may be observed with missing

data samples. Missing data scenarios could arise due to line-

of-sight obstruction, multipath fading, sensor failures, and

removal of impulsive noise. When such missing data last

for multiple consecutive sampling intervals, the scenario of

burst missing samples emerges. Random or group missing

data scenarios could also be a result of intentional irregular

sampling that is performed to reduce hardware complexity

or to meet the constraints posed on sampling schemes in

astronomical, meteorological, and satellite based applications,

or gapped synthetic aperture to reduce radar resources in high-

resolution synthetic aperture radar (SAR) imaging [4]–[8].

———————————————————————————————–
The work of V. S. Amin and Y. D. Zhang is supported in part by a subcontract
with Matrix Research, Inc. for research sponsored by the Air Force Research
Laboratory under contract FA8650-14-D-1722. The work of Y. D. Zhang is
also supported in part by a contract with Altamira Technologies Corp. for
research sponsored by the Air Force Research Laboratory under Contract
FA8650-18-C-1055.

Time-frequency distributions (TFDs) facilitate characteriza-

tion, analysis and processing of such FM signals, and have

found wide applications in this direction [2], [9]. Missing

data samples introduce artifacts in the respective TFDs. In the

case of random missing samples, these artifacts are uniformly

spread in the entire time-frequency (TF) region. However,

group missing samples cause superimposed sinc-like patterns

which are clustered around true IFs in the TF regions and thus,

present a more challenging situation for signal detection and

analysis [8]. Usually, the weaker signals are greatly affected by

the effects of artifacts and noise, making them more difficult

to be detected.

The Wigner-Ville distribution (WVD) is considered as the

prototype TFD of bi-linear distributions [10], and provides an

optimal representation of mono-component linear FM signals.

However, it exhibits excessive cross-terms in the case of non-

linear FM signals or multi-component FM signals. Reduced

interference distributions (RIDs) are the popular form of bi-

linear TFDs that aim to mitigate undesired effects of cross-

terms and missing data-introduced artifacts using suitable

kernel functions [10]–[13]. The adaptive optimal kernel (AOK)

[11] is one of the popular choices for signal-dependent TF

kernels. While AOK performs well in suppressing the effects

of cross-terms and artifacts in the case of random missing

samples, its performance deteriorates in the case when missing

data appear in groups.

Several sparsity- and TF kernel-based approaches [8], [14]–

[18] that consider signal detection and TFD reconstruction in

the presence of missing samples have been proposed in recent

years. The time-domain missing data recovery for stationary

signals was attempted by the missing-data iterative adaptive

approach (MIAA) [19] using Capon spectrum estimation [20],

[21]. This method was extended for non-stationary signals in

[22], with the application of the MIAA on the instantaneous

auto-correlation function (IAF), which is stationary with re-

spect to lag τ , at each time instant. However, this method is

suitable only for mono-component non-stationary signals. The

recently developed missing data iterative sparse reconstruction

(MI-SR) approach [8] provides reliable IF estimation of multi-

component non-stationary signals by undertaking missing data

recovery in the IAF domain with iterative utilization of the

orthogonal matching pursuit (OMP) [23].

The aforementioned approaches often face challenges to



recover weaker signal components, when the signal compo-

nents have high variation in their relative amplitudes. Such

challenges are amplified in the presence of burst missing

data samples. Recently-developed sparse reconstruction-based

TF analysis techniques [24]–[26] perform relatively well in

estimating IFs of non-linear FM signals with distinct amplitude

levels of the components and in the presence of group missing

samples. However, these methods either rely on the accuracy

of the underlying TFDs, are sensitive to frequency quantization

errors, require cumbersome manual tuning of the parameters,

or suffer from high computational complexity.

The above observations and aforementioned limitations of

the existing methods motivated us to consider robust TFDs of

randomly thinned FM signals that consist of multiple close

components with highly different amplitudes. Similar to MI-

SR [8], our proposed Iterative Adaptive Missing Data Re-

covery (IA-MDR) algorithm also iteratively performs missing

data recovery in the IAF domain. However, unlike MI-SR,

which was developed based on OMP, the IA-MDR utilizes

the MIAA in the IAF domain as in [22]. This is based on

our observations that the OMP-based methods generally fail

to provide an accurate IF estimation of the weaker signal

components in the case when the signal components have

distinct amplitude levels [24]. Besides, unlike MI-SR, in which

signal adaptive TF kernels could be used to further enhance

the reconstruction performance, the use of signal adaptive TF

kernels is incorporated in the iterative process itself in the

proposed IA-MDR, to improve reconstruction performance.

