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Abstract—A coprime array uses two uniform linear subarrays
to construct an effective difference coarray with certain desirable
characteristics, such as a high number of degrees-of-freedom for
direction-of-arrival (DOA) estimation. In this paper, we generalize
the coprime array concept with two operations. The first operation
is through the compression of the inter-element spacing of one
subarray and the resulting structure treats the existing varia-
tions of coprime array configurations as well as the nested array
structure as its special cases. The second operation exploits two
displaced subarrays, and the resulting coprime array structure
allows the minimum inter-element spacing to be much larger than
the typical half-wavelength requirement, making them useful in
applications where a small interelement spacing is infeasible. The
performance of the generalized coarray structures is evaluated
using their difference coarray equivalence. In particular, we
derive the analytical expressions for the coarray aperture, the
achievable number of unique lags, and the maximum number
of consecutive lags for quantitative evaluation, comparison, and
design of coprime arrays. The usefulness of these results is demon-
strated using examples applied for DOA estimations utilizing both
subspace-based and sparse signal reconstruction techniques.

Index Terms—Compressive sensing, coprime array, difference
coarray, direction-of-arrival estimation, nested array.

I. INTRODUCTION

D IRECTION-OF-ARRIVAL (DOA) estimation, which
determines the spatial spectra of the impinging electro-

magnetic waves, is an important application area of antenna
arrays. It is well known that conventional subspace-based DOA
estimation methods, such as MUSIC and ESPRIT [3], [4], re-
solve up to sources with an -element array. However,
the problem of detecting more sources than the number of sen-
sors is of tremendous interest in various applications [5], [6].
Toward this purpose, a higher number of degrees-of-freedom
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(DOFs) is usually achieved by exploiting a sparse array under
the coarray equivalence. For example, the minimum redun-
dancy array (MRA) [7] is a linear array structure that, for a
given number of physical sensors, maximizes the number of
consecutive virtual sensors in the resulting difference coarray.
The minimum hole array (also known as the Golomb array)
minimizes the number of holes in the difference coarray [8].
However, there are no general expressions for the MRA and
Golomb array configurations as well as the achievable DOFs
for an arbitrary number of sensors. Therefore, the optimum
design and performance analysis of such arrays are not easy
in general. In addition, finding the suitable covariance matrix
corresponding to a large array requires a rather complicated
time-consuming iterative process.
Recently, several array configurations have been proposed

as attractive alternatives for sparse array construction. The
nested array [9], which is obtained by combining two uniform
linear subarrays, in which one subarray has a unit inter-element
spacing, can resolve sources with sensors. Unlike
the MRA, the nested array configuration is easy to construct
and it is possible to obtain the exact expressions of the sensor
locations and the available DOFs for a given number of the
sensors. The total aperture and the number of unique and
consecutive coarray sensors can be subsequently obtained
[9]. Note that, as some of the sensors in a nested array are
closely located, the mutual coupling effects between antennas
may become significant and thus compromise the coarray
reconstruction capability and the DOA estimation performance
[10], [11]. The recently developed coprime array [12], which is
referred to as the prototype coprime array in this paper, utilizes
a coprime pair of uniform linear subarrays, where one is of
sensors with an inter-element spacing of units, whereas

the other is of elements with an inter-element spacing of
units. By choosing the integer numbers and to be

coprime, a coprime array can resolve sources with
sensors. This is attractive when it is necessary to

reduce mutual coupling between elements. A different coprime
array structure was proposed in [13] by extending the number
of elements in one subarray. The result is a larger number of
consecutive virtual sensors under the coarray equivalence. By
considering the difference coarray of sensors, they
demonstrated that continuous correlation lags can be created
from to .
A close examination of the extended coprime configuