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Abstract—Massive multiple-input multiple-output (MIMO) is
one of the most promising techniques for next generation wireless
communications due to its superior capability to provide high
spectrum and energy efficiency. Considering the very large num-
ber of antennas employed at the base station, however, the pilot
overhead for downlink channel estimation becomes unaffordable
in frequency division duplex (FDD) multi-user massive MIMO
systems. In this paper, we propose an information-theoretic
metric to design the pilot for downlink channel estimation in
FDD multi-user massive MIMO systems. By exploiting the low-
rank nature of the channel covariance matrix, we first derive the
minimum number of pilot symbols required to ensure perfect
channel recovery, which is much less than the number of antennas
at the base station. Further, under a general channel model
that the channel vector of each user follows a Gaussian mixture
distribution, the pilot symbols are designed by maximizing the
weighted sum of the Shannon mutual information between the
measurements of the users and their corresponding channel
vectors on the complex Grassmannian manifold. Simulation
results demonstrate the effectiveness of the proposed information-
theoretic pilot design for the downlink channel estimation in FDD
massive MIMO systems.

Index Terms—Channel estimation, frequency division duplex
(FDD), Gaussian mixture distribution, Grassmannian manifold,
information-theoretic metric, massive multiple-input multiple-
output (MIMO), pilot design.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) be-
comes a key enabling technology for next generation

wireless communications benefited from its promising system
capacity, energy efficiency, security and robustness [2–6]. In
massive MIMO systems, the very large number of antennas at
the base station simultaneously serve a much smaller number
of users in the same radio frequency (RF) channel, where
each user is usually equipped with a single antenna due to
the physical size limitation. With the very large number of
antennas, the number of degrees-of-freedom is high enough
to eliminate multiuser interference using transmit precoding
or receive beamforming. In addition, massive MIMO also
improves the detection and estimation performance in wireless
sensor networks [7–14].

Similar to general wireless communication systems, there
are two commonly used duplex modes in massive MIMO
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systems, i.e., time division duplex (TDD) and frequency
division duplex (FDD). Among them, the TDD is popular for
massive MIMO [2, 15–18], where the principle of reciprocity
can be leveraged, that is, the downlink channel vector (or
matrix) is simply the transpose of the uplink channel vector
(or matrix). As such, the number of required pilot symbols
for the downlink channel estimation (via the uplink channel
estimation) is independent of the number of antennas at the
base station, which is very large in massive MIMO systems.
It is worth noting that the accurate channel state information
is essential in wireless communications for reliable signal
transmission and efficient resource allocation.

Despite the attractiveness of the TDD mode in channel es-
timation, many current wireless cellular systems are primarily
dominated by the FDD mode. Unlike the TDD mode, the
channel reciprocity property does not apply for the FDD mode
where the downlink and uplink channels occupy different
frequency bands. In the FDD mode, each user estimates its
own downlink channel from the received pilot symbols trans-
mitted from the base station, and feeds the estimated downlink
channel information back to the base station for subsequent
signal transmission and resource allocation. Considering that
the number of required pilot symbols for downlink channel
estimation in the FDD mode is proportional to the number of
antennas at the base station, there is a huge pilot overhead for
massive MIMO systems equipped with a very large number of
antennas. Hence, there is a more urgent requirement in FDD
massive MIMO systems to use much less pilot symbols for
downlink channel estimation.

Reducing the downlink pilot overhead in FDD massive
MIMO systems has been the subject of recent studies due
to its importance. These techniques are mainly developed by
exploiting the sparsity of the channel on the virtual angular
domain [19, 20], the low-rank nature of the channel covariance
matrix [21–26], or joint sparse and low-rank structures [27].
Both the channel sparsity and the low-rank structure are
due to the narrow angular spread of the incoming/outgoing
rays at the base station in typical cellular systems, which
subsequently leads to a high correlation between different
paths that link the base station and the user. The sparsity and/or
the low rankness enable the estimation of the downlink channel
with much less pilot symbols than the number of antennas
employed at the base station in a sparse reconstruction manner.
Specifically, the distributed compressive channel estimation
in [19] and the compressive sensing based adaptive channel
estimation and feedback scheme in [20] exploit the sparsity
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of massive MIMO channels to reduce the pilot overhead
significantly. By reducing the dimensionality of the effective
channels via the correlated channel covariance matrix, the
joint spatial division and multiplexing scheme in [21] and the
beam division multiple access transmission scheme in [24]
enable significant savings in both the downlink pilot and the
uplink feedback. By assuming that each training signal has a
much lower rank than the number of antennas, open-loop and
closed-loop training frameworks in [22] reduce the overhead
of the downlink training phase by exploiting prior channel
information such as the long-term channel statistics. In [23],
the rank-deficient channel covariance matrices were exploited
to design efficient downlink pilot symbols with dimensionality
reduction. By exploiting the low-rank property of the massive
MIMO channel matrix caused by correlation among users, the
joint channel estimation for all users is performed at the base
station based on the matrix completion [25], based on which
the overhead of downlink channel training as well as uplink
channel feedback can be reduced. By exploiting the low-rank
property of the channel covariance matrices, the required num-
ber of pilot symbols was proved to be significantly reduced
[26].

In addition, other researchers tried to utilize additional
knowledge beyond the sparsity in order to further reduce the
pilot overhead. For example, by exploiting the reciprocity of
the angular scattering function [28] and the uplink-downlink
covariance interpolation [29], the downlink channel estimation
in FDD massive MIMO systems performs well even when
the pilot dimension is less than the inherent dimension of
the channel vectors. By estimating the directions-of-arrival
(DOAs) of the users, the pilot symbols can then be designed
such that the transmit energy concentrates over the known
DOAs to achieve a beamforming gain [30–32]. Specifically,
a two-stage compressive sensing scheme was proposed for
channel estimation in [30], where the first stage randomly
generates the pilot to coarsely estimate candidates for DOAs
whereas the second stage adaptively designs the pilot to refine
the candidates exhaustively. A joint RF training and compres-
sive channel estimation scheme was proposed in [31], which
achieves a better tradeoff between pilot overhead reduction
using random RF training vectors and beamforming gain using
narrow-beam RF training vectors. In [32], the out-of-band
spatial information extracted from a sub-6 GHz channel is
exploited to design a structured random codebook (pilot) and
the associated weighted sparse channel recovery algorithm.

