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Abstract—We analyze the Doppler signatures of local multi-
path signals in an over-the-horizon radar in the presence of both
ordinary (O) and extraordinary (X) polarization modes. As the
ionospheric signal reflection for the two polarization modes varies
from each other, the existing local multipath model developed
for a single polarization mode must be extended to account for
such a propagation environment. In this paper, we focus on
the case with small delays between the signals corresponding
to the two propagation modes. We exploit the multipath signal
model considering the mixed O/X mode signals and analyze
the variation in the resulting Doppler signatures. The analytical
as well as numerical results show that the existence of both
O/X polarization modes renders more signal components with
close Doppler signatures. In the underlying situation with small
delays between the two modes, the mixed O/X-mode signals
corresponding to each local multipath signal component are
unresolvable and yield time-varying fading magnitude. Accurate
parameter estimation is still achieved using fractional Fourier
transform over a longer coherent processing time.

keywords: Doppler parameter estimation, fractional Fourier
transform, over-the-horizon radar, target localization, time-
frequency analysis.

I. INTRODUCTION

Sky-wave over-the-horizon radar (OTHR) is designed to
provide long-range surveillance capability of targets that are
far beyond the limit of the Earth horizon [1–6]. Significant
research efforts have been invested to estimate the target
parameters in OTHR systems [7–13]. One of the most im-
portant parameters that enables target classification is target
altitude. However, direct estimation of the target altitude is
often difficult because of the narrow-band nature of the OTHR
signals and the uncertain ionospheric conditions. Generally,
existing target altitude estimation strategies for OTHR [14–24]
can be classified into three main categories: (a) target tracking
with the target altitude being considered as one of the target
state parameters [8, 10–12, 22, 23], (b) joint ionosphere and
target parameter estimation based on their statistical models
[13, 21], and (c) local multipath signal characterization using
high-resolution time-frequency analysis [14–19, 24].

The local multipath model developed in [8] is considered
effective for target altitude estimation [17–20]. In this model,
the round-trip OTHR signals directly reflected by the the
ionosphere layer and that is also reflected by the specu-
lar ground/ocean surface generate three spectrally equidistant

The work of A. Ahmed and Y. D. Zhang is supported in part by a sub-contract
with Matrix Research, Inc. for research sponsored by the Air Force Research
Laboratory under Contract FA8650-14-D-1722.

Doppler components. The average Doppler component and the
Doppler separation helps in estimating the target parameters,
such as the vertical velocity and altitude [18].

In practice, due to the Earth’s magnetic field, two propaga-
tion modes exist in the ionosphere corresponding to different
polarizations of the electromagnetic wave, termed as ordinary
(O) and extraordinary (X) polarization modes [25, 26]. Signals
associated with these two polarization modes are reflected at
their respective heights in the ionosphere, thereby resulting
in distinct slant ranges for each mode. When these paths
differ significantly in their reflection heights, high-precision
ionograms enable separation of these two polarization modes
[27]. On the other hand, their separation is challenging when
the difference between their reflection heights is small. In this
case, the existing signal model and target parameter estimation
and tracking techniques developed for OTHR under the single-
mode propagation model must be re-examined.

In this paper, we analyze the Doppler signatures of the
OTHR signals under a local multipath signal model, consid-
ering both O/X polarization modes with a small difference
in their reflection heights. The resulting Doppler signatures
obtained from the mixed O- and X-mode multipath model
are investigated and compared to those obtained from the
conventional single-mode mutipath propagation model. Our
analysis reveals that additional Doppler components are in-
troduced as the result of the two modes when compared
with the conventional single-mode multipath propagation case.
The mixed O/X-mode signals corresponding to each local
multipath are unresolvable and appear as a single component
in the time-frequency domain whose instantaneous Doppler
frequency becomes a weighted average of the two closely
spaced individual average Doppler components corresponding
to the two modes. The Doppler signatures corresponding to
different local multipath components remain separable through
high-resolution time-frequency analysis when a sufficiently
long coherent processing interval (CPI) is considered. The
Doppler characteristics of the X-mode signal is similar to those
of the O-mode signal except for a small frequency shift that
is shared for all the local multipath components. Simulation
results are presented to confirm this mathematical analysis.

II. LOCAL MULTIPATH SIGNAL MODEL FOR
MIXED O/X-MODE SIGNALS

Generally, O- and X-mode signals are reflected by the
ionosphere at different heights, which are often referred to
as the virtual ionosphere heights, depending on the operating
frequency and the incidence angle [25–27]. We consider a



Fig. 1. Flat-Earth local multipath propagation model of OTHR for O-mode
(solid lines) and X-mode (dashed lines) polarized waves. The two heights
of the ionosphere illustrate the virtual ionosphere heights for the respective
modes.

simplified flat-earth multipath signal model as illustrated in
Fig. 1, where the two modes correspond to different virtual
ionosphere heights for the O- and X-mode signals. Without
loss of generality, we consider the case where the virtual
ionosphere height for the X-mode wave is lower than that of
the O-mode wave; however, the same analysis remains valid
if the converse is true. We denote H as the virtual ionosphere
height for the O-mode wave, H−∆H as the virtual ionosphere
height for the X-mode wave assuming 0 < ∆H � H , and h
as the target altitude. We assume that a coarse estimate of the
ionosphere height is known from the ionosonde monitoring.
Moreover, stable ionospheric conditions are considered such
that the height of the ionosphere does not vary during the
CPI. For mathematical convenience, we also assume that the
O- and X-mode signals share the same operational frequency.

As shown in Fig. 1, the two polarization modes render
different round-trip propagation paths, respectively depicted by
solid and dashed lines. For each polarization mode, each of the
forward and return paths can take path I (directly reflected by
the ionosphere) or path II (reflected by the ionosphere and the
Earth surface). As a result, for each mode, the signals received
at the OTHR receiver follow the following three distinct round-
trip paths: (a) Round-trip path 1: emitted and received along
path I; (b) Round-trip path 2: emitted and received along path
II; and (c) Round-trip path 3: emitted along path I and received
along path II, and vice versa. In the following, we first consider
the slant range and Doppler signatures for the O-mode wave,
and the results are extended to the X-mode wave.

In Fig. 2, we illustrate an equivalent local multipath model
for the O-mode wave to simplify the analysis of slant range
computations [14, 18]. A similar figure can also be constructed
for the X-mode wave signals. The target and the propagation
paths below the ionosphere are the true ones, whereas those
above the ionosphere are their mirrored version due to reflec-
tions in the ionosphere and the Earth surface. The one-way
slant ranges of path I and II, respectively denoted as lo,1 and
lo,2, can be expressed in terms of the ground range R, the
respective virtual ionosphere height H , and the target altitude
h, as:

lo,1 =
(
R2 + (2H − h)2

)0.5
, (1a)

lo,2 =
(
R2 + (2H + h)2

)0.5
. (1b)

In this paper, we consider the situation that a target flies
with a fixed altitude and a constant horizontal velocity. As
such, lo,1, lo,2, and R are time-varying, whereas H and h re-
main constant. We omit the explicit notation of (t) throughout

Fig. 2. Equivalent local multipath propagation model for the O-mode wave.

this paper for notational simplicity. Assuming h � H � R,
and using Taylor approximation, we obtain the following
simplified one-way slant range equations:

lo,1 ≈ R+
2H2 − 2Hh

R
, (2a)

lo,2 ≈ R+
2H2 + 2Hh

R
. (2b)

The slant range of the three round-trip paths for the O-mode
wave can be respectively expressed as:

Lo,1 = 2lo,1, Lo,2 = 2lo,2, Lo,3 = lo,1 + lo,2. (3)

Similar slant range formulations can also be developed for the
X-mode wave signals by replacing H by H−∆H in Eq. (2). In
this paper, we only consider the scenario where the difference
in virtual heights corresponding to the two polarization modes
is small such that ∆H � h� H is satisfied.

III. DOPPLER SIGNATURE ANALYSIS

The two-way slant ranges for the O-mode wave can be
used to determine the corresponding Doppler signatures as:

fo,i = −fc
c

dLo,i

dt
, i = 1, 2, 3, (4)

where fc denotes the carrier frequency, c is the velocity of the
electromagnetic wave, and i denotes the path index. For this
case, we can obtain:

dlo,1
dt
≈ Ṙ− 2

HṘ

R2
(H − h), (5a)

dlo,2
dt
≈ Ṙ− 2

HṘ

R2
(H + h), (5b)

where Ṙ = dR/dt. Note that a positive value of the target
velocity Ṙ is defined for the target moving away from the
radar. The Doppler frequencies of the three different paths for
the O-mode wave in Eq. (4) take the following simplified form:

fo,1 = f̄o + ∆fo, (6a)
fo,2 = f̄o −∆fo, (6b)
fo,3 = f̄o, (6c)



where

f̄o = −fc
c

d(lo,1 + lo,2)

dt
≈ −2fc

c
Ṙ+

4fcH
2Ṙ

cR2
, (7a)

∆fo = −fc
c

d(lo,1 − lo,2)

dt
≈ −4fcHhṘ

cR2
. (7b)

From Eqs. (6) and (7), we observe that the Doppler
signatures of the round-trip paths 1 and 2 are symmetric around
the round-trip path 3. The average Doppler component, f̄o,
is shared by all three paths, and ∆fo denotes the frequency
difference between the Doppler components corresponding to
different local multipath signal components. Note that both f̄o
and ∆fo are proportional to Ṙ.

We can make similar observations for the Doppler com-
ponents associated with the X-mode wave. The Doppler fre-
quencies of the three different paths for the X-mode signals
are expressed as:

fx,1 = f̄x + ∆fx, (8a)
fx,2 = f̄x −∆fx, (8b)
fx,3 = f̄x, (8c)

where f̄x and ∆fx are obtained by replacing H by H −∆H
in Eq. (7), expressed as:

f̄x ≈ −
2fc
c
Ṙ+

4fc(H −∆H)2Ṙ

cR2

= f̄o −
4fcṘ

cR2
(2H∆H −∆H2),

∆fx ≈ −
4fc(H −∆H)hṘ

cR2

= ∆fo + 4
fchṘ

cR2
∆H.

As ∆H � h� H � R, we can simplify the above equations
as:

f̄x ≈ f̄o − 8
fcH∆HṘ

cR2
= f̄o − fδ, (9a)

∆fx ≈ ∆fo. (9b)

Therefore, it becomes clear that the Doppler differences be-
tween the local multipath signal components are approximately
the same for both O- and X-modes. Moreover, the average
Doppler frequencies of both modes differ in magnitude only
by fδ = 8fcH∆HṘ/(cR2). From Eqs. (7b) and (9a), we
have:

fδ = 2
∆H

h
∆fo. (10)

Therefore, for the underlying scenario when ∆H � h holds,
fδ � ∆fo � f̄o remains valid. Further, from Eqs. (6)–(9), we
observe that fδ is shared for all local multipath pairs, i.e.,

fδ = fo,i − fx,i, i = 1, 2, 3. (11)

This implies that the three Doppler components respectively
generated by O- and X-mode waves are displaced in the
spectral domain by a small and common frequency shift fδ.

We express the overall noise-free signal at the OTHR
receiver as:

y(t)=

3∑
i=1

(
Ao,ie

j(2π
∫ T
0
fo,idt+φo,i)+Ax,ie

j(2π
∫ T
0
fx,idt+φx,i)

)
,

(12)

where Ao,i and Ax,i denote the respective signal magnitudes
for the O- and X-mode wave paths, and φo,i and φx,i are
the corresponding initial phases. Since fo,i and fx,i have very
close spectral proximity, the two components are unresolvable
and thus are merged together, yielding three resolvable Doppler
components expressed in the following form:

y(t) ≈
3∑
i=1

Wie
j(2π

∫ T
0

(ζfo,i+(1−ζ)fx,i)dt+φi). (13)

Here, 0 ≤ ζ ≤ 1, and the exact value of ζ and that of the
overall phase term φi depend on the relative magnitude and
phase relationship of the two modes. Moreover, Wi is a beating
fading function whose frequency is associated with fδ .

