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Abstract The use of multibeam antennas (MBAs) in decentralized wireless networks
significantly increases the throughput by improving spatial reuse and extending coverage
compared with single-beam antennas. The throughput performance may, however, degrade
in multipath environments due to the fact that multipath propagation increases the probability
of collision among different users. Based on the probability of collision, accurate analytical
expressions are derived for the node throughput gain (NTG) of a wireless network using
MBAs in quasi-stationary multipath environments. The results show that a higher number of
propagation paths cause more frequent collisions and thus yield lower node throughput.

Keywords Decentralized wireless networks · Directional antenna · Multipath ·
Throughput gain

1 Introduction

Conventional decentralized wireless networks, such as mobile ad hoc and mesh networks,
use omnidirectional antennas, which reserve the spectrum over a large area and waste
network resources [1,2]. It has been shown that directional antennas may mitigate this prob-
lem and provide spatial reuse [2]. To further enhance the network capacity and overcome
problems like deafness, the use of directional antennas has been extended to multibeam
antennas (MBAs) [3–6]. These structures achieve concurrent communications with multiple
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neighboring users by forming multiple pre-defined beams or using multiple radios where
each radio is equipped with its own directional antenna. Such structures can be optimized in
a stationary propagation environment to provide higher network throughput.

The throughput performance of the MBAs can, however, degrade in a multipath propaga-
tion environment due to increased probability of collision among different user signals (e.g.,
[3,4]). Multipath propagation is a typical problem in most wireless systems. Specifically,
the multipath propagation phenomenon may be more significant in ad hoc networks, since
the nodes are typically located in indoor or low-altitude outdoor environments [1]. As such,
signals transmitted from a neighboring node may fall into multiple beams at the target node
(TN) and result in more frequent collisions.

Previous research on the capacity/throughput of wireless networks mainly focused on the
omnidirectional antenna-based networks [7,8] and smart antenna-based networks [9,10]. To
our best knowledge, there are no analytical throughput expressions for decentralized net-
works, such as ad hoc networks, exploiting MBAs operating in a multipath environment.
In this paper, we consider one-hop throughput of the TN in terms of the node throughput
gain (NTG), which is defined as the mean number of successful active neighboring nodes
with which a TN can concurrently communicate, from the perspective of the probability
of collision. Accurate expressions of the NTG in a quasi-stationary multipath environment
are derived and the effect of multipath propagation is analytically evaluated. The obtai-
ned results can be conveniently used for an arbitrary number of beams and any number
of paths. Simulation examples are provided to demonstrate the accuracy of the analytical
expressions and depict the significance of the effect of multipath propagation on the NTG
performance.

2 System Model

Without loss of generality, it is assumed that a TN has N neighboring nodes that are inde-
pendently and randomly located around it with a uniform angular distribution. The slotted
ALOHA protocol is considered at the medium access control (MAC) layer. Due to random
transmission of each node, collision is inevitable [11]. Assume that the probability with which
a neighboring node starts packet transmission is p, where the packets could be either newly
arrived or retransmitted ones. The former follows a Poisson distribution with arrival rate λ

packets/s. Consequently, during a time slot, there are n ≤ N neighboring nodes attempting to
send packets to the TN. For the convenience of analysis, we use a simple sector-based model
which is similar to that used in [6] (A more realistic antenna model can also be considered).
In this model, a considered TN is equipped with M fixed-beam antennas, each forming a
pre-defined conical beam spanning a sector of 2π/M radians. As such, the M antennas form
M non-overlapping beams which collectively cover the entire azimuth plane. The beam shape
is assumed to be conical, i.e., the antenna gain within the beam sector is constant whereas it
drops to zero outside the beam sector.

Depending on the applications and environments, wireless communication channels often
experience multipath propagation. The number of paths and their distributions vary as the
propagation environment changes. In this paper, it is assumed that a channel is composed of
several dominant paths, each with resolvable angle-of-arrival (AOA) and sufficiently high
strength such that each path warrants signal reception if it does not compete with other signal
arrivals in the same beam, or is collided with other signals if they fall into the same beam.
The multipath components are assumed to be quasi-stationary so that they are time-invariant
over a packet.

123



Node Throughput Analysis of Decentralized Wireless Networks 449

3 Node Throughput Gain Analysis

3.1 Single-Path Propagation Environment

In a single-path propagation environment, it is clear that a collision occurs within a beam
when more than one active neighboring users fall into the beam [3,12]. As such, the proba-
bility of having collisions in a beam can be evaluated. The probability of concurrent packet
reception for a beam has been considered in [6]. In this paper, we consider another capacity
metric, namely the node throughput gain (NTG), denoted as G [3–5]. As we addressed earlier,
the NTG is defined as the mean number of successful active neighboring nodes with which
a TN can concurrently communicate. This metric allows us to focus on the effect of some
relevant MAC layer parameters rather than physical layer parameters. As such, it reflects not
only the advantage of the MBAs over omnidirectional antennas and single-beam directional
antennas, but also the efficiency of the employed MAC protocols. For a specific application,
the NTG can be mapped to the actual data rate based on the information of modulation and
coding schemes.

We first define Pa
n (n, N , p) as the probability that, during a time slot, n neighboring nodes

occur around a TN and attempt to make transmissions. This probability can be described as
the following binomial distribution

Pa
n (n, N , p) =

(
N
n

)
pn (1 − p)N−n , (1)

where

(
N
n

)
denotes the combination operation, representing the number of different ways

of selecting n out of N neighboring users. Further, we define Ps
n (n, 1, M) as the probability

that one user is successfully received by the TN in the presence of n active neighboring nodes
in a single path propagation environment, i.e., one beam is occupied by the signal transmitted
from a single neighboring user. In this case, the remaining M − 1 beams can be occupied
arbitrarily by other n − 1 active users, and hence one can find

Ps
n (n, 1, M) =

(
1 − 1

M

)n−1

. (2)

Then, the NTG in the presence of single path can be written as

Gsp =
N∑

n=1

n Pa
n (n, N , p)Ps

n (n, 1, M). (3)

The superscript ‘SP’ is used to emphasize the single-path propagation environment.
For a constant N p, the binomial model depicted in (1) becomes a Poisson distribution

as p → 0. The equivalent traffic load in the Poisson distribution, which is the product of
the packet arrival rate and packet duration, can be computed as R = N p. Thus, (1) can be
approximated as

Pa
n (n, R) = Rne−R

n! . (4)

Substituting (4) into (3) yields

Gsp = Re−R/M , (5)
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which is consistent with the result given in [5]. It is evident that the maximum NTG is M/e,
which is achieved when R = N p = M . That is, in a single-path propagation environment,
the maximum NTG is obtained when the mean number of active neighboring users equals
the number of available beams.

3.2 Multipath Propagation Environment

As we pointed out earlier, a decentralized network is typically located in an environment with
rich multipath propagation. In this situation, a signal transmitted from a neighboring node
may arrive at the TN through multiple propagation paths and fall into multiple beams. As
such, more frequent collisions are likely to occur. Because all nodes are located in a similar
multipath environment, their propagation channels to the TN are similar. For the convenience
of analysis, therefore, it can be assumed that, during a time slot, the respective signal trans-
mitted from each active neighboring node arrive at the TN through K ≥ 1 quasi-stationary
propagation paths, each with resolvable AOA and sufficient high strength, as discussed in
Sect. 2. As such, the signal arrivals from each active neighboring user may fall into at most
B = min(K , M) beams.

