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Abstract— Recently, nested and coprime arrays have attracted
considerable interest due to their capability of providing in-
creased array aperture, enhanced degrees of freedom (DOFs),
and reduced mutual coupling effect compared to uniform linear
arrays (ULAs). These features are critical to improving the
performance of DOA estimation and adaptive beamforming.
In this paper, a new sparse array configuration based on the
maximum inter-element spacing constraint (MISC) is proposed.
The MISC array configuration generally consists of three sparse
ULAs plus two separate sensors that are appropriately placed.
The MISC array configurations are designed based on the inter-
element spacing set, which, for a given number of sensors, is
uniquely determined by a closed-form expression. We also derive
closed-form expressions for the number of uniform DOFs of the
MISC arrays with any number of sensors. Compared with the
existing sparse arrays, the MISC array enjoys two important
advantages, namely, providing a higher number of DOFs and
reducing the mutual coupling effects. Numerical simulations are
conducted to verify the superiority of the MISC array over other
sparse arrays.

Index Terms— Sparse arrays, MISC arrays, degrees of freedom
(DOFs), mutual coupling, direction-of-arrival estimation.

I. INTRODUCTION

Array signal processing is a fundamental technology used
in various applications such as radar, sonar, navigation, wire-
less communications, electronic surveillance and radio astron-
omy [1], [2]. Key benefits of using sensor arrays include
spatial selectivity and the capability to mitigate interference
and improve signal quality. The most commonly used sensor
arrays are conventional uniform linear arrays (ULAs), where
the inter-element spacing is constant and is not more than
half wavelength to avoid spatial aliasing. However, the number
of degrees of freedom (DOFs) of conventional ULAs is only
linear to the number of sensors. For an N -sensor ULA, the

The work of Z. Zheng, W. Wang, and Y. Kong was supported in part by
the National Natural Science Foundation of China under Grant 61571081,
by the Sichuan Science and Technology Program under Grant 2018RZ0141,
by the Sichuan Applied Basic Research Program under Grant 19YYJC0100,
by the Key Project of Sichuan Education Department of China under Grant
18ZA0221, by the Guangdong Natural Science Foundation of China under
Grant 2018A0303130064, and by the Fundamental Research Funds for the
Central Universities of China under Grant 2672018ZYGX2018J003.

Z. Zheng, W. Wang and Y. Kong are with the School of Informa-
tion and Communication Engineering, University of Electronic Science and
Technology of China, Chengdu 611731, China (e-mail: zz@uestc.edu.cn;
wqwang@uestc.edu.cn; 18623353803@163.com).

Y. D. Zhang is with the Department of Electrical and Computer
Engineering, Temple University, Philadelphia, PA, USA 19122 (e-mail:
ydzhang@temple.edu).

traditional subspace-based methods [3], [4] can resolve up to
N − 1 sources. To increase the number of DOFs within the
conventional ULA framework, additional sensors are required,
thus leading to a high complexity that may be impractical or
infeasible. Conventional ULAs also suffer from severe mutual
coupling effects between array sensors.

On the other hand, nonuniform linear arrays (NLAs) (also
referred to as sparse arrays) offer an attractive solution to
these problems. By vectorizing the covariance matrix of the re-
ceived array signal, an N -sensor sparse array provides O(N2)
consecutive virtual sensors in the difference coarray. In other
words, up to O(N2) uncorrelated sources can be identified
using N physical sensors [5]. This implies a significantly
increased number of DOFs compared to traditional ULAs.
Moreover, mutual coupling effects may also be reduced due
to the larger inter-element spacing in sparse arrays [6].

One of the most well known sparse array configurations is
the minimum redundancy array (MRA). For a given number
of physical sensors, the MRA maximizes the number of
consecutive virtual sensors in the difference coarray [7]. It
has been shown that, by constructing an augmented covariance
matrix [8], [9], the MRA is the optimum geometry to achieve
the maximum difference coarray aperture for a given number
of sensors. Another well-known sparse array is the minimum
hole array (MHA) (also known as the Golomb array) that
minimizes the number of holes in the difference coarray [10].
Although MRAs and MHAs are shown to be effective to
increase the number of achievable DOFs, they have no closed-
form expressions for the sensor positions and the number of
achievable DOFs. As a result, designing such arrays for an ar-
bitrary number of sensors is difficult [11]. Such shortcomings
restrict their applications in practice.

Recently, the development of sparse arrays, such as nested
arrays [12], [13] and coprime arrays [14], [15], has invited
researchers to revisit this topic because such array configu-
rations can be systematically designed and their numbers of
achievable DOFs can be analytically provided with closed-
form expressions [16]–[45].

The nested array, which is obtained by combining two
or more ULAs with increased inter-element spacing, can
overcome the shortcomings of MRAs and MHAs and, at
the same time, provide O(N2) DOFs with only N physical
sensors [13]. The two-level nested array refers to a structure
consisting of two ULAs, whose resulting difference coarray
is a filled ULA (i.e., hole-free). However, for a given number



of physical sensors, the number of DOFs offered by a nested
array is smaller than that of the MRA. Although nested arrays
with more than two levels can provide a higher number of
DOFs, their difference coarrays are not necessarily a hole-
free ULA. In [16], an improved nested array is proposed via
increasing the inter-element spacing of the outer ULA and
adding an additional sensor. The new nested array enjoys
all the excellent properties of the two-level nested array and
can provide a higher number of DOFs. Two-dimensional
extensions of nested arrays are provided in [17], [18].

On the other hand, due to a densely packed ULA in the
physical array, the nested array still remains sensitive to the
mutual coupling effects between elements [46]. In [19], [20],
a sparse array configuration, referred to as the (second-order)
super nested array, is introduced which maintains the key
advantages of the existing nested array families, i.e., the sensor
locations have a closed-form expression, and the difference
coarray is hole-free. At the same time, the super nested array
avoids some of the disadvantages of the conventional nested
array. In particular, the mutual coupling effect is substantially
reduced compared to the nested arrays. Super nested arrays
are designed by rearranging the dense ULA part of a nested
array in such a way that the coarray remains unchanged, but
mutual coupling effect is reduced by reducing the number
of elements with small inter-element spacing. In [21], [22],
a generalization of super nested arrays, referred to as the
Qth-order super nested array (where Q is generally larger
than 2), is introduced. It keeps the desired properties of the
second-order super nested array while further reducing the
mutual coupling effects. In [23], a new nested array named
augmented nested array (ANA) is proposed by splitting the
dense ULA of a nested array into two or four parts, which
can be relocated at the two sides of the sparse ULA of a
nested array. Depending on how the splitting takes place, four
different ANAs, i.e., ANAI-1, ANAI-2, ANAII-1 and ANAII-
2, are derived. These ANAs provide a higher number of DOFs
compared with the existing nested and super nested array
configurations. However, they also have some disadvantages.
ANAI-1 and ANAI-2 cannot significantly reduce the mutual
coupling effect. Although ANAII-1 and ANAII-2 are more
effective against mutual coupling, the array splitting has to
satisfy complicated conditions in order to obtain hole-free
difference coarrays.