In IA-MDR, we begin with the WVD as the underlying

TFD. The other RIDs could also be used in lieu of the WVD.

In each iteration, missing IAF entries are sequentially updated

using the weighted least squares criterion [20], [21] for each

time instant, and the spectral amplitudes are estimated using

the one-dimensional (1-D) Fourier relationship between the

IAF and TFD. Missing TF samples are recovered based on

the estimated frequencies and their coefficients. Finally, the

AOK is applied to the interpolated IAF for further refine-

ment of the obtained TFD and cross-term mitigation. In the

proposed IA-MDR approach, spectrum estimation, missing

sample recovery and application of TF kernels are iterated

for performance improvement. It is noted that, during each

iteration, only originally missing entries are updated with the

newly estimated values, whereas the entries associated with the

observed data samples are unaltered. After the final iteration,

the corresponding RID is achieved using a two-dimensional

(2-D) Fourier transform of the kerneled AF.

By effective utilization of data interpolation and TF kernel,

the proposed IA-MDR method achieves reliable IF estimation

of all signal components, preserves a high resolution of auto-

terms, improves energy concentration of the underlying TFDs,

and provides robust TFDs by suppressing the undesired effects

of cross-terms and artifacts. The proposed technique can be

successfully applied to multi-component FM signals with large

variations in their amplitude levels, and is particularly effective

when a large number of data samples are missing as a result

of either natural phenomenon, uneven sampling interval, or

intentional under-sampling. The superiority of the proposed

method is demonstrated through various simulation results.

Notations. A lower (upper) case bold letter represents a vec-

tor (matrix). (·)T, (·)∗, and (·)H , respectively, define transpose,

complex conjugation, and conjugate transpose (Hermitian).

Fx(·) and F−1
x (·), respectively, define the discrete Fourier

transform (DFT) and inverse DFT (IDFT) with respect to x.

II. SIGNAL MODEL AND BI-LINEAR TIME-FREQUENCY

DISTRIBUTIONS

A. Signal Model

Define a discrete-time K-component FM signal as

y(t) =
K∑

k=1

yk(t), t = 1, ..., T, (1)

where the kth signal component is given as

yk(t) = Ak exp(jφk(t)), t = 1, ..., T, (2)

where Ak and φk(t), respectively, represent the amplitude and

time-varying angular phase of the kth signal component. The

signal components are labeled according to their amplitude

levels, from the highest to the lowest, i.e., A1 ≥ ... ≥ AK .

Consider the observed data containing a total number of

M =
∑B

b=1 Mb, 0 ≤ M < T , burst missing data samples

with B being the total number of missing data bursts, and

Mb denoting the number of missing samples in the bth
burst. Missing data bursts are assumed to be mutually non-

overlapping and their positions are randomly distributed over

time. As such, the observed signal at the tth time instant, r(t),
can be expressed as the product of y(t) and an observation

mask, R(t), i.e.,

r(t) = y(t) ·R(t), (3)

where

R(t) =

{
1, if t ∈ S,
0, if t /∈ S, (4)

where S ⊂ {1, ..., T} denotes the set of observed time instants

and assumes a cardinality of |S| = T −M .

It should be noted that a random missing sample scenario

could be considered as a special case of the underlying burst

missing sample scenario with Mb = 1 and B = M in the

above expressions.

B. Bi-linear Time-Frequency Distributions

The IAF of r(t) is defined in the time-lag (t-τ ) domain as

Cr(t, τ) = r (t+ τ) r∗ (t− τ) . (5)

The WVD can be obtained by taking the 1-D DFT of the

IAF with respect to τ as

Wr(t, f) = Fτ [Cr(t, τ)] =
∑
τ

Cr(t, τ)e
−j4πfτ . (6)

The ambiguity function (AF) is obtained by applying a 1-D

DFT to the IAF with respect to time t, expressed as

Ar(θ, τ) = Ft[Cr(t, τ)] =
∑
t

Cr(t, τ)e
−j2πθt, (7)

where θ is the frequency shift.



C. TF Kernels and Reduced Interference Distributions

Signal-adaptive TF kernels [11], [13] have been shown to

be effective in mitigating undesired effects of cross-terms and

missing data induced-artifacts from the respective TFDs. The

radially Gaussian kernel function-based AOK [11] is one of

the popular choices of such TF kernels. AOK is obtained by

solving the following optimization problem for each time-

localized, short-time ambiguity function (STAF):

max
Ψ

∫ 2π

0

∫ ∞

0

|A(α,ϕ)Ψ(α,ϕ)|2α dα dϕ

subject to Ψ(α,ϕ) = exp
(
− α2

2σ2(ϕ)

)
,

1

4π2

∫ 2π

0

σ2(ϕ) dϕ ≤ β,

(8)

where A(α,ϕ) is the AF in the polar coordinate, Ψ(α,ϕ) is

the Gaussian kernel function, σ(ϕ) is the spread function that

controls the spread of the Gaussian kernel at the radial angle

ϕ = arctan(τ/θ), α =
√
θ2 + τ2 is the radius, and parameter

β > 0 trades off between the auto-component smearing and

the cross-component suppression.