Typical pilot design criteria include maximizing the system
spectral efficiency [21], minimizing the mean squared error
(MSE) [22, 26], maximizing the average received signal-to-
noise ratio (SNR) [22], maximizing the summation of the
conditional mutual information [23], maximizing the sum-rate
upper bound [24], minimizing the sum of MSEs [26], and
minimizing the weighted sum MSE [33]. However, they all
assume that the channel vector can be modeled as a single
smooth Gaussian variable, which limits their applications
in more complex environments. In [34], the uplink channel
component in the beam domain is modeled to a more general
Gaussian mixture, i.e., a weighted sum of multiple Gaussian
distributions with different variances. To the best of our

knowledge, however, there is no pilot design for the downlink
channel estimation in massive MIMO systems based on the
Gaussian mixture distribution.

In this paper, in addition to exploiting the sparsity and the
low-rank nature, we further model the downlink channel in
FDD massive MIMO systems to follow a general Gaussian
mixture distribution for the pilot design [34, 35]. First, we
study the asymptotic behavior of the minimum mean-squared
error (MMSE) estimator. It reveals that a perfect channel
recovery can be asymptotically reached in the high-SNR
regime, provided that the number of pilot symbols is no less
than the maximum rank of the channel covariance matrices
of all Gaussian components of all users. Then, we adopt
the information-theoretic approach to optimize the downlink
pilot symbols for the estimation of Gaussian mixture chan-
nels in FDD massive MIMO systems. More specifically, the
allocation of pilot symbols is optimized by maximizing the
weighted sum of the Shannon mutual information between
the measurements of multiple users served in massive MIMO
systems and their corresponding downlink channel vectors. It
is noted that the weighted sum of the mutual information is
invariant when the pilot matrix undergoes an arbitrary unitary
rotation, i.e., the weighted sum of the mutual information
is a function of the subspace spanned by the pilot symbol
vectors. Consequently, it enables us to optimize the pilot
matrix on the complex Grassmannian manifold. Unlike the
general sparse reconstruction problem, there is a closed-form
MMSE solution for the downlink channel estimation under the
Gaussian mixture assumption. Simulation results demonstrate
the effectiveness of the proposed pilot design approach for
the downlink channel estimation for an arbitrary number of
users served in the massive MIMO system by exploiting the
available a priori knowledge of the desired channel vector.

By generalizing the downlink channels in FDD massive
MIMO systems to follow Gaussian mixture distributions, the
main contributions of this paper can be summarized as follows:
• We analyze the asymptotic behavior of the MMSE esti-

mator under Gaussian mixture distribution, and present the
minimum number of pilot symbols required for Gaussian
mixture channel estimation.
• We perform the Taylor series expansion to approximate

the weighted sum of the mutual information associated with
all users, and optimize the pilot matrix on a complex Grass-
mannian manifold.

The rest of the paper is organized as follows. In Section
II, we describe the multi-user model in massive MIMO sys-
tems, and present the MMSE channel estimator based on the
Gaussian mixture assumption. In Section III, we analyze the
asymptotic behavior of the MMSE estimator in the high-SNR
regime. In Section IV, we propose an information-theoretic
pilot optimization on the Grassmannian manifold. In Section
V, we compare the proposed pilot symbols with random pilot
symbols in terms of channel estimation performance. We make
our conclusions in Section VI.

II. SYSTEM MODEL

Assume that N ≫ 1 transmit antennas equipped at the base
station serve M ≥ 1 single-antenna users in the FDD mode,
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Fig. 1. Pilot demo in the FDD multi-user massive MIMO system.

as shown in Fig. 1. The downlink channel vector of the m-
th user, hm ∈ CN , is estimated at the m-th user terminal
from the noisy measurements of the known pilot symbols
transmitted from the base station. The estimated downlink
channel information is then sent back to the base station for
subsequent scheduling, precoding and transmission.

Without loss of generality, the downlink channel of each
user is assumed to be a frequency-flat fading channel under
a narrowband assumption. This assumption can be easily
extended to wideband frequency-selective channels in the con-
text of multi-carrier transmission schemes such as orthogonal
frequency-division multiplexing (OFDM).

Assume that the base station transmits a set of pilot symbols
{ϕ(l), l = 1, 2, · · · , L}, where L is the length of the pilot (i.e.,
the number of pilot symbols in time) transmitted from each
antenna. The l-th baseband signal received at the m-th user
terminal is expressed as

ym(l) = ϕT(l)hm + nm(l), ∀ m ∈M, (1)

where M = {1, 2, · · · ,M} is the set denoting the indexes
of users served in the massive MIMO system, ϕ(l) ∈ CN is
the l-th pilot symbol vector transmitted from N base station
antennas, and nm(l) ∼ CN (0, σ2

nm
) denotes the zero-mean

additive white Gaussian noise with variance σ2
nm

. Here, ( · )T
denotes the transpose operator. Note that, in this signal model,
the inter-cell interference leaked from neighboring frequency-
reuse cells is ignored for the simplicity and clarity of the
problem.

Stacking the received signals of the m-th user terminal over
all L pilot symbols as ym = [ym(1), ym(2), · · · , ym(L)]

T ∈
CL gives

ym = Φhm + nm, (2)

where Φ = [ϕ(1),ϕ(2), · · · ,ϕ(L)]T ∈ CL×N is the pilot
symbol matrix, and nm = [nm(1), nm(2), · · · , nm(L)]

T ∼
CN (0, σ2

nm
I) is the zero-mean additive Gaussian noise vec-

tor with I denoting the identity matrix with an appropriate
dimension. The least squares (LS) estimate of hm is given by

ĥ
LS
m =

[
ΦHΦ

]−1
ΦHym, (3)

where ( · )H denotes the Hermitian transpose operator. In order
to perform the matrix inversion in the above expression, the
number of pilot symbols must not be less than the number
of antennas, i.e., L ≥ N . Unfortunately, in massive MIMO
systems, N , the number of antennas at the base station, is
typically very large, which means that such a pilot overhead
requirement becomes unaffordable in the FDD mode.

In order to guarantee the transmission efficiency, the number
of pilot symbols in FDD massive MIMO systems should be
kept much less than the number of antennas at the base station,
i.e., L ≪ N . In such a case, the above downlink channel
estimation in (3) becomes ill-conditioned because the number
of unknowns is much larger than the number of measurements.
As a result, the least squares method is no longer applicable.