Another attractive sparse array is the coprime array. The
prototype coprime array [15] consists of two ULAs where
one ULA has M sensors with Nλ/2 inter-element spacing,
while the other ULA has N sensors with Mλ/2 inter-element
spacing, where M and N are a pair of coprime integers and
λ is the signal wavelength. Compared with the nested array,
the coprime array can further reduce mutual coupling effects
between elements. However, given the same number of array
sensors, the number of DOFs offered by a coprime array is
generally lower than that by a nested array counterpart. To
further increase the number of DOFs, an extended coprime
array was proposed in [24] by doubling the number of sensors
in one ULA. By using 2M + N − 1 sensors, its difference
coarray can obtain consecutive lags between −MN −N + 1
and MN +N − 1.

In [25], [26], the coprime array is generalized by performing
two operations. The first operation is compressing the inter-
element spacing of one subarray in the coprime array, which
yields a coprime array with compressed inter-element spacing
(CACIS). The CACIS generally increases the number of both
consecutive and unique lags. However, the minimum inter-
element spacing in CACIS remains unit spacing, and there are
still a considerable number of overlapping self- and cross-lags.
To overcome these issues, the second operation introduced
in [25], [26] is to displace one subarray in the coprime
array so that the resulting coprime array with displaced
subarrays (CADiS) provides a much larger minimum inter-
element spacing, a larger array aperture, and a higher number
of unique lags. Note that coprime arrays can be arranged into
a multi-level design [27], [28]. However, they are generally
not attractive in providing a high number of consecutive and
unique lags as compared to the nested array and the CACIS.

In this paper, we introduce a new array configuration based
on the maximum inter-element spacing constraint (MISC)
criterion. The MISC array is designed in terms of the inter-
element spacing set, which is given in a closed-form expres-
sion as a function of the number of sensors. Generally, the
MISC array configuration consists of three sparse ULAs plus
two separate sensors which are set apart with an appropriate
spacing. The MISC array possesses all the desired properties
of the nested array, such as hole-free difference coarrays and
a large coarray aperture. For a given number of sensors, the
sensor locations of the MISC array are uniquely determined by
a closed-form expression and the number of achievable DOFs
is analytically presented as well. More importantly, compared
with the nested array and the coprime array with the same
number of sensors, the MISC array configuration offers a
higher number of DOFs and reduced mutual coupling effects.
Numerical results demonstrate its superiority in comparison to
different existing sparse array configurations.

The rest of this paper is organized as follows. Some neces-
sary preliminaries are introduced in Section II. In Section III,
we present the MISC array concept, including its design rules
and array structure, the number of DOFs, and the weight
functions. Numerical results are provided in Section IV to
demonstrate the superiority of the proposed MISC arrays.
Finally, conclusions are drawn in Section V.

Throughout this paper, bold lower-case (upper-case) charac-
ters represent vectors (matrices). In particular, IN denotes the
N ×N identity matrix. The superscripts ∗, T and H denote
the complex conjugate, transpose and conjugate transpose,
respectively. E{·} is the statistical expectation operator and
vec(·) represents the vectorization operator that turns a matrix
into a vector by stacking all columns on top of the other.
⟨·⟩n1,n2 denotes the (n1, n2)th entry of a matrix; diag(a)
denotes a diagonal matrix that uses the elements of a as
its diagonal elements. The symbol ⊗ denotes the Kronecker
product, % denotes the remainder, ∥·∥F denotes the Frobenius
norm, and ⌊·⌋ is the integral part of the rational number in the
square brackets.
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II. PRELIMINARIES

A. Difference Coarray Signal Model

Consider an N -sensor nonuniform linear array, whose sen-
sor positions are given by nid, where ni belongs to an integer
set S = {ni, i = 1, 2, . . . , N} and d = λ/2 denotes the mini-
mum distance between sensors, with λ being the wavelength
of the incoming wave. Assume that K far-field, uncorrelated
narrowband signals impinge on the array from distinct di-
rections {θ1, θ2, . . . , θK} with powers {σ2

1 , σ
2
2 , . . . , σ

2
K}. The

signal received by the array at time t is modeled as

x(t) =
K∑

k=1

a(θ̄k)sk(t) + n(t) = As(t) + n(t) (1)

where s(t) = [s1(t), s2(t), . . . , sK(t)]T is the signal waveform
vector. The elements of n(t) ∼ CN (0, σ2

nIN ) are assumed
to be independent and identically distributed (i.i.d.) additive
white Gaussian noise, and are uncorrelated from the sources.
A = [a(θ̄1),a(θ̄2), . . . ,a(θ̄K)] is the N ×K array manifold
matrix, and a(θ̄k) is the steering vector of the array corre-
sponding to the kth signal, given by

a(θ̄k) = [ej2πn1θ̄k , ej2πn2θ̄k , . . . , ej2πnN θ̄k ]T (2)

with θ̄k = (d/λ) sin θk denoting the normalized DOA. We
obtain −1/2 ≤ θ̄k ≤ 1/2.

The theoretical covariance matrix of x(t) can be expressed
as

Rxx = E{x(t)xH(t)} = ARssA
H + σ2

nIN

=
K∑

k=1

σ2
ka(θ̄k)a

H(θ̄k) + σ2
nIN (3)

where Rss = E{s(t)sH(t)} = diag([σ2
1 , . . . , σ

2
K ]) is the

source covariance matrix, and σ2
n represents the noise variance.

Since the theoretical Rxx is unavailable in practice, it is
usually replaced by the sample covariance matrix

R̂xx =
1

T

T∑
t=1

x(t)xH(t) (4)

where T denotes the number of snapshots.
Vectorizing R̂xx yields

z = vec(R̂xx) = vec

[
K∑

k=1

σ2
ka(θ̄k)a

H(θ̄k)

]
+ σ2

n1n

= Bp+ σ2
n1n (5)

where B = [b(θ̄1), . . . ,b(θ̄K)], b(θ̄k) = a∗(θ̄k)⊗a(θ̄k), p =
[σ2

1 , σ
2
2 , . . . , σ

2
K ]T , and 1n = vec(IN ) = [eT1 , e

T
2 , . . . , e

T
N ]T

with ei being a column vector of all zeros except a 1 at the ith
position. Comparing (1) with (5), the vector z can be viewed as
the received data from a coherent source signal vector p with
a single snapshot, and σ2

n1n becomes a deterministic noise
term. The distinct rows of B behave like the manifold of a
virtual array with an extended aperture whose sensor positions
are given by the difference set D in Definition 1. This virtual
array is called the difference coarray of the original array [5].
Assuming that U = [−Lu, Lu] is the consecutive segment of

D, the corresponding measurements can be rearranged to form
a new (2Lu + 1)× 1 vector zU expressed as

zU = Jz = B′p+ σ2
n1

′
n (6)

where J denotes a (2Lu + 1) × N2 selection matrix, B′

is a (2Lu + 1) × K manifold matrix corresponding to the
consecutive virtual ULA U, and 1′

n is a (2Lu +1)× 1 vector
of all zeros except a 1 at the (Lu + 1)th position.

Definition 1 (Difference Coarray): For a sparse array spec-
ified by a sensor position set S, its difference coarray D is
defined as

D = {n1 − n2|n1, n2 ∈ S} (7)

Definition 2 (Degrees of Freedom [20]): The number of
degrees of freedom of a sparse array S is the cardinality of its
difference coarray D.

Definition 3 (Uniform DOFs [20]): Given a sparse array
S, let U denote the maximum consecutive segment of its
difference coarray D. The cardinality of U is referred to as
the number of “uniform DOFs” of S.

B. Mutual Coupling

The received signal vector in (1) does not consider the
mutual coupling between the physical elements. In practical
application, however, the mutual coupling effect between the
elements with small separation cannot be neglected. After
incorporating the mutual coupling effect, (1) can be rewritten
as

x(t) = CAs(t) + n(t) (8)

where C is the N ×N mutual coupling matrix. Note that the
coupling-free model (1) can be regarded as a special case of
(8), where C is an identity matrix.

In general, the expression for C is rather complicated [20],
[23]. In the ULA configuration, C can be approximated by a
B-banded symmetric Toeplitz matrix as follows [47]–[54]:

⟨C⟩n1,n2 =

{
c|n1−n2|, if |n1 − n2| ≤ B,

0, otherwise,
(9)

where n1, n2 ∈ S and c0, c1, . . . , cB are coupling coefficients
satisfying c0 = 1 > |c1| > |c2| > · · · > |cB|. It is assumed
that the magnitudes of coupling coefficients are inversely
proportional to their sensor separations, i.e., |ck/cℓ| = ℓ/k
for k, ℓ > 0 [47]. To evaluate the mutual coupling effect, the
weight function and coupling leakage are usually used.

Definition 4 (Weight Function): The weight function w(l)
of an array S is defined as the number of sensor pairs that
lead to coarray index l. Namely,

w(l) = |{(n1, n2) ∈ S2|n1 − n2 = l}|, l ∈ D. (10)

Note that the weight function w(l) for any linear array with
N sensors satisfies the following properties [20]:

w(0) = N,
∑
l∈D

w(l) = N2, w(l) = w(−l). (11)

Definition 5 (Coupling Leakage): For a given number of
sensors, the coupling leakage is defined as the energy ra-
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tio [20]:

L =
∥C− diag(C)∥F

∥C∥F
(12)

where ∥C − diag(C)∥F is the energy of all the off-diagonal
components, which characterizes the level of mutual coupling.
A small value of L implies that the mutual coupling is less
significant.

III. MISC ARRAY CONCEPT

In this section, we will introduce MISC arrays, which are
constructed based on maximum inter-element spacing con-
straint. These new array configurations have many desirable
properties and advantages. First, similar to the nested and
coprime arrays, their sensor locations and the achievable
number of DOFs can be expressed in a closed form. In
addition, the difference coarrays of MISC arrays are hole-free.
This advantage is shared by the nested array family but not
those based on the coprime array. Most importantly, MISC
arrays possess a higher number of DOFs and less mutual
coupling effects, compared to the existing sparse arrays.

A. Design Rules and Array Structure

The MISC arrays are constructed based on the given inter-
element spacings for an arbitrary number of sensors. Denote P
as the maximum inter-element spacing, and A as the associated
inter-element spacing set. Then, we may use P and A to
determine the sensor positions of MISC arrays. Specifically,
P and A for MISC arrays are defined as:

MISC Arrays:

P = 2

⌊
N

4

⌋
+ 2, (N ≥ 5) (13)

AMISC = {1, P − 3, P, . . . , P︸ ︷︷ ︸
N−P

, 2, . . . , 2︸ ︷︷ ︸
P−4

2

, 3, 2, . . . , 2︸ ︷︷ ︸
P−4

2

}. (14)

Note in (14) that there are 6 inter-element spacing groups
where 4 of them are always positive, whereas the other two
may take a value of zero. Therefore, the minimum number of
sensors in a MISC array is 5, i.e., N ≥ 5. Clearly, P is an
even number (P ≥ 4) and increases as N increases.

The sensor position set corresponding to AMISC is expressed
as

SMISC = {0, 1, P − 2, 2P − 2, . . . , (N − P + 1)P − 2,

(N − P + 1)P, (N − P + 1)P + 2, . . . , (N − P + 2)P

− 6, (N − P + 2)P − 3, (N − P + 2)P − 1,

(N − P + 2)P + 1, . . . , (N − P + 3)P − 7}. (15)

The sensor locations of the MISC array configuration are
shown in Fig. 1. It is clear that the sensor positions can be
represented as a function of N and P . Since P is determined
by N , MISC arrays have closed-form expressions for the
sensor positions with respect to an arbitrary number of sensors.