The time-localized TFD can be computed by taking the

2-D DFT of the corresponding kerneled AF, Ā(α,ϕ) =
A(α,ϕ)ΨOPT(α,ϕ). After converting the kerneled AF to

the rectangular coordinate system, the corresponding RID is

expressed as

DAOK(t, f) = F−1
θ {Fτ [Ā(θ, τ)]}. (9)

III. PROPOSED ITERATIVE ADAPTIVE MISSING DATA

RECOVERY ALGORITHM

The proposed IA-MDR approach, developed for improved

IF estimation of multi-component FM signals with missing

data samples and distinct amplitude levels of the components,

is described in this section.

A. Problem Formulation

We begin with the WVD, Wr (6), as the underlying TFD.

Let P be the total number of frequency grid points with

fp, p = 1, ..., P , being the corresponding frequencies. At each

time instant t, the column of Wr defines the P ×1 TF vector

with sparsity K (K � P ) and is denoted as a(t), which is

related to the corresponding T × 1 IAF vector b(t) as

b(t) = Da(t), ∀t, (10)

where D is the T ×P 1-D IDFT matrix. As all the operations

in this section are performed at each time instant t, we omit

superscript (t) from the expressions of a(t) and b(t) for

notational simplicity.

The vector b consists of two components: vector br =
[br1 , br2 , ..., brQr

]T with Qr measured IAF entries and vector

bm = [bm1
, bm2

, ..., bmQm
]T with Qm = T −Qr missing IAF

entries. These two components are, respectively, given as

br = Γrb, bm = Γmb, (11)

where the Qr × T masking matrix Γr extracts the measured

elements from vector b, whereas the Qm×T masking matrix

Γm extracts the missing elements. Similarly, the Qr×P matrix

Dr = ΓrD and the Qm×P matrix Dm = ΓmD, respectively,

extract the rows of D corresponding to the measured IAF

entries in br and the missing IAF entries in bm. Based on the

measured data entries, Eq. (10) can be expressed as

br = Dra. (12)

B. Proposed IA-MDR Algorithm

Each iteration of the proposed IA-MDR algorithm com-

prises of following three major steps:

1) Iterative adaptive amplitude spectrum estimation from the

available data,

2) Missing data update, and

3) Application of signal adaptive TF kernel.

For each time instant t, the major steps of the proposed

IA-MDR algorithm are summarized below.

We begin with the IAF vector of the available entries br,

the corresponding dictionary matrix Dr, and the dictionary

matrix corresponding to the missing IAF entries Dm. The

outer iteration counter, i, is set to 1. The TF vector at the

tth time is initialized as a[0] = a obtained from (10).

Iterative amplitude spectrum estimation from the mea-
sured data:

Denote the complex-valued element of a[i−1] corresponding

to frequency fp at the [i; j]th iteration as α
[i;j]
p , where j is the

inner iteration counter. Let S
[i;j]
p = |α[i;j]

p |2. Each column drp

of Dr represents entries corresponding to frequency fp. The

covariance matrix of the available entries is obtained as

C[i;j]
r =

P∑
p=1

S[i;j]
p drpd

H
rp. (13)

The spectral amplitude corresponding to fp is estimated as

the solution to the weighted least squares criterion [20], [21],

α̂[i;j]
p =

dH
rp(C

[i;j]
r )

−1

br

dH
rp(C

[i;j]
r )−1drp

. (14)

The α̂
[i;j]
p is iteratively updated until either the maximum

number of iterations is reached or |α̂[i;j]
p − α̂

[i;j−1]
p | is less

than a pre-defined threshold ε.

Missing data recovery and update:
Based on S

[i;j]
p and the corresponding covariance matrices

computed using (13), the missing IAF entries are recovered as

follows [19]:

b̂[i;j]
m =

P∑
p=1

S[i;j]
p dH

rp(C
[i;j]
r )

−1

brdmp, (15)

where dmp is the pth column of Dm corresponding to fre-

quency fp.