On the other hand, because of the compact configuration
of the antennas in massive MIMO systems, the channel
is a correlated random vector depending on the scattering
geometry, which leads to a low-rank channel covariance matrix
[23, 26]. In addition, the channel can be regarded as sparse
or approximately sparse in some suitable representation bases,
where the channel only contains a small number of dominant
components while the others are negligible [34]. When the
channel vector is sparse or approximately sparse, it can be
estimated in the framework of compressive sensing with less
measurements than the number of unknowns [20].

In addition to the sparsity and low-rank property, in this
paper, we further model the channel vector in massive MIMO
systems as a Gaussian mixture distribution. This mixture
distribution is very popular and well verified in practice to
describe the real environment signals with high flexibility
and tractability (see, for example, [36, 37] and the references
therein). Let the probability density function (pdf) of the
channel vector hm be modeled by a mixture of Gaussian
distributions given by

f(hm) =
∑

k∈Km

p
(m)
k f (k)(hm)

=
∑

k∈Km

p
(m)
k CN

(
u
(k)
hm

,R
(k)
hmhm

)
, (4)

where Km = {1, 2, · · · ,Km} has a cardinality Km, and∑
k∈Km

p
(m)
k = 1. The Gaussian mixture distribution of the

channel vector hm implies that it contains Km Gaussian
components, and the k-th Gaussian component is activated
with probability p

(m)
k > 0 and, when activated, that component

generates a complex-valued Gaussian vector with distribu-
tion f (k)(hm) = CN

(
u
(k)
hm

,R
(k)
hmhm

)
. The parameter set{

p
(m)
k ,u

(k)
hm

,R
(k)
hmhm

; k ∈ Km

}
defines the Gaussian mixture

distribution of the channel vector hm. The parameters char-
acterizing the Gaussian mixture distribution can be estimated
by using, e.g., the expectation maximization (EM) algorithm
[38, 39], the sparse Bayesian learning method [40, 41], or the
piecewise-Gaussian approximation method [1, 36].

Under the channel distribution model (4), it can be shown
that the measurement ym in (2) also follows the Gaussian
mixture distribution with Km components, and its pdf is
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expressed as

f(ym) =
∑

k∈Km

p
(m)
k f (k)(ym), (5)

where the k-th component f (k)(ym) = CN
(
u
(k)
ym

,R(k)
ymym

)
is

complex Gaussian distributed with mean vector and covariance
matrix given by

u(k)
ym

= Φu
(k)
hm

,

R(k)
ymym

= ΦR
(k)
hmhm

ΦH + σ2
nm

I. (6)

The MMSE estimate of the channel vector hm, defined by

min
ĥm

E
{∥∥hm − ĥm

∥∥2
2

}
, (7)

is given by [42]

ĥ
MMSE
m = E{hm|ym} =

∑
k∈Km

pk|ym
u
(k)
hm|ym

, (8)

where E{ · } denotes the statistical expectation operator,

u
(k)
hm|ym

= u
(k)
hm

+R
(k)
hmhm

ΦH
[
R(k)

ymym

]−1(
ym −u(k)

ym

)
(9)

is the k-th component of the MMSE estimator of hm given
the measurement ym, and

pk|ym
=

p
(m)
k f (k)(ym)

f(ym)
(10)

is the corresponding posterior probability [43]. When the
downlink channel estimate ĥ

MMSE
m is obtained, it will be sent

back to the base station.
Note that, although the MMSE estimator for hm has an

analytical form, its performance measure, the MMSE itself,
does not have such a closed form because of the Gaussian
mixture distribution. According to [42], the MSE of hm is
upper and lower bounded as (11), shown at the bottom of the
page, where Tr[ · ] denotes the trace of a matrix, and

Rhmhm=
∑

k∈Km

p
(m)
k

[
R

(k)
hmhm

+u
(k)
hm

(
u
(k)
hm

)H]−u(m)
h

(
u
(m)
h

)H
(12)

is the covariance matrix of the channel vector hm with the
mean vector given by

u
(m)
h =

∑
k∈Km

p
(m)
k u

(k)
hm

. (13)

It is indicated in [42] that the upper and lower bounds approach
each other as the SNR increases, and they must coincide as
the SNR tends to infinity.

When the Gaussian mixture distribution degrades into a
single Gaussian distribution (i.e., Km = 1), the upper and

lower bounds of the MSE of the MMSE estimator for the
channel vector hm in (11) become identical, i.e., the MSE has
a closed-form expression, thereby facilitating the pilot design
via minimizing the MSE [26] or minimizing the weighted sum
MSE [33]. However, the existing pilot design methods under
the MMSE criterion for the Gaussian channel are not directly
suitable for the Gaussian mixture channel which does not
have an analytic MSE expression. Considering the relationship
between mutual information and MMSE [44], we propose an
information-theoretic pilot design approach for the Gaussian
mixture channel estimation in FDD massive MIMO systems.
In the sequel, we first prove the asymptotic behavior of
the MMSE estimator for the Gaussian mixture channel in
Section III, and then propose the information-theoretic pilot
optimization on the Grassmannian manifold in Section IV.

III. ASYMPTOTIC BEHAVIOR OF THE MMSE ESTIMATOR

In this section, we analyze the behavior of the MMSE
estimator in the asymptotic high-SNR regime. The asymptotic
analysis verifies the possibility of perfect channel recovery
from a small number of pilot symbols, because of the low rank
of the channel covariance matrix in massive MIMO systems.

Theorem: Let r
(k)
m be the rank of the channel co-

variance matrix of the k-th Gaussian component in the
Gaussian mixture distribution of the m-th user, R

(k)
hmhm

,
i.e., r

(k)
m = rank

(
R

(k)
hmhm

)
, where rank( · ) denotes

the rank of a matrix. Let V (k)
m Γ(k)

m

(
V (k)

m

)H
denote the

eigen-decomposition of
(
R

(k)
hmhm

) 1
2ΦHΦ

(
R

(k)
hmhm

) 1
2 , where

V (k)
m =

[
v
(k)
m1 , · · · ,v

(k)
mN

]
is a unitary matrix consisting

of the eigenvectors of V (k)
m Γ(k)

m

(
V (k)

m

)H, and the diagonal
matrix Γ(k)

m = diag
(
γ1, γ2, · · · , γr(k)

m
, 0, · · · , 0

)
consists of the

corresponding eigenvalues with γ1 ≥ γ2 ≥ · · · ≥ γ
r
(k)
m

> 0.
Assume that the number of randomly generated pilot symbols,
L, is no less than the maximum of r

(k)
m of all Gaussian

components for each user, i.e., L ≥ maxm∈M maxk∈Km r
(k)
m ,

then the lower bound of the MSE of the MMSE estimate of
hm is given by

ε
(m)
Lower ≤ E

{∥∥∥hm − ĥ
MMSE
m

∥∥∥2
2

}

=
∑

k∈Km

p
(m)
k

r(k)
m∑
i=1

(
1 +

γi
σ2
nm

)−1(
v(k)
mi

)H
R

(k)
hmhm

v(k)
mi

,

∀ m ∈M, (14)

which approaches zero in the asymptotic low-noise regime,
i.e., σ2

nm
→ 0. Considering that the upper and lower bounds

∑
k∈Km

p
(m)
k Tr

[
R

(k)
hmhm

−R
(k)
hmhm

ΦH
(
ΦR

(k)
hmhm

ΦH + σ2
nm

I
)−1

ΦR
(k)
hmhm

]
≤ E

{∥∥∥hm − ĥ
MMSE
m

∥∥∥2
2

}
≤ Tr

[
Rhmhm −RhmhmΦH

(
ΦRhmhmΦH + σ2

nm
I
)−1

ΦRhmhm

]
, (11)
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approach each other with increasing SNR and they must
coincide as the SNR tends to infinity [42], we have

lim
SNRm→∞

E
{∥∥∥hm − ĥ

MMSE
m

∥∥∥2
2

}
= 0, ∀ m ∈M, (15)

where SNRm = ∥hm∥2/σ2
nm

denotes the SNR of the m-th
user’s channel. That is, perfect channel recovery is possible
for each user.

Proof : See Appendix A. �
The above asymptotic analysis proves that

an accurate channel estimation from as few as
L = maxm∈M maxk∈Km rank

(
R

(k)
hmhm

)
pilot symbols

is possible in the asymptotic regime. Nevertheless, it does
not tell us how to design pilot symbols in the non-asymptotic
regime. In the following section, we propose a novel
information-theoretic pilot design method for the channel
estimation in FDD massive MIMO systems serving for an
arbitrary number of users.

IV. INFORMATION-THEORETIC PILOT OPTIMIZATION ON
THE GRASSMANNIAN MANIFOLD

In this section, we adopt the maximum mutual information
criterion to optimize the pilot symbols on the Grassmannian
manifold for the estimation of Gaussian mixture channels.
Define I(ym;hm) as the Shannon mutual information be-
tween the measurement vector ym at the m-th user and the
corresponding channel vector hm, i.e., [45]

I(ym;hm) = h(ym)− h(ym|hm), (16)

where h(ym) = −E {log[f(ym)]} denotes the differential
entropy of the measurement vector ym, and h(ym|hm) =
−E {log[f(ym|hm)]} denotes the differential entropy of the
measurement vector ym conditioned on the channel vector
hm. Note that, the mutual information I(ym;hm) is an
implicit function of the pilot matrix Φ via the measurement
equation (2). It is difficult, if not impossible, to analytically
derive the differential entropy even for a simple estimation
problem, let alone the parameter estimation problem with the
high dimensionality and non-Gaussianity.

In massive MIMO systems, the pilot symbols transmitted
from the base station are common to all served users and
should be optimized to maximize the mutual information
associated with all these users. It is assumed that the channels
of different users are independent to each other because of the
separation between the users and the rich multipath. Let

J(Φ) =
∑

m∈M
wmI(ym;hm) (17)

denote the weighted sum of the mutual information associated
with all users served in the massive MIMO system, where wm

is the weight assigned to the m-th user with
∑

m∈M wm = 1
according to different criteria, such as the commonly used
equal weights and different fairness weights (e.g., max-min
fairness, weighted fairness, and proportional fairness) [46].
Unlike in (16), here we express the weighted sum of the mutual
information as an explicit function of Φ.

The information-theoretic design of pilot symbols can be
formulated as an optimization problem to maximize the

weighted sum of the mutual information associated with all
users, i.e.,

max
Φ

J(Φ)

subject to ΦΦH = I, (18)

where the orthonormal constraint ΦΦH = I is introduced to
allocate the equal power to each pilot symbol so as to avoid
increasing the mutual information by simply scaling Φ to be
larger because scaling Φ only affects the channel rather than
the noise. Another commonly adopted pilot constraint is the
total transmit power constraint [23, 26, 33], i.e., Tr[ΦΦH] ≤ L.
It is noted that the orthonormal constraint always satisfies the
power constraint, but not vice versa. That is to say, the feasible
set with orthonormal constraint is a subset of the feasible set
with power constraint, i.e, {Φ|ΦΦH = I} ⊂ {Φ|Tr

[
ΦΦH

]
≤

L}.
Note that the objective function in (18) is non-convex with

respect to the optimization variable Φ, which belongs to
the L-dimensional subspace in CN . In general, the entropy
calculation does not have a closed-form solution for most
pdf’s of interest, including the Gaussian mixture model used
in this paper. In order to obtain a feasible solution, therefore,
we perform a Taylor series expansion of the logarithm of the
Gaussian mixture pdf required in the definition of the entropy,
which enables a gradient-based search method.

By performing the first-order Taylor series expansion of the
logarithm of the Gaussian mixture distribution in the definition
of the differential entropy of the measurement vector ym, we
obtain the approximated differential entropy as [1, 36]

h(ym) ≈ −log

[ ∑
k∈Km

p
(m)
k f (k)

(
y
(m)
0

)]
, (19)

where y
(m)
0 = E{ym} is the mean value of the measurement

ym. The derivation of the above approximated differential
entropy can be found in Appendix B. Following the zero mean
assumption of the channel vector [21, 23, 26, 33, 34, 47],
we have u

(k)
ym

= Φu
(k)
hm

= 0 for all individual Gaussian
components of ym. In this case, it is natural to set the Taylor
series expansion point to y

(m)
0 = 0, resulting in

f (k)
(
y
(m)
0

)
=

1

πL
∣∣∣R(k)

ymym

∣∣∣ , (20)

where | · | denotes the determinant of a matrix. We now have
the approximated differential entropy of ym expressed as

h(ym) ≈ −log

[ ∑
k∈Km

p
(m)
k

∣∣∣R(k)
ymym

∣∣∣−1
]
+ Llogπ. (21)

Because the additive white Gaussian noise vector nm ∼
CN (0, σ2

nm
I) is independent of the channel vector hm, the

conditional differential entropy is given by

h(ym|hm) = h(nm) = Llog(πeσ2
nm

). (22)

Hence, the mutual information I(ym;hm) is approximated as

I(ym;hm) ≈ −log

[ ∑
k∈Km

p
(m)
k

∣∣∣R(k)
ymym

∣∣∣−1
]
− Llog(eσ2

nm
).