The Doppler frequencies of the three resolvable Doppler
components are respectively centered at:

fox,i = ζfo,i + (1− ζ) fx,i, (14)

for i = 1, 2, 3. The maximum possible frequency deviation
between the resulting Doppler components in Eq. (13) with the
corresponding individual O- and X-mode frequency signatures
will be fδ . For a special case where Ao,i = Ax,i = A for all
values of i, we obtain ζ = 0.5, i.e., fox,i = (fo,i + fx,i)/2,
and the corresponding maximum frequency deviation becomes
fδ/2.

IV. DOPPLER SIGNATURE ESTIMATION

For the underlying scenario where the target has a fixed
altitude and moves with a constant horizontal velocity, the sig-
nal y(t) in Eq. (12) consists of the sum of three parallel chirp
signals which can also be observed from Fig. 3. Therefore, the
fractional Fourier transform (FrFT) is effective to separately
analyze the individual Doppler signatures. The α-angle FrFT
of signal y(t), denoted as Yα(z), is defined as [28, 29]:

Yα(z) =

∫ ∞
−∞

y(t)Kα(t, z)dt, (15)

where z is the angular fractional frequency, and Kα(t, z) is
the kernel, given by:

Kα(t, z) =



√
1− jcot (ψ)

2π
ej

z2

2 cot(ψ)

×ej t2

2 cot(ψ)e−jz csc(ψ), ψ 6= kπ,

δ(t− z), ψ = 2kπ,

δ(t+ z), ψ + π = 2kπ,

k is a non-negative integer, and ψ = απ/2. Once the optimal
rotation angle αopt for each of the three chirps is determined

TABLE I. KEY PARAMETERS (UNLESS OTHERWISE SPECIFIED)

Parameter Notation Value
Initial range R(0) 2,500 km
O-mode ionosphere height H 350 km
X-mode ionosphere height H −∆H 349 km
Target altitude h 20 km
Target horizontal velocity vR 500 m/s
Carrier frequency fc 16 MHz
Pulse repetition frequency fs 140 Hz
Coherent integration time T 120 s



Fig. 3. The resulting Doppler components for both O mode (red color) and
X mode (blue color).

through peak detection, we find the corresponding chirp rate
γ̂ as [28, 29]:

γ̂ = − cot
(
αopt

π

2

) f2s
N
, (16)

where fs is the pulse repetition frequency, and N is the
number of samples used for calculating the FrFT. The centroid
frequency of the chirp can be estimated as [30]:

fcentroid =
ffrft

sin(αoptπ/2)
, (17)

where ffrft = zpeakfs/π and zpeak denotes the estimated peak
angular frequency of the individual chirp in the fractional
domain.

Performing FrFT over the linear Doppler signatures in the
time-frequency domain accumulates the signal energy over the
entire CPI. For the underlying mixed O/X-mode signals, it also
effectively mitigates the effect of multi-mode fading so as to
achieve robust parameter estimation.

V. SIMULATION RESULTS

In this section, we numerically examine the Doppler fre-
quency components generated from the O- and X-mode waves,
and compare them with the results obtained from the single-
mode multipath model counterpart. The default parameters for
the simulations are listed in Table I.

Fig. 3 shows the three Doppler components for each of the
O- and X-modes based on Eq. (4), yielding a total number
of six components. It is confirmed that the difference Doppler
component due to local multipath is the same for both modes,
i.e., ∆fo = ∆fx. Moreover, the frequency difference between
the corresponding O-mode and X-mode signals, represented
by fo,i − fx,i, remains a constant for the three Doppler
components, thus confirming Eq. (11).

Next, we evaluate the spectrogram for the received local
multipath signals, respectively for the mixed O/X-mode case
and the O-mode only case. The same propagation attenuation is
assumed for both polarization modes and all local multipaths.
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Fig. 4. Spectrogram of the received OTHR signals using a Hamming window
of size 4096: (a) O-mode signal, (b) mixed O/X-mode signals.

For each case, independent zero mean white complex Gaussian
noise is added to yield a signal-to-noise ratio (SNR) of −15
dB. Figs. 4(a) and 4(b) respectively show the spectrograms of
the resulting O-mode signal and the mixed O/X-mode signal.
For the single-mode case depicted in Fig. 4(a), each of the three
local multipath Doppler components has a stable magnitude
with respect to time. For the mixed O/X-mode signals depicted
in 4(b), we confirmed that the six components are merged into
three separable signatures, and their magnitudes vary with time
as a beating fading, as discussed in Section IV.

Figs. 5(a) and 5(b) show the FrFT results of the O-mode
signal and the mixed O/X-mode signal, respectively. For O-
mode signals, we detect the three peaks, which appear at a
rotation angle α = 0.9995 in Fig. 5(a). For the mixed O/X-
mode signal depicted in Fig. 5(b), the three chirp signals are
also clearly detected with slightly lower magnitudes as a result
of fading between the two polarization modes.

Fig. 6 shows the parameter estimation results correspond-
ing to Fig. 5. Since all the signals share the same chirp rate,
we first compute the optimal rotation angle αopt by searching
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Fig. 5. FrFT of the received OTHR signals: (a) O-mode signal, (b) mixed
O/X-mode signal.

the maximum magnitude of the FrFT with respect to α in
Fig. 5. After αopt is determined, we estimate the fractional
frequencies by keeping α = αopt and exploiting the peak
detection in the fractional frequency domain. The resulting
peak fractional frequencies are fed in Eq. (17) to estimate
the centroid frequencies of three chirps. It can be observed
in Fig. 6 that the chirp rate and the fractional frequencies are
clearly detected for both the O-mode signal and the mixed
O/X-mode signal. However, the mixed O/X-mode signal yields
lower peaks and reduced concentration due to the fading.

Based on Fig. 3, we obtain the theoretical value of the
centroid frequencies corresponding to the three local multipath
Doppler components for the O-mode signal to be 51.07 Hz,
51.19 Hz, and 51.31 Hz, respectively, whereas the respective
Doppler frequencies for the mixed O/X-mode signal are 51.08
Hz, 51.20 Hz, and 51.32 Hz. From Fig. 6(a), the centroid
frequencies of the estimated three local multipath Doppler
components for the O-mode signal are obtained as 51.20 Hz,
51.31 Hz, and 51.42 Hz, respectively, whereas those obtained
from Fig. 6(b) for the mixed O/X mode signal are respectively
51.21 Hz, 51.31 Hz, and 51.43 Hz. In both cases, the estimated

(a)

(b)

Fig. 6. FrFT parameter estimation: (a) O-mode signal, (b) mixed O/X-mode
signal.

results have a good agreement with the theoretical values,
demonstrating the effectiveness of the FrFT-based approach
for parameter estimation in the presence of mixed O/X-mode
signals with closely separated virtual heights.

VI. CONCLUSION

In this paper, we have investigated the OTHR signals for
the case with mixed O/X-mode polarizations which exhibit
a small difference in their virtual ionospheric heights. We
observe that the mixed O/X-mode signals provide similar
results compared to the case when the single-mode wave
propagation is considered. Due to the small difference in the
yielding slant ranges and Doppler signatures, the resulting
signals corresponding to the two modes are not resolvable. As
such, the overall signals render three local multipath signal
components with each component being faded as a result
of merging the signals corresponding to the two polarization
modes together. As a result, the FrFT-based processing devel-
oped for a single-mode case can still be applied to obtain the
Doppler parameters of the local multipath signal components.
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