In an MISC array, the associated AMISC is generally divided
into three parts. The first part only contains two elements:
1 and P − 3, which denote two sensors with λ/2 element

spacing, and the third sensor is further separated by a spacing
of (P −3)λ/2. The second part consists of N−P elements of
P , which corresponds to a sparse ULA with N − P sensors
and inter-element spacing Pλ/2. The third part is a set of
P − 4 elements of 2 and one element of 3, and is symmetric
about 3, which implies two sparse ULAs with (P − 4)/2 and
(P − 4)/2 + 1 = (P − 2)/2 sensors (the addition of 1 is due
to the very last sensor), respectively, where the inter-element
spacing within each ULA is λ, and the spacing between the
two ULAs is 3λ/2.

We compare the MISC array with the nested array [13]
and the improved nested array [16]. Both the nested and the
improved nested array render hole-free difference coarrays.
Note that we do not compare the coprime array in this subsec-
tion because the difference array reconstructed from a coprime
array is generally not hole-free and thus coprime arrays are
not effective when considering coarrays with consecutive lags.
P and A for the nested arrays and the improved nested arrays
are given by

Nested Arrays:

P =

{
N+1
2 , if N is odd,

N
2 , if N is even,

(16)

Anested = {1, 1, . . . , 1︸ ︷︷ ︸
P−1

, P, P, . . . , P︸ ︷︷ ︸
N−P

}. (17)

Improved Nested Arrays:

P =

{
N+1
2 + 1, if N is odd,

N
2 +1, if N is even,

(18)

Aimproved = {1, 1, . . . , 1︸ ︷︷ ︸
P−2

, P, . . . , P︸ ︷︷ ︸
N−P

, P − 1}. (19)

It is observed that Anested and Aimproved contain more ones
than AMISC. This indicates that the MISC array is sparser than
both the nested array and the improved nested array, thus is
much less sensitive to mutual coupling effects.

Next, we illustrate the structure of the MISC array by
two specific examples. First, we consider the special case of
N = 5. Fig. 2(c) shows the structure of the 5-element MISC
array. For comparison, the nested array and the improved
nested array with the same number of sensors are plotted in
Figs. 2(a) and 2(b), respectively. Accordingly, A for the MISC
arrays and the improved nested arrays is {1, 1, 4, 3}, while A
for the nested arrays is {1, 1, 3, 3}. For this specific case, the
MISC array and the improved nested array have the same
configuration with P = 4, while P = 3 for the nested array.

Another illustrative example of the 8-element MISC array
configuration is shown in Fig. 3, together with the nested array
and the improved nested array configurations with the same
number of sensors. It can be seen that the MISC array has a
larger P than the nested array and the improved nested array.
Moreover, for the MISC arrays, A = {1, 3, 6, 6, 2, 3, 2}, while
for the nested arrays and the improved nested arrays, A be-
comes {1, 1, 1, 4, 4, 4, 4} and {1, 1, 1, 5, 5, 5, 4}, respectively.
Thus, the MISC array is sparser and has a larger array aperture
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Fig. 1. The MISC array configuration.
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Fig. 2. The array configurations for three kinds of 5-element NLAs. (a)
Nested, N1 = 3, N2 = 2. (b) Improved Nested, N1 = 3, N2 = 2. (c)
MISC, N = 5. Bullets represent physical sensors while crosses stand for
empty locations.

than the nested array and the improved nested array. Note
that the MISC array yields a hole-free difference coarray, as
formally described in Lemma 1.
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Fig. 3. The array configurations for three kinds of 8-element NLAs. (a)
Nested, N1 = N2 = 4. (b) Improved Nested, N1 = N2 = 4. (c) MISC,
N = 8. Bullets represent physical sensors while crosses stand for empty
locations.

Lemma 1: The difference coarrays of MISC arrays are
hole-free virtual ULAs, i.e., DMISC = U.

Proof: In terms of SMISC, the maximum distance between
the sensors is the difference between the last element and the
first element, i.e., (N−P+3)P−7. Since DMISC is symmetric
about 0, we only need to prove that its positive part D+

MISC

contains the consecutive set F = {1, 2, 3, . . . , (N−P +3)P −
7}.

Based on SMISC = {ni, i = 1, 2, . . . , N}, we may construct

the N − 1 positive difference sets as:

D1 = {n2 − n1, . . . , nN − n1},
D2 = {n3 − n2, . . . , nN − n2},
D3 = {n4 − n3, . . . , nN − n3},
· · · · · · · · · · · · · · · · · ·
DN−3 = {nN−2 − nN−3, nN − nN−3},
DN−2 = {nN−1 − nN−2, nN − nN−2},
DN−1 = {nN − nN−1}.

(20)

The above integer sets can be concretely expressed as (21),
shown at the bottom of the next page.

Let D0 = D1 ∪ D2 ∪ · · · ∪ DN−1. The proof of D0 ⊃
F can be carried out by finding the consecutive lags {kP +
1, kP + 2, . . . , (k+ 1)P} (0 ≤ k ≤ (N − P + 2)) from some
subsets of D0. First, the lag {1, 2, . . . , P} can be obtained
from D1∪D2∪D3∪DN−P+4+(P−4)/2∪DN−P+4+(P−4)/2+1.
Then, the lag {P + 1, P + 2, . . . , 2P} can be obtained from
D1 ∪ D2 ∪ D3 ∪ DN−P+2 ∪ DN−P+3. Next, the lag {2P +
1, 2P + 2, . . . , 3P} can be obtained from D1 ∪ D2 ∪ D3 ∪
DN−P+1 ∪ DN−P+2, and so on. In the penultimate step, the
lag {(N−P +1)P +1, (N−P +1)P +2, . . . , (N−P +2)P}
can be obtained from D1 ∪ D2 ∪ D3. Finally, the lag {(N −
P + 2)P + 1, (N − P + 2)P + 2, . . . , (N − P + 3)P − 7}
can be obtained from D1 ∪ D2. Since F consists of the lags
{kP + 1, kP + 2, . . . , (k + 1)P}, we can conclude D0 ⊃ F.
Since D+

MISC consists of 0 and the distinct elements in D0,
we can derive D+

MISC ⊃ F. According to the symmetry, we
get DMISC = {−((N − P + 3)P − 7),−((N − P + 3)P −
7) + 1, . . . ,−1, 0, 1, . . . , (N − P + 3)P − 7}. Therefore, the
difference coarrays of MISC arrays are hole-free ULAs, i.e.,
DMISC = U.

B. Uniform DOFs

From the integer set SMISC, we can derive that the differ-
ence set of a MISC array is given by a consecutive set between
−(N − P + 3)P + 7 and (N − P + 3)P − 7, i.e.,

DMISC = {−(N − P + 3)P + 7, . . . ,−2,−1, 0, 1, 2,

. . . , (N − P + 3)P − 7}. (22)

Therefore, the uniform DOFs for MISC arrays is:

uDOFs = 2(N − P + 3)P − 13. (23)

Substituting (13) into (23) yields

uDOFs = 4N

⌊
N

4

⌋
− 8

⌊
N

4

⌋2

+ 4N − 4

⌊
N

4

⌋
− 9. (24)

Obviously, MISC arrays have closed-form expressions for
the achievable number of uniform DOFs with respect to the
number of sensors.
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Using N/4 instead of
⌊
N
4

⌋
, (24) can be approximately

expressed as

uDOFs ≈ N2

2
+ 3N − 9. (25)

Note that this approximation does not change the orders of
magnitude of square term N2 and linear term N . We can
easily show that this approximation is accurate for any even
number of N ≥ 5. For other integers of N ≥ 5, the difference
between the true and approximate uDOFs is between -1.5 and
0.5. More specifically, the number of uniform DOFs can be
expressed as

uDOFs =


N2

2 + 3N − 8.5, N%4 = 1,

N2

2 + 3N − 9, N%2 = 0,

N2

2 + 3N − 10.5, N%4 = 3.

(26)

For comparison, the uniform DOFs for nested arrays [13]
and improved nested arrays [16] are also given by

Nested Arrays:

uDOFs =

{
N2

2 +N − 1
2 , if N is odd,

N2

2 +N − 1, if N is even.
(27)

Improved Nested Arrays:

uDOFs =

{
N2

2 + 2N − 7
2 , if N is odd,

N2

2 + 2N − 3, if N is even.
(28)

From (25), (27), (28), we observe that the number of uniform
DOFs of the MISC array has the same order of magnitude of
N2 as the nested array and the improved nested array. More-
over, the MISC array has a greater value than the nested array
and the improved nested array. Therefore, we can conclude that

the MISC array provides a higher number of uniform DOFs
than the nested array and the improved nested array. Table I
lists the number of uniform DOFs of five kinds of NLAs for
a varying number of sensors. It is observed that the nested
array has the minimum number of uniform DOFs among all
arrays compared in this table. In addition, the improved nested
array, ANAI-1 and ANAI-2 offer a higher number of uniform
DOFs than the nested array. It is also observed that, when the
number of sensors is more than 7, the MISC array provides the
highest number of DOFs among all the array configurations
compared here. This advantage becomes more evident as the
number of sensors increases.

C. Weight Functions

Another advantage of MISC arrays over other sparse arrays
is that they are less affected by mutual coupling. It is known
that the weight functions at small separations are more im-
portant for mutual coupling effects [55]. In particular, the first
three weight functions, w(1), w(2) and w(3), have a major
impact on the mutual coupling of an array, and w(1) provides
the greatest impact [20]. Therefore, in this subsection, we
derive the expressions for the first three weight functions of the
MISC array to evaluate the mutual coupling effects of MISC
arrays.

According to the definition of the weight function and the
inter-element spacing set AMISC, the numbers of elements 1, 2
and 3 in AMISC are the weight function w(1), w(2) and w(3),
respectively. Therefore, for a MISC array, its weight function

D1 = {1, P − 2, 2P − 2, 3P − 2, . . . , (N − P + 1)P − 2, (N − P + 1)P, (N − P + 1)P + 2, . . . , (N − P + 2)P − 6,

(N − P + 2)P − 3, (N − P + 2)P − 1, (N − P + 2)P + 1, . . . , (N − P + 3)P − 7}
D2 = {P − 3, 2P − 3, 3P − 3, . . . , (N − P + 1)P − 3, (N − P + 1)P − 1, (N − P + 1)P + 1, . . . , (N − P + 2)P − 7,

(N − P + 2)P − 4, (N − P + 2)P − 2, (N − P + 2)P, . . . , (N − P + 3)P − 8}
D3 = {P, 2P, 3P, . . . , (N − P )P, (N − P )P + 2, (N − P )P + 4, . . . , (N − P + 1)P − 4, (N − P + 1)P − 1,

(N − P + 1)P + 1, (N − P + 1)P + 3, . . . , (N − P + 2)P − 5}
D4 = {P, 2P, 3P, . . . , (N − P − 1)P, (N − P − 1)P + 2, (N − P − 1)P + 4, . . . , (N − P )P − 4,

(N − P )P − 1, (N − P )P + 1, (N − P )P + 3, . . . , (N − P + 1)P − 5}
· · · · · · · · · · · · · · · · · ·
DN−P+1 = {P, 2P, 2P + 2, 2P + 4, . . . , 3P − 4, 3P − 1, 3P + 1, 3P + 3, . . . , 4P − 5}
DN−P+2 = {P, P + 2, P + 4, . . . , 2P − 4, 2P − 1, 2P + 1, 2P + 3, . . . , 3P − 5}
DN−P+3 = {2, 4, . . . , P − 4, P − 1, P + 1, P + 3, . . . , 2P − 5}
· · · · · · · · · · · · · · · · · ·
DN−P+4+(P−4)/2 = {3, 5, 7, . . . , P − 1}
DN−P+4+(P−4)/2+1 = {2, 4, 6, . . . , P − 4}
· · · · · · · · · · · · · · · · · ·
DN−1 = {2}

(21)
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TABLE I
A SUMMARY OF UNIFORM DOFS OF FIVE KINDS OF NLAS FOR DIFFERENT NUMBER OF SENSORS

Array config.
Number of sensors

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Nested 17 23 31 39 49 59 71 83 97 111 127 143 161 179 199 219

Improved Nested 19 27 35 45 55 67 79 93 107 123 139 157 175 195 215 237

ANAI-1 19 27 35 45 53 65 77 91 103 119 135 153 169 189 209 231

ANAI-2 17 25 33 43 53 65 77 91 105 121 137 155 173 193 213 235

MISC 19 27 35 47 59 71 83 99 115 131 147 167 187 207 227 251

w(m) at m = 1, 2, 3 is

w(1) = 1, w(2) = 2

⌊
N

4

⌋
− 2, w(3) =

{
1, if N ̸= 9,

2, if N = 9.