The corresponding IAF vector b̂[i;j] is obtained as

b̂[i;j] = ΓT
m(ΓmΓT

m)−1b̂[i;j]
m + ΓT

r (ΓrΓ
T
r )

−1br. (16)

Note that only the original missing entries of the IAF vector

b are updated with the corresponding entries of b̂
[i;j]
m , whereas

br remains unchanged.



Application of signal adaptive TF kernel:
Once the IAF vector b̂[i;j] is estimated, the corresponding

AF is obtained by taking a 1-D DFT of the IAF with respect to

time t using (7). Then, a signal adaptive TF kernel is applied

to further improve the estimation and mitigate the effects

of the cross-terms and missing data induced artifacts from

the corresponding TFDs. In this paper, we have used AOK,

however, any other signal adaptive TF kernel could be used in

lieu of the AOK. The AOK for each time slice is computed

using (8) and the corresponding reduced interference TFD,

â[i] is obtained using (9). Then, the corresponding IAF vector

b
[i]
AOK is obtained by taking a 1-D IDFT of â[i] with respect

to frequency f . The original missing entries of the IAF vector

b are further updated with the corresponding entries of b
[i]
AOK

as

b̂[i] = ΓT
m(ΓmΓT

m)−1b
[i]
AOK + ΓT

r (ΓrΓ
T
r )

−1br. (17)

The iteration counter i is incremented by one and the

entire procedure is repeated for either a pre-defined number of

iterations or until the squared error between two subsequent

signal estimates falls below a pre-defined threshold value, ξ,

i.e.,

||â[i] − â[i−1]||22 < ξ. (18)

The final TFD is obtained by horizontally concatenating â[i]

for all time instants, i.e.,

WIAMDR = [â
[i]
1 , ..., â

[i]
T ]. (19)

Note that in [22] the MIAA procedure described in (13)–

(15) is applied only once. For multi-component signals, parti-

cularly when they have distinct amplitude levels, this ap-

proach does not provide sufficient capability to mitigate cross-

terms and preserve weak signal components. The proposed

approach overcomes this limitation by incorporating signal-

adaptive TF kernels in the iterative loop, along with the

application of MIAA in the IAF domain. The significant

improvements, benefited from the data interpolation capability

of the MIAA and the cross-term suppression capability of

the signal-adaptive TF kernels, are clearly observed in the

reconstructed TFDs. Besides, by only updating the original

missing IAF entries in successive iterations while keeping the

IAF entries associated with the observed signal unaltered, it

ensures preservation of the distribution properties associated

with the observed signal, and the reconstruction results are not

adversely affected by the data filling operation of TF kernels.

IV. SIMULATION RESULTS

The proposed IA-MDR technique works well for both

random as well as burst missing data sample scenarios. The

effectiveness of the proposed method is demonstrated through

various simulation results.

We consider a two-component FM signal with distinct

amplitudes and closely separated signatures, given by

y(t) = exp(jφ1(t)) + 0.4 exp(jφ2(t)), t = 1, ..., T, (20)

where φk(t) is the angular phase of the kth component at the

tth time instant. T is chosen to be 128. The IF laws of these

two components are respectively expressed as

f1(t) = 0.05 + 0.002t/T + 0.3t2/T 2,

f2(t) = 0.15 + 0.006t/T + 0.24t2/T 2.
(21)

Figs. 1(a) and 1(b), respectively, show the real part of

the original signal waveform without missing samples and

the corresponding WVD. Due to the bi-linear nature of the

underlying multi-component FM signal, the WVD exhibits

severe cross-terms between components, even without missing

samples.

First, we examine the performance of the proposed method

in the presence of burst missing samples, and then, we inves-

tigate the random missing data scenario. In order to clearly

demonstrate the effects of burst missing samples on the IF

recovery performance, we first consider a noise-free case.

In the first scenario, we assume that the received signal

contains a total of 48 (i.e., 37.5%) burst missing samples that

are clustered into 12 groups, with each group containing 4

missing samples. The positions of these groups are randomly

chosen, and are marked in red color in Fig. 2(a).

The comparison of the TFDs obtained using different meth-

ods is provided in Figs. 2(b)-2(g). The plot of true signal IFs

is given in Fig. 2(h) for comparison purposes. The convolutive

sinc-function-like artifact patterns, concentrated near the true

IFs, are clearly visible in the WVD of Fig. 2(b). These

strong artifact patterns make spectral estimation and analysis

extremely challenging, and difficult to be suppressed using

a signal adaptive TF kernel alone. While the AOK in Fig.