In a multipath propagation environment, a neighboring node ui is considered collided if
all the beams occupied by the paths of ui collide, i.e., none of ui ’s paths is free of collision.
As such, the NTG in a multipath propagation environment can be expressed as

Gmp =
N∑

n=1

n Pa
n (n, N , p)Ps

n (n, K , M), (6)

where Pa
n (·) is given in (1) and can be approximated as (4), and Ps

n (n, K , M) has a similar
definition as (2) except that each transmission now has K quasi-stationary paths. The latter
can be obtained from the following equation,

Ps
n (n, K , M) = 1 −Pc

n (n, K , M), (7)

where Pc
n (n, K , M) is the probability of collision, which is defined as the probability that

multiple active users fall into the same beam and hence collide. According to this definition,
we can obtain

Pc
n (n, K , M) =

B∑
b=1

Pb
b (b, K , M)Pc

b (b, n, K , M), (8)

where Pb
b (·) is the probability that all paths originating from one user fall into b beams of the

TN, and Pc
b (·) is the collision probability that collisions occur within all the b beams. From

the probability theory and after some mathematic operations, we can obtain

Pb
b (b, K , M) =MPb

S(K , b)

M K
, (9)

and

Pc
b (b, n, K , M) = 1 −

b∑
i=1

(−1)i+1
(

b
i

)(
1 − i

M

)K (n−1)

, (10)

respectively, where MPb denotes the permutation operation, representing the number of ways

of selecting b beams from all M available beams, and S(K , b)= 1
b!

∑b−1
i=0 (−1)i

(
b
i

)
(b−i)K
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is the Stirling number of the second kind [13], representing the number of different ways that
K paths occupy b beams. The derivation of (10) is given in Appendix.

Substituting (9) and (10) into (8) and applying the fact
∑B

b=1 Pb
b (b, K , M) = 1, one can

further obtain

Pc
n (n, K , M) = 1 −

B∑
b=1

Pb
b (b, K , M)

b∑
i=1

(−1)i+1
(

b
i

)(
1 − i

M

)K (n−1)

. (11)

Thus, (7) can be rewritten as

Ps
n (n, K , M) =

B∑
b=1

Pb
b (b, K , M)

b∑
i=1

(−1)i+1
(

b
i

) (
1 − i

M

)K (n−1)

. (12)

It is easy to find that, for K = 1, (12) is reduced to (2). Further, substituting (12) into (6)
yields

Gmp =
N∑

n=1

n Pa
n (n, N , p)

B∑
b=1

Pb
b (b, K , M)

b∑
i=1

(−1)i+1
(

b
i

) (
1 − i

M

)K (n−1)

. (13)

Substituting (1) and (9) into (13), the complete formula for Gmp is obtained as

Gmp = 1

M K

N∑
n=1

n

(
N
n

)
pn (1 − p)N−n

B∑
b=1

(
M
b

)

×
b−1∑
j=0

(−1) j
(

b
j

)
(b − j)K

b∑
i=1

(−1)i+1
(

b
i

) (
1 − i

M

)K (n−1)

. (14)

The results of the above equation can be easily evaluated using numerical computations since
B and M are relatively small. Numerical results shown that (14) is a decreasing function of K
and an increasing function of M . That is, multipath propagation is always detrimental to the
enhancement of node throughput, whereas the node throughput benefits from the increasing
number of available beams at the TN.

4 Numerical and Simulation Results

Numerical and simulation results are provided to verify the accuracy of the analytical expres-
sions and to depict the significance of the effect of multipath propagation. It is assumed that,
during a time slot, each neighboring node attempts to start a packet transmission with prob-
ability p = 0.1. The multipath model given in Sect. 2 is considered, and the number of
propagation paths (K ) varies from 1 to 6. The offered load (R) varies from 0 to 20 (i.e., the
corresponding number of neighboring nodes varies from 0 to 200). Each simulation result is
obtained using 1,000 consecutive time slots. In each time slot, the active neighboring nodes
and their respective propagation paths are randomly and independently generated.

The analytical and simulation results of the NTG in a quasi-stationary multipath envi-
ronment are plotted in Fig. 1a, b, respectively, for four (M = 4) and eight (M = 8) beam
scenarios. Both figures clearly show good consistence between the simulation and analytical
results. The results also confirm the discussion we made in Sect. 3.2 that the performance of
MBAs degrades in a multipath propagation environment. Such performance degradation is
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Fig. 1 Analytical (lines) and
simulated (markers) node
throughput gain in various
multipath environments. a Target
node with four beams. b Target
node with eight beams
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more significant when the offered load is high, since in such a scenario the probability of
collision among different user signals is increased.

As a result of random transmission from the neighboring users, the NTG is not a monotonic
function of the offered load. Once the maximum NTG Gmax is reached, further increasing
the offered load results in reduced node throughput. As the number of paths K increases,
Gmax decreases and corresponds to a lower value of the offered load, because increasing the
number of paths or offered load causes more frequent collisions. By comparing the two fig-
ures depicted in Fig. 1, it is evident that the NTG increases as the number of beams available
at the TN increases, since a higher number of available beams can concurrently support more
users.

The impact of the number of propagation paths on the maximum node throughput gain
is illustrated in Fig. 2. As is seen here, Gmax is a monotonically decreasing function of the
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Fig. 2 Impact of the number of
propagation paths on the
maximum node throughput gain
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number of paths K . That is, more propagation paths yield a lower Gmax. Furthermore, the
slope of the curve decreases as K increase. Consider the fact that K is bounded in practice, a
saturated Gmax value can be assumed when the number of available beams, M , is specified. It
is also observed in Fig. 2 that, for a given number of paths, the value of Gmax corresponding
to M = 8 is approximately doubled from that corresponding to M = 4. Thus, increasing
the number of available beams is effective to enhance the node throughput and to overcome
multipath propagation. For example, the value of Gmax in the case of M = 8 and K = 6
approaches that in the case of M = 4 and K = 1. In this case, the detrimental impact of
six-path propagation on the throughput can be compensated at the cost of using additional
four beams.

5 Conclusions

From the perspective of the probability of collision, this paper has derived general and accu-
rate analytical expressions for the node throughput gain of a decentralized wireless network
exploiting multibeam antennas. Both single-path and quasi-stationary multipath environ-
ments are considered and the impact of multiple propagation paths is examined. The per-
formance analysis clearly shows that a higher number of propagation paths result in more
frequent collisions and consequently a lower node throughput, whereas increasing the num-
ber of available beams at the target node provides a higher node throughput. The analytical
expressions can be conveniently used to assess the node throughput for an arbitrary number
of beams as well as propagation paths.

Appendix

Let B1, B2, . . . , Bb be b events defined in a probability space, where B j , j = 1, . . . , b,
denotes the event that the j th beam collides. Pr{B j } denotes the probability at which event
B j occurs. According to the set properties and the inclusion and exclusion principle, one can
obtain
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Pc
b (b, n, K , M) = Pr {B1, B2, . . . , Bb} = Pr

⎧⎨
⎩

b⋂
j=1

B j

⎫⎬
⎭

= 1 − Pr

⎧⎨
⎩

b⋃
j=1

B j

⎫⎬
⎭ , (A1)

where

Pr

⎧⎨
⎩

b⋃
j=1

B j

⎫⎬
⎭ =

b∑
k=1

Pr
{

Bk
} −

∑
1≤k1<k2≤b

Pr
{

Bk1

⋂
Bk2

}
+ · · ·

+(−1)i+1
∑

1≤k1<···<ki ≤b

Pr

{
i⋂

v=1

Bkv

}
+ · · ·

+(−1)b+1Pr

{
b⋂

k=1

Bk

}
. (A2)

The number of terms contained in the i th summation,
∑

1≤k1<···<ki ≤b Pr
{⋂i

v=1 Bkv

}
, on

the right-hand side of (A2) is (
b
i

). Due to the assumption that the neighboring nodes are

randomly located around the TN with a uniform angular distribution, we obtain

Pr
{

Bk
} =

(
1 − 1

M

)K (n−1)

, k = 1, . . . , b, (A3)

Pr

{
i⋂

v=1

Bkv

}
=

(
1 − i

M

)K (n−1)

, kv ∈ {1, . . . , b}, i = 1, . . . , b. (A4)

Subsequently, (10) can be derived straightforwardly by first substituting (A3) and (A4) into
(A2) and then into (A1).
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