(29)

In comparison, the first three weight functions for nested
arrays [13], coprime arrays [15] and second-order super nested
arrays [20] are:

Nested Arrays:

w(1) = N1, w(2) = N1 − 1, w(3) = N1 − 2. (30)

Second-Order Super Nested Arrays:

w(1) =

{
1, if N1 is odd,

2, if N1 is even,
(31)

w(2) =

{
N1 − 1, if N1 is odd,

N1 − 3, if N1 is even,
(32)

w(3) =


1, if N1 is odd,

3, if N1 = 4, 6,

4, if N1 is even, N1 ≥ 8.

(33)

Coprime Arrays:

w(1) = w(2) = w(3) = 2, (34)

where N1, N2 for nested arrays and M , N for coprime arrays
are large enough. For second-order super nested arrays, N1

and N2 are integers satisfying N1 ≥ 4, N2 ≥ 3.

Through w(1), w(2) and w(3), we can roughly compare the
mutual coupling effects of the MISC array and the other two
sparse arrays with reduced mutual coupling. Specifically, w(1)
and w(3) for MISC arrays are always one except the case of
N = 9, where w(3) is equal to two, whereas w(1), w(2) and
w(3) for nested arrays increase as N1 increases. In addition,
the MISC array has smaller values of w(1) and w(3) than
those of the coprime array and the second-order super nested
array. However, the value of w(2) for MISC arrays will grow
with the increase of N . Although the coprime array may have a
smaller value of w(2), there are holes in its difference coarray.
Therefore, we can conclude from the weight functions that the
MISC array is sparser than the nested array and the second-
order super nested array, so that the mutual coupling between
the elements is greatly reduced.

IV. NUMERICAL EXAMPLES

In this section, we will provide numerical examples to
illustrate the superiority of the proposed MISC arrays over
the existing sparse arrays in terms of weight functions, mutual
coupling matrices, and DOA estimation performance. Note
that in all examples, coprime arrays represent extended co-
prime arrays [24]. In all DOA estimations, for the ULA, the
MUSIC algorithm [3] is adopted while for sparse arrays, the
spatial smoothing MUSIC algorithm [13], [24], [35] is used
to execute DOA estimation. Moreover, we assume that all
incident sources have equal power and the number of sources
is known. To evaluate the results quantitatively, the root-mean-
square error (RMSE) of the estimated normalized DOAs is
defined as an average over 1000 independent trials:

RMSE =

√√√√ 1

1000K

1000∑
i=1

K∑
k=1

(
ˆ̄θ
(i)
k − θ̄k

)2

(35)

where ˆ̄θ
(i)
k is the estimate of θ̄k for the ith trial. Similar

to [20], in what follows, we focus on the uniform DOFs, rather
than the array aperture, to investigate the overall estimation
performance.

A. Weight Functions and Mutual Coupling Matrices

In the first simulation example, we compare the weight
functions and mutual coupling matrices of MRA, nested array,
coprime array, super nested array (Q = 2, 3), ANAI-1, ANAI-
2 and MISC array. For all these arrays, we consider three
different cases where the number of sensors is 9, 14 and 18,
respectively. For the nested array and its derivatives, we set
respectively the parameters as N1 = 5, N2 = 4; N1 = N2 = 7
and N1 = N2 = 9. For the coprime array, we choose three
sets of parameters, namely, M = 3, N = 4; M = 4, N = 7
and M = 5, N = 9. Moreover, the sensor position sets for the
MRAs are given by [23], [56]

SMRA = {1, 2, 4, 7, 14, 21, 25, 29, 30},
SMRA = {0, 1, 2, 8, 15, 16, 26, 36, 46, 56, 59, 63, 65, 68},
SMRA = {0, 1, 2, 5, 10, 15, 26, 37, 48, 59, 70, 81, 92, 98, 104,

110, 111, 112}. (36)

Here, we consider the case with strong mutual coupling [20],
[23], where the mutual coupling model (9) is characterized
by c1 = 0.3ejπ/3, B = 100, and cℓ = c1e

−j(ℓ−1)π/8/ℓ for
2 ≤ ℓ ≤ B. Fig. 4 shows the weight functions for eight
kinds of 14-element NLAs. As shown in Fig. 4, the nested
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Fig. 4. The weight functions for eight kinds of 14-element NLAs. (a) MRA. (b) Nested. (c) Coprime. (d) Second-order super nested. (e) Third-order super
nested. (f) ANAI-1. (g) ANAI-2. (h) MISC.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. The magnitudes of the mutual coupling matrices for eight kinds of 14-element NLAs. (a) MRA. (b) Nested. (c) Coprime. (d) Second-order super
nested. (e) Third-order super nested. (f) ANAI-1. (g) ANAI-2. (h) MISC.

array exhibits the largest weight functions (w(1) = 7, w(2) =
6, w(3) = 5), due to the dense inner ULA. Compared to
the nested array, the super nested arrays (Q = 2, 3) achieve
smaller weight functions (w(1) = 1, w(2) = 6, w(3) =
1;w(1) = 1, w(2) = 3, w(3) = 2) by rearranging their
dense ULA parts. The coprime array also has smaller weight
functions (w(1) = w(2) = w(3) = 2) than those of the
nested array due to sparser configuration. Both ANAI-1 and
ANAI-2 possess smaller weight functions (w(1) = 6, w(2) =

4, w(3) = 2; w(1) = 2, w(2) = 5, w(3) = 2) than those of
the nested array. For the MISC array, the weight functions
(w(1) = 1, w(2) = 4, w(3) = 1) are even smaller than those
of the second-order super nested array. Fig. 5 displays the
magnitudes of the mutual coupling matrices for eight kinds
of 14-element NLAs. The blue color implies less energy in
the corresponding entry. A summary of the weight function
and the mutual coupling leakage for eight different NLAs
are provided in Table II. It can be seen that the nested array
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TABLE II
A SUMMARY OF WEIGHT FUNCTION AND MUTUAL COUPLING LEAKAGE FOR EIGHT KINDS OF NLAS

Array config. MRA MISC Coprime Nested Super Nested (Q = 2) Super Nested (Q = 3) ANAI-1 ANAI-2