2(c) is successful in identifying stronger signal component, it

provides erroneous result of the weaker signal component. In

this scenario, the AOK optimization in the ambiguity domain

may be misguided to favor such artifacts and generate an

inaccurate detection of the signal components [8], in particular,

the weaker ones. Figs. 2(d)-2(f), respectively, show the TFDs

obtained from the application of the MIAA in the IAF domain

[22], MISR applied to the kerneled IAF [8], and ALF-DTFD

[24]. As seen from these figures, while these methods are gen-

erally successful in retrieving the stronger signal component,

they either fail completely to recover weaker signal component

or show excessive cross-terms and artifacts, hindering identifi-

cation of true IFs of the weaker signal component. Note from

Fig. 2(g) that the proposed IA-MDR approach successfully

overcomes these limitations and achieves a precise estimation

of true IFs of both signal components with high resolution, and

also preserves distribution properties. Most of the cross-terms

and artifacts are also effectively suppressed from the generated

TFD of Fig. 2(g), with few non-significant exceptions at some

places. The IA-MDR is applied for two iterations, where the

AOK volume is chosen as 2.

In the second scenario, we assume that 50% of the data

samples of the received signal are randomly missing, with

their positions displayed in red color in Fig. 3(a). The signal-

to-noise ratio (SNR) is chosen to be 15 dB. Unlike the

previous burst missing data scenario, in the case of random

missing samples, the artifacts are uniformly distributed in

the entire TF region in their respective WVD of Fig 3(b).
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Fig. 1 The original signal without missing samples: (a) Real part;
(b) WVD.
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Fig. 2 TFDs obtained using application of different methods on the
received signal containing 37.5% group missing data: (a) Real part of
the received signal (with missing data positions marked in red color);
(b) WVD; (c) AOK (volume 2); (d) MIAA applied to IAF; (e) MI-SR
applied to the kerneled IAF; (f) ALF-DTFD; (g) Proposed IA-MDR;
(h) True IFs (for comparison).
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Fig. 3 TFDs obtained using application of different methods on the
received signal containing 50% random missing data (SNR 15dB): (a)
Real part of the received signal (with missing data positions marked
in red color); (b) WVD; (c) AOK (volume 2); (d) MIAA applied to
IAF; (e) MI-SR applied to the IAF of the received signal; (f) MI-SR
applied to the kerneled IAF; (g) ALF-DTFD; (h) Proposed IA-MDR.

Fig. 3(c) to suppress the effects of noise and recover most

of the weaker signal component. Figs. 3(d)-3(g), respectively,

display the TFDs obtained using MIAA applied to the IAF,

MI-SR directly applied to the signal IAF, MI-SR applied to

the kerneled IAF, and ALF-DTFD. While the application of

MIAA in the IAF domain is somewhat successful in retrieving

the stronger signal component, the presence of strong artifacts

misguides the identification of the weaker signal component

and generates erroneous results. Besides, the scattered artifacts

are clearly observed in the TF domain. In Fig. 3(e), the

direct application of the MI-SR on the signal IAF generates

similar results as Fig. 3(d) but achieves better cross-term and

artifact mitigation. The application of the MI-SR on the IAF

obtained from the AOK of Fig. 3(c) demonstrates better cross-



term and artifact suppression capabilities, and is successful in

identifying some portions of the weaker signal component. The

ALF-DTFD in Fig. 3(g) mitigates most of the cross-terms and

artifacts, and also successfully identifies true IFs of most of

the weaker signal component. However, it fails to preserve

high energy of the weaker signal component. As seen in Fig.

3(h), the proposed IA-MDR algorithm achieves superior TF

reconstruction results with an accurate estimation of the signal

components, high energy concentration, and an effective cross-

term and artifact mitigation. Three iterations of IA-MDR were

applied with the associated AOK volume chosen to be 3.

Usually, 2 to 3 iterations of the IA-MDR method are

sufficient to obtain the desired results, as most of the missing

entries are updated during the first 2 to 3 iterations. Beyond

that, only slight improvement is observed for each additional

iteration.

V. CONCLUSIONS

In this paper, we have developed a new iterative approach

that aims to recover missing IAF entries in conjunction with

signal adaptive TF kernel, and thus, generates a robust TFD

of multi-component FM signals in the presence of missing

data samples. The proposed IA-MDR method provides an

accurate IF estimation of the signal components, maintains

high resolution of auto-terms, improves energy concentration

of the underlying TFD, and also achieves an effective cross-

term and artifact suppression, while preserving amplitude

information of the signal components. When the FM signal has

multiple closely separated components with large variations

in their relative amplitudes, the proposed technique is found

to be effective in resolving weaker signal components while

maintaining high resolution of the true IFs, in contrast to some

of the state-of-the-art techniques that fail to recover the weaker

signal components.
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