(23)
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Accordingly, the weighted sum of the mutual information
associated with all served users is approximated as

J(Φ) ≈ −
∑

m∈M

wmlog

[ ∑
k∈Km

p
(m)
k

∣∣∣R(k)
ymym

∣∣∣−1
]
−Llog(eσ2

nm
),

(24)
where the second term is a constant independent of the pilot
matrix Φ. It is noted that J(Φ), the objective function in (18),
remains unchanged when the pilot matrix Φ undergoes an
arbitrary unitary rotation, i.e.,

J(QΦ) = J(Φ), (25)

where Q ∈ CL×L is a unitary matrix satisfying QHQ =
QQH = I . Hence, J(Φ) is a function of the subspace spanned
by the rows of the pilot matrix, or equivalently, the row space
of Φ, because the row spaces of Φ and QΦ are the same.

Based on (25), we can optimize the mutual information
maximization problem (18) over the complex Grassmannian
manifold G(N,L), which composes of all L-dimensional
subspaces in CN . The Grassmannian is a compact Rieman-
nian manifold, and its geodesics can be explicitly computed
[48, 49]. Following the framework in [50], we derive the
Grassmannian gradient ascent algorithm to search the pilot
matrix Φ on the Grassmannian manifold G(N,L) such that the
weighted sum of the mutual information J(Φ) is maximized.

To compute the gradient of J(Φ) on the Grassmannian
manifold, we first need to compute the derivative of J(Φ) with
respect to Φ. Taking the derivative of the weighted sum of the
approximated mutual information in (24) with respect to the
pilot matrix Φ, we have dJ(Φ)

dΦ in (26), shown at the bottom of
the page, where the first denominator is a positive real number
that scales the assigned weight of the mutual information of
a specific user, which, in turn, affects the derivative direction,
and the second denominator affects the derivative direction by
scaling the activated probabilities of the Gaussian components
in the mixture.

For the special case that there is only a single user in the
massive MIMO system, by ignoring the index m in (4), the
Gaussian mixture distribution of the channel vector h is given
by

f(h) =
∑
k∈K

pkf
(k)(h) =

∑
k∈K

pkCN
(
u
(k)
h ,R

(k)
hh

)
, (27)

where K denotes the cardinality of the index set K =
{1, 2, · · · ,K}. Accordingly, the derivative of the weighted

sum of the approximated mutual information degenerates into
the approximated mutual information gradient as [1]

d

dΦ
I(y;h) ≈

∑
k∈K

pk

∣∣∣R(k)
yy

∣∣∣−1 [
R(k)

yy

]−1

ΦR
(k)
hh∑

k∈K
pk

∣∣∣R(k)
yy

∣∣∣−1 , (28)

where the denominator does not affect the derivative direction
but the convergence rate.

According to [48], for the function J(Φ) defined on the
Grassmannian manifold, the gradient of J(Φ) at Φ is defined
to be the tangent vector ∇ΦJ(Φ) such that

Tr

[(
dJ(Φ)

dΦ

)H

∆

]
≡ Tr

[
(∇ΦJ(Φ))H∆

]
(29)

for all tangent vectors ∆ at Φ. Solving (29) for ∇ΦJ(Φ) such
that (∇ΦJ(Φ))ΦH = 0 yields the Grassmannian gradient as

∇ΦJ(Φ) =
dJ(Φ)

dΦ

(
I −ΦHΦ

)
, (30)

which is the steepest ascent direction on the manifold. Using
the steepest ascent method on the Grassmannian manifold
G(N,L), the pilot matrix is updated according to

Φ̂ = Φ+ γ∇ΦJ(Φ), (31)

where γ > 0 is a small step size. The updated pilot matrix
is a linear combination of the current pilot matrix and the
Grassmannian gradient of the weighted sum of the approx-
imated mutual information with respect to the pilot matrix,
which generally lies outside the manifold G(N,L).

To project the updated pilot Φ̂ back onto G(N,L), the
orthonormal constraint in (18) is enforced by seeking the closet
row-orthonormal matrix to the updated pilot matrix Φ̂, which
is a orthogonal Procrustes problem [51]. The orthonormal pilot
matrix closest to Φ̂ is given by

Φ̃ = DIL×NGH, (32)

where DΣGH = Φ̂ is the singular value decomposition
(SVD) of Φ̂ with D ∈ CL×L and G ∈ CN×N being the
unitary matrices, IL×N =

[
IL×L,0L×(N−L)

]
is a rectangular

diagonal matrix composed by an identity matrix and a zero
matrix. Namely, the orthonormal pilot matrix Φ̃ has the same
unitary matrices as the updated pilot matrix Φ̂, but with all
one singular values. Then, Φ̃ is used to substitute Φ in the
next iteration in calculating (26) and then updated using (31)

dJ(Φ)

dΦ
≈ −

∑
m∈M

wm
d

dΦ

{
log

[ ∑
k∈Km

p
(m)
k

∣∣∣R(k)
ymym

∣∣∣−1
]}

= −
∑

m∈M

wm∑
k∈Km

p
(m)
k

∣∣∣R(k)
ymym

∣∣∣−1

∑
k∈Km

p
(m)
k

d

dΦ

{∣∣∣R(k)
ymym

∣∣∣−1
}

=
∑

m∈M

wm∑
k∈Km

p
(m)
k

∣∣∣R(k)
ymym

∣∣∣−1

∑
k∈Km

p
(m)
k∣∣∣R(k)
ymym

∣∣∣
[
R(k)

ymym

]−1

ΦR
(k)
hmhm

, (26)
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Algorithm 1 : Information-theoretic pilot optimization on the Grassmannian
Initialize: Random pilot matrix Φ;
Repeat

Step 1: Compute the derivative of the weighted sum of the approximated mutual information dJ(Φ)
dΦ via (26);

Step 2: Compute the Grassmannian gradient ∇ΦJ(Φ) via (30);
Step 3: Update the pilot matrix Φ̂ in the steepest ascent direction on G(N,L) via (31);
Step 4: Enforce the orthonormal constraint to obtain Φ̃ via (32), and let Φ← Φ̃. Go back to Step 1.