9 sensors M = 3, N = 4 N1 = 5, N2 = 4

w(1) 2 1 2 4 2 2 3 2

w(2) 1 2 2 3 1 1 1 2

w(3) 2 2 4 2 3 3 1 2

L 0.2322 0.1997 0.2589 0.3112 0.2390 0.2390 0.2643 0.2422

14 sensors M = 4, N = 7 N1 = N2 = 7

w(1) 3 1 2 7 1 1 6 2

w(2) 2 4 2 6 6 3 4 5

w(3) 2 1 2 5 1 2 2 2

L 0.2248 0.1824 0.2143 0.3333 0.2030 0.1820 0.2982 0.2214

18 sensors M = 5, N = 9 N1 = N2 = 9

w(1) 4 1 2 9 1 1 8 2

w(2) 2 6 2 8 8 5 6 7

w(3) 1 1 2 7 1 2 4 2

L 0.2209 0.1802 0.1896 0.3364 0.1979 0.1772 0.3066 0.2121

yields the highest value of L, defined in (12), implying that it
suffers from the severest mutual coupling effect. According
to the values of L, ANAI-1 and ANAI-2 can moderately
reduce the mutual coupling effect, and the super nested array
(Q = 2, 3) is much less sensitive to the mutual coupling
effect. In all cases, the MISC array and the third-order super
nested array have the least values of L, indicating that they
experience the least mutual coupling effect among all array
configurations being compared. More specifically, the third-
order super nested array renders a smaller value of L as the
number of sensors increases, while the MISC array offers a
relatively stable value of L.

B. DOA Estimation in the Absence of Mutual Coupling
In the second simulation example, we compare the DOA

estimation performance in the absence of mutual coupling
among ULA, MRA, nested array, coprime array, improved
nested array, ANAI-1, ANAI-2 and MISC array. The same
number of 14 sensors is used for all array configurations.
For the improved nested array, we set N1 = 6 and N2 = 8,
while the other array configurations are the same as those in
Section IV-A.

1) MUSIC Spectra: Fig. 6 shows the MUSIC spectra for
eight kinds of 14-element arrays when K = 50 sources are
located at θ̄k = −0.4 + 0.8(k − 1)/49, 1 ≤ k ≤ 50. The
SNR is fixed at 0 dB and the number of snapshots is set
as T = 1000. It is seen from Fig. 6 that the ULA and the
coprime array fail to identify 50 sources due to the limitation
in the number of DOFs. The nested array and ANAI-1 have
false peaks, while the remaining arrays can resolve 50 true
peaks. Furthermore, the MRA and the MISC array exhibit
higher peaks than the ANAI-2 and the improved nested array.
Therefore, they can provide higher DOA resolution than the
ANAI-2 and the improved nested array in the absence of
mutual coupling.

2) RMSE Performance: The next simulations consider the
RMSE performance versus the input SNR, the number of
snapshots, and the number of sources. The fixed parameter
setting is SNR = 0 dB, T = 1000 snapshots, and K = 20
sources (except the case where K varies). The sources are
located at θ̄k = −0.4 + 0.8(k − 1)/(K − 1), 1 ≤ k ≤ K.
Fig. 7 shows the RMSE of the normalized DOA estimates
versus the SNR. We see that as the SNR increases, all the
RMSEs decrease rapidly except that of the ULA, and attain a
steady level when the SNR is higher than -10 dB. Moreover,
the MISC array achieves smaller RMSE than the other arrays
except the MRA across a wide range of the SNR. Although
the MRA provides the best performance, its sensor locations
cannot be expressed in a closed form. Fig. 8 illustrates the
RMSE of the normalized DOA estimates versus the number
of snapshots, all the DOA estimates become more accurate
and stabilized as the number of snapshots increases, and the
MISC array behaves better than other rivals except the MRA
when T is more than 200. Fig. 9 demonstrates the RMSE of
the normalized DOA estimates versus the number of sources.
As K increases, the DOA estimations of all the arrays suffer
performance degradation. But the MISC array owns smaller
RMSE than the remaining arrays except the MRA in most
cases because it can provide a higher number of uniform
DOFs than the arrays. Furthermore, when K is more than
25, the RMSE curve of the ULA will disappear and that of
the coprime array will remarkably ascend. The reasons are
that K = 30 has exceeded the uniform DOFs of the ULA and
is close to the uniform DOFs of the coprime array. It is also
observed that only the MRA, the MISC array and the improved
nested array show stable performance when K varies from 5
to 50. This can be attributed to their advantages in the number
of uniform DOFs.
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Fig. 6. The MUSIC spectra P (θ̄) for eight kinds of 14-element arrays when K = 50 sources are located at θ̄k = −0.4 + 0.8(k − 1)/49, 1 ≤ k ≤ 50.
SNR = 0 dB and T = 1000. (a) ULA. (b) MRA. (c) Nested. (d) Coprime. (e) Improved Nested. (f) ANAI-1. (g) ANAI-2. (h) MISC.
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Fig. 7. RMSE of normalized DOA estimates versus the SNR when K = 20
sources are located at θ̄k = −0.4+0.8(k−1)/19, 1 ≤ k ≤ 20. The number
of sensors is equal to 14, and the number of snapshots is set as T = 1000.
Each simulated point is averaged from 1000 trials.

C. DOA Estimation in the Presence of Mutual Coupling

In the third simulation example, we consider eight array
configurations: MRA, nested array, coprime array, super nested
array (Q = 2, 3), ANAI-1, ANAI-2 and MISC array, and then
compare their DOA estimation performance in the presence
of mutual coupling. The same number of 18 sensors is used
for all arrays, whose configurations are the same as those in
Section IV-A.

1) MUSIC Spectra: Fig. 10 shows the MUSIC spectra for
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Fig. 8. RMSE of normalized DOA estimates versus the number of snapshots
when K = 20 sources are located at θ̄k = −0.4+0.8(k− 1)/19, 1 ≤ k ≤
20. The number of sensors is equal to 14, and the SNR is fixed at 0 dB. Each
simulated point is averaged from 1000 trials.

eight kinds of 18-element arrays when K = 30 sources are
located at θ̄k = −0.45 + 0.9(k − 1)/29, 1 ≤ k ≤ 30. The
SNR is fixed at 0 dB and the number of snapshots is set as
T = 1000. We observe from Fig. 10 that only the MISC array
is capable of detecting all 30 sources, while the other arrays
(with false peaks or missing peaks) are not. Since the number
of DOFs of these arrays is higher than 30, the MISC array is
more effective than the remaining arrays against strong mutual
coupling.
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Fig. 10. The MUSIC spectra P (θ̄) for eight kinds of 18-element NLAs when K = 30 sources are located at θ̄k = −0.45 + 0.9(k − 1)/29, 1 ≤ k ≤ 30.
SNR = 0 dB and T = 1000. The mutual coupling model (9) is characterized by c1 = 0.3ejπ/3, B = 100, and cℓ = c1e−j(ℓ−1)π/8/ℓ for 2 ≤ ℓ ≤ B.
(a) MRA. (b) Nested. (c) Coprime. (d) Second-order super nested. (e) Third-order super nested. (f) ANAI-1. (g) ANAI-2. (h) MISC.
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Fig. 9. RMSE of normalized DOA estimates versus the number of sources
when K sources are located at θ̄k = −0.4+0.8(k−1)/(K−1), 1 ≤ k ≤ K.
The number of sensors is 14, SNR = 0 dB and T = 1000. Each simulated
point is averaged from 1000 trials.

2) RMSE Performance: The next simulations focus on the
RMSE performance versus the input SNR, the number of
snapshots, the number of sources, and the modulus of coupling
coefficient c1. The mutual coupling model (9) is characterized
by B = 100, c1 = 0.3ejπ/3 and cℓ = c1e

−j(ℓ−1)π/8/ℓ (except
the case where |c1| varies). The fixed parameter setting is
SNR = 0 dB, T = 1000 snapshots, and K = 25 sources
(except the case where K varies). The sources are located
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Fig. 11. RMSE of normalized DOA estimates versus the SNR when K = 25
sources are located at θ̄k = −0.45 + 0.9(k − 1)/24, 1 ≤ k ≤ 25. The
number of sensors is 18 and T = 1000. The mutual coupling model (9) is
characterized by c1 = 0.3ejπ/3, B = 100, and cℓ = c1e−j(ℓ−1)π/8/ℓ for
2 ≤ ℓ ≤ B. Each simulated point is averaged from 1000 trials.

at θ̄k = −0.45 + 0.9(k − 1)/(K − 1), 1 ≤ k ≤ K.
The RMSE of the normalized DOA estimates versus the

SNR is shown in Fig. 11. We see that the MISC array and
two super nested arrays exhibit better performance than all the
other arrays across a wide range of the SNR, and the MISC
array yields the lowest RMSE over the entire SNR range. It in-
dicates that the three arrays outperform the other arrays against
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mutual coupling effects and the MISC array is least sensitive
to the mutual coupling effects. The RMSE of the normalized
DOA estimates versus the number of snapshots is plotted
in Fig. 12. It is observed that, as the number of snapshots
increases, the RMSE is reduced rapidly for the MISC array and
the super nested arrays until T reaches about 1500. In contrast,
the RMSE results of the other arrays are reduced rather slowly,
especially for the nested array, the coprime array and ANAI-1.
Fig. 13 depicts the RMSE of the normalized DOA estimates
versus the number of sources. When K is small, the MRA
has the minimum RMSE. However, the performance of the
MRA will deteriorate rapidly as K increases. In contrast, the
performances of the MISC array and the super nested arrays
(Q = 2, 3) are more stable and begin to evidently deteriorate
only when K is more than 20. Additionally, the MISC array
will outperform the super nested arrays (Q = 2, 3) when K
exceeds 25.
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Fig. 12. RMSE of normalized DOA estimates versus the number of snapshots
when K = 25 sources are located at θ̄k = −0.45 + 0.9(k − 1)/24, 1 ≤
k ≤ 25. The number of sensors is 18, and the SNR is fixed at 0 dB. The
mutual coupling model (9) is characterized by c1 = 0.3ejπ/3, B = 100,
and cℓ = c1e−j(ℓ−1)π/8/ℓ for 2 ≤ ℓ ≤ B. Each simulated point is averaged
from 1000 trials.

The RMSE of the normalized DOA estimates versus |c1| is
illustrated in Fig. 14. For any array geometry, along with the
increase of |c1|, the corresponding RMSE increases. That is
because a higher value of |c1| introduces more severe mutual
coupling effect. When |c1| is less than 0.2, the MRA yields
the best performance while the coprime array achieves the
worst performance. The reason for this is that the estimation
performance is mainly determine by the number of achievable
DOFs when the mutual coupling is weak. Moreover, the MISC
array is only slightly worse than the MRA in estimation
performance, but works better than the remaining arrays owing
to its DOFs advantage. When |c1| is larger than 0.2, the ANAI-
2, the MISC array, and the super nested arrays (Q = 2, 3)
achieve higher estimation accuracy than the MRA because
the estimation accuracy is more severely affected by mutual
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Fig. 13. RMSE of normalized DOA estimates versus the number of sources
when K sources are located at θ̄k = −0.45 + 0.9(k − 1)/(K − 1), 1 ≤
k ≤ K. The number of sensors is 18, SNR = 0 dB and T = 1000. The
mutual coupling model (9) is characterized by c1 = 0.3ejπ/3, B = 100, and
cℓ = c1e−j(ℓ−1)π/8/ℓ for 2 ≤ ℓ ≤ B. Each simulated point is averaged
from 1000 trials.

coupling effects in this situation. Furthermore, the MISC
array and the third-order super nested array perform better
than the ANAI-2 and the second-order super nested array as
|c1| increases because the former two are less sensitive to
the mutual coupling effects than the latter two. When |c1|
is greater than 0.5, the coprime array offers smaller RMSE
results than other tested arrays. It indicates that the coprime
array outperforms other arrays when the mutual coupling is
very severe.

V. CONCLUSIONS

In this paper, a new NLA configuration, termed MISC
arrays, is proposed to simultaneously increase the number of
DOFs and reduce the mutual coupling effects. The MISC array
is constructed based on an inter-element spacing set, where the
maximum inter-element spacing is analytically specified. More
specifically, for a given number of sensors, the sensor locations
and the number of DOFs of a MISC array are uniquely
determined and can be expressed by closed-form expressions.
Theoretical derivations show that MISC arrays have hole-free
difference coarrays and can provide a higher number of DOFs
than nested arrays and improved nested arrays. Furthermore,
MISC arrays are less sensitive to mutual coupling effects as
compared to coprime arrays and second-order super nested
arrays. Numerical results verify that the MISC array is superior
to the existing NLAs in terms of weight functions, mutual
coupling matrices as well as DOA estimation performance.
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