Until convergence
Output: Information-theoretic pilot matrix Φ.

to achieve an iterative search procedure. The convergence
criterion of the iterative process requires that the gradient
of the weighted sum mutual information with respect to the
pilot matrix converges to zero. Algorithm 1 summarizes the
proposed information-theoretic pilot design for the downlink
channel estimation in FDD massive MIMO systems.

From (26), the computational complexity of calculating
the derivative of the weighted sum of the approximated
mutual information with respect to the pilot matrix is
O
(
LN2

∑
m∈M Km

)
because L ≪ N . Hence, the overall

computational complexity of the proposed pilot optimization
method is O

(
TLN2

∑
m∈M Km

)
, where T denotes the num-

ber of iteration.
For effective channel estimation at the user terminal, the

base station is required to send the optimized pilot symbols to
all users served in the massive MIMO system. The signaling
overhead of the optimized pilot matrix is generally very high.
To reduce the actual overhead required in practical system
implementations, one can predesign a set of sequences which
are shared by the base station and the users [22, 33]. As such,
the base station only needs to transmit the indexes of the
chosen sequences, thus greatly relaxing the required signaling
overhead.

V. SIMULATION RESULTS

In this section, we carry out simulations to demonstrate the
performance advantages of the proposed pilot design method
for downlink channel estimation in FDD massive MIMO
systems. Throughout the simulations, we assume that the base
station is equipped with a uniform linear array (ULA) with
N = 100 omnidirectional antennas spaced a half wavelength
apart. It is worth noting that there is no limit on the array
geometry for the proposed pilot design to apply. That is, it
can be applied to an arbitrary array geometry, such as two-
dimensional array geometry [41].

In order to remove the power differences among different
user channels and the effects of user channel SNR scaling on
absolute error levels, we utilize the normalized MSE (NMSE),
defined as

NMSE(hm)=
1

NMC

NMC∑
q=1

∥∥∥hm(q)−ĥ
MMSE
m (q)

∥∥∥2
∥hm(q)∥2

, ∀ m ∈M,

(33)
to evaluate the channel estimation performance, where
ĥ

MMSE
m (q) is the MMSE estimate of hm(q), i.e., the m-th

user’s channel obtained in the q-th Monte Carlo trial. Here,

NMC = 5, 000 is the number of Monte-Carlo trials. The step
size for the iterative search for the optimal pilot is set as
γ = 0.1.

In our signal model, both the pilot matrix optimization and
the channel vector estimation depend on the a prior knowledge
of the downlink channel vector. In practical applications, this
knowledge is unavailable and needs to be estimated before
performing the pilot optimization and channel estimation. Con-
sidering the time-varying nature of wireless communications,
it is more appropriate to model the downlink channel vector
as a mixture distribution, e.g., Gaussian mixture distribution
considered in this paper, rather than a single, smooth Gaussian
distribution despite that the latter offers a closed-form solution
[26].

A. Gaussian mixture approximation

It is well known that the EM algorithm performs maximum
likelihood estimation of Gaussian mixture distribution [38],
and there are some approximations (see [39] and references
therein). However, the EM algorithm may not be the best
choice for the channel characterization in massive MIMO
systems due to not only the high dimensionality of channel
vectors but also the limited training samples especially at
the beginning of cell handover. Here, we adopt a piecewise-
Gaussian approximation to model the Gaussian mixture dis-
tribution of channel vectors in massive MIMO.

In typical massive MIMO cellular systems, the channel
vector from the base station to the user terminal is highly
correlated due to the narrow angular spread [21, 47], and can
be modeled by

h = R
1
2

hhv, (34)

where Rhh ≽ 0 denotes a positive semi-definite channel
covariance matrix, and v ∼ CN (0, I) denotes a zero-mean
complex-valued Gaussian random vector. In this paper, as we
model the channel vector as a Gaussian mixture vector with
Km components, the channel associated with the m-th user is
expressed as

hm =
(
R

(k)
hmhm

) 1
2v, ∀ m ∈M, (35)

with an activation probability of p
(m)
k , where k ∈ Km. Then,

the pdf of channel vector is equivalent to the expression of
f(hm) in (4).

A Gaussian mixture model for channel vectors of users is
learned from the a priori power azimuth spread of the user
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Fig. 2. NMSE performance comparison of the channel estimation versus the
input SNR of the channel for different numbers of pilot symbols.

channel. Specifically, the channel covariance matrix in (35) is
generated as

R
(k)
hmhm

=

∫
A(k)

σ2
hm

a(θ)aH(θ)dθ (36)

according to the piecewise-Gaussian approximation, where
a(θ) =

[
1, e−jπ sin θ, · · · , e−jπ(N−1) sin θ

]T is the steering
vector of the ULA, σ2

hm
is the channel power of the m-th

user, and A(k) denotes the k-th observation region at the
base station (e.g., A(k)

∩
A(k

′
) = ∅,∀ k, k

′ ∈ Km and∪
k∈Km

A(k) = (−π/2, π/2] for the ULA). In the simulations,
the observation regions are assumed to have the same value of
A(k) = 1◦,∀ k ∈ Km. The corresponding probability of the
k-th Gaussian component, which reflects the power azimuth
spread, can be modeled by a Laplacian distribution as [52–54]

p
(m)
k =

1
√
2σ

(m)
AS

e
−

√
2|θk−θ̄m|
σ
(m)
AS , (37)

where θ̄m and σ
(m)
AS respectively denote the mean DOA and

the azimuth spread of downlink channel associated with the
m-th user. Although the Laplacian distribution is the most
popular distribution in the typical outdoor propagations, there
are other classes of distributions that are applicable in certain
circumstances [54].

B. Single-user scenarios

In the first example, a simple scenario with a single user
is considered, where the mean DOA is randomly distributed
as a uniform distribution over the interval (−90◦, 90◦], i.e.,
θ̄ ∼ U(−90◦, 90◦], and the azimuth spread is set as σAS = 3◦.
Both the mean DOA and the azimuth spread are assumed to
be known at the base station.

Numerical results show that the maximum rank of the
channel covariance matrices over different Gaussian compo-
nents is 8, i.e., maxk∈K r(k) = maxk∈K rank

(
R

(k)
hh

)
= 8. To

understand the impact of the number of pilot symbols on the
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Fig. 3. NMSE performance comparison of the channel estimation versus the
input SNR of the channel for different practical azimuth spread.

channel estimation performance, we consider three different
choices of the number of pilot symbols compared with the
maximum rank of the channel covariance matrices, i.e., L =
10 > maxk∈K rank

(
R

(k)
hh

)
, L = 8 = maxk∈K rank

(
R

(k)
hh

)
,

and L = 6 < maxk∈K rank
(
R

(k)
hh

)
, respectively. In Fig.

2, we depict the NMSEs of the channel estimation versus
the input SNR of the channel with different lengths of pilot
symbols, where the optimized pilot symbols and the random
pilot symbols are compared. The NMSE performance is clearly
a function of the input SNR for both the optimized and
random pilot symbols, where the channels are scaled by√

SNR to model varying the quality of channel. From Fig.
2, it is observed that the channel estimation performance can
be greatly improved by using the proposed pilot symbols as
compared to the random generated pilot symbols for the fixed
number of pilot symbols. The performance advantage becomes
more pronounced as the input SNR increases. It is also
observed that, when the number of the optimized pilot symbols
reaches the maximum rank of the channel covariance matrices
over different Gaussian components, the channel estimation
performance cannot be further improved by increasing the
number of pilot symbols. On the contrary, when the number
of pilot symbols is less than the maximum rank of the channel
covariance matrices, the channel estimation performance with
the proposed pilot is unstable, and is worse than that of the
proposed pilot which number is no less than the maximum
rank of the channel covariance matrices.

As the approximated mutual information gradient (28)
shows, the proposed pilot optimization depends on the statisti-
cal information of the channel vectors to be estimated. Hence,
it is necessary to study the robustness of the proposed pilot
optimization for channel estimation against the perturbation
of the channel knowledge. In Fig. 3, we consider a situation
where the assumed azimuth spread in the a priori channel
distribution remains 3◦, whereas the actual azimuth spread
varies between 1.5◦ (smaller than the assumed value) and 6◦

(larger than the assumed value). It is clear that there is no
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Fig. 4. NMSE performance comparison of the channel estimation versus the input SNR of the channels. (a) Equal user weight (w1 = w2 = 0.5); (b)
Different user weight (w1 = 0.7, w2 = 0.3); (c) Different user weight (w1 = 0.9, w2 = 0.1); (d) Extreme user weight (w1 = 1, w2 = 0).

obvious performance loss in the estimated channel when the
actual azimuth spread is smaller than the assumed one, while
a significant performance loss is observed when the actual
azimuth spread is higher than the assumed value. Hence, for
the proposed pilot optimization to achieve effective channel
estimation, the a priori distribution should at least cover the
actual spreading of the channel to be estimated.

C. Multi-user scenarios

In the second example, we examine the multi-user case. A
system with two separated users is considered as an example
without loss of generality. It is assumed that the two users
respectively have the mean DOAs of θ̄1 = 0◦ and θ̄2 = 50◦,
but with a same azimuth spread σ

(m)
AS = 3◦,m = 1, 2. The

mean DOAs and the azimuth spread are assumed to be known
at the base station. The two user channels are further assumed
to have the same power.

In Fig. 4, we compare the NMSE of the channel estimation

versus the input SNR of the channel with different user
weights (wm,m ∈ M), where the length of pilot symbols
is fixed to be the maximum rank of the channel covari-
ance matrices of all Gaussian components of all users, i.e.,
L = 8 = maxm∈M maxk∈Km rank

(
R

(k)
hmhm

)
. It is clear

from Fig. 4(a) that the two users with equal weights have
almost identical channel estimation performance. From Fig.
4(a) to Fig. 4(d), we observe that, as the user weight increases,
the corresponding user achieves a better channel estimation
performance while the performance of the other user degrades.
In the extreme scenario where one user occupies the whole
weight (i.e., wm = 1), as Fig. 3(d) shows, the corresponding
user has the same channel estimation performance as that in
the first example with a single-user scenario, while the channel
estimation performance of the other user is even worse than
that with random pilot symbols. Hence, in order to provide
the desired quality of service (QoS) to all users served in the
same massive MIMO system, we prefer to assign the same
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Fig. 5. Average NMSE performance comparison of the channel estimation
versus the number of served users.

user weight in the proposed pilot design.
To further evaluate the channel estimation performance with

a higher number of served users, we compare the average
NMSEs of the channel estimation versus the input SNR of the
channel with different numbers of the simultaneously served
users. Here, we define the average NMSE over different users
as

Average NMSE =
1

M

M∑
m=1

NMSE(hm). (38)

In the simulations, the number of simultaneously served users
increases from 5 to 7, 10, 15 and 18, which mean DOAs are
respectively uniform distributed over [−30◦, 30◦], [−36◦, 36◦],
[−60◦, 75◦], [−84◦, 84◦], and [−85◦, 85◦]. All served users are
assumed to have the same channel quality (i.e., SNR) with
the same azimuth spread σ

(m)
AS = 3◦,∀m ∈ M and the same

weights wm = 1
M ,∀m ∈ M (e.g., wm = 1

5 for 5 users). It
is observed from Fig. 5 that the average channel estimation
performance of the proposed pilot design method degrades

as the number of served users increases. Nevertheless, the
performance advantage of the proposed pilot design method
over the random pilot design remains significant, especially
for high-gain channels. An interesting observation is that,
when we continue to increase the number of served users,
the average channel estimation performance of the proposed
pilot will no longer degrade.

VI. CONCLUSION

Pilot overhead for FDD downlink channel estimation is
a challenging problem in massive MIMO systems equipped
with a very large number of antennas at the base station.
By modeling the channel vector as a flexible and tractable
Gaussian mixture distribution, we first proved that the chan-
nel can be perfectly recovered in the asymptotic high-SNR
regime, when the number of pilot symbols is not less than
the maximum rank of the channel covariance matrices of
all Gaussian components of all users. Then, we proposed an
information-theoretic pilot design by maximizing the weighted
sum of the mutual information between the measurements of
all served users and their corresponding channel vectors on the
Grassmannian manifold. Hence, the proposed pilot can serve
an arbitrary number of users in FDD massive MIMO systems
by exploiting the a priori knowledge of the channel vectors to
be estimated. With the available Gaussian mixture distribution,
there is a closed-form solution to the underdetermined channel
estimation problem under the MMSE criterion. Simulation
results demonstrated that the proposed pilot outperforms the
random pilot in terms of the NMSE of the channel estimation
versus the input SNR of the channel.

APPENDIX A
Proof: Similar to the proof in [26], the lower bound of

the MSE of the MMSE estimator of the channel vector hm

can be written as (39), shown at the bottom of the page, where
the first term vanishes as σ2

nm
→ 0.

Now, let us examine the second term. Because the rank of
R

(k)
hmhm

is r
(k)
m , the eigen-decomposition of R

(k)
hmhm

can be
denoted as

R
(k)
hmhm

= U (k)
m Λ(k)

m

(
U (k)

m

)H
, (40)

ε
(m)
Lower =

∑
k∈Km

p
(m)
k Tr

[
R

(k)
hmhm

−R
(k)
hmhm

ΦH
(
ΦR

(k)
hmhm

ΦH + σ2
nm

I
)−1

ΦR
(k)
hmhm

]
=

∑
k∈Km

p
(m)
k Tr

[(
R

(k)
hmhm

) 1
2

(
I −

(
R

(k)
hmhm

) 1
2ΦH

(
ΦR

(k)
hmhm

ΦH + σ2
nm

I
)−1

Φ
(
R

(k)
hmhm

) 1
2

)(
R

(k)
hmhm

) 1
2

]
=

∑
k∈Km

p
(m)
k Tr

[(
R

(k)
hmhm

) 1
2

(
I + σ−2

nm

(
R

(k)
hmhm

) 1
2ΦHΦ

(
R

(k)
hmhm

) 1
2

)−1(
R

(k)
hmhm

) 1
2

]
=

∑
k∈Km

p
(m)
k Tr

[(
R

(k)
hmhm

) 1
2V (k)

m

(
I + σ−2

nm
Γ(k)
m

)−1(
V (mk)

)H(
R

(k)
hmhm

) 1
2

]
=

∑
k∈Km

p
(m)
k Tr

[
R

(k)
hmhm

V (k)
m

(
I + σ−2

nm
Γ(k)
m

)−1(
V (mk)

)H]

=
∑

k∈Km

p
(m)
k

r(k)
m∑
i=1

(
1 + γi/σ

2
nm

)−1 (
v(k)
mi

)H
R

(k)
hmhm

v(k)
mi

+
∑

k∈Km

p
(m)
k

N∑
i=r

(k)
m +1

(
v(k)
mi

)H
R

(k)
hmhm

v(k)
mi

, (39)
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where U (k)
m ∈ CN×r(k)

m and Λ(k)
m ∈ Cr(k)

m ×r(k)
m . We can write(

R
(k)
hmhm

) 1
2ΦH = U (k)

m

(
Λ(k)

m

) 1
2
(
U (k)

m

)H
ΦH

= U (k)
m C(k)

m , (41)

where C(k)
m =

(
Λ(k)

m

) 1
2
(
U (k)

m

)H
ΦH ∈ Cr(k)

m ×L. When
L ≥ maxm∈M maxk∈Km r

(k)
m and the pilot symbols of Φ

are randomly generated according to some distribution, the
matrix C(k)

m has a full row rank with probability one, i.e.,
rank

(
C(k)

m

)
= r

(k)
m . Hence, let Range( · ) denote the range of

a matrix, i.e., the column space spanned by its column vectors.
Then,

Range
((

R
(k)
hmhm

) 1
2ΦH

)
= Range

((
R

(k)
hmhm

) 1
2ΦHΦ

(
R

(k)
hmhm

) 1
2

)
= Range

(
U (k)

m

)
, ∀ k ∈ Km,m ∈M. (42)

Therefore, we have(
u(k)
mi

)H
R

(k)
hmhm

=
(
v(k)
mi

)H
U (k)

m

= v(k)
mi

(
R

(k)
hmhm

) 1
2ΦHΦ

(
R

(k)
hmhm

) 1
2

= 0, ∀ i = r(k)m + 1, · · · , N. (43)

Hence, the second term in (39) disappears when the number of
pilot symbols is no less than the maximum rank of the channel
covariance matrices of all Gaussian components of all users,
i.e., L ≥ maxm∈M maxk∈Km r

(k)
m . That is to say, the lower

bound of the MSE of the MMSE estimate of hm approaches
zero in the limit of vanishing noise,

lim
SNRm→∞

ε
(m)
Lower = 0. (44)

In the Gaussian mixture distribution, the upper and lower
bounds of the MSE of the MMSE estimate approach each other
with increasing SNR, and they must coincide as the SNR tends
to infinity, i.e., [42],

lim
SNRm→∞

ε
(m)
Upper = lim

SNRm→∞
ε
(m)
Lower = 0, (45)

which implies that

lim
SNRm→∞

E
{∥∥∥hm − ĥ

MMSE
m

∥∥∥2
2

}
= 0. (46)

APPENDIX B

For completeness, we briefly recall the result in [36] for the
derivation of the approximated differential entropy (19). Per-
forming the first-order Taylor series expansion of log [f(ym)]

around y
(m)
0 = E[ym] = uym

, i.e., the mean value of ym, we
have

log [f(ym)] ≈ log
[
f
(
y
(m)
0

)]
+ gH

(
y
(m)
0

) [
ym − y

(m)
0

]
,

(47)
where log

[
f
(
y
(m)
0

)]
= log

[∑
k∈Km

p
(m)
k f (k)

(
y
(m)
0

)]
, and

g
(
y
(m)
0

)
= d

dym
log [f(ym)]

∣∣
ym=y

(m)
0

denotes the first deriva-

tive of log [f(ym)] evaluated at the point y(m)
0 . Substituting

(47) into the definition of differential entropy, we obtain the
approximated differential entropy (48), shown at the bottom
of the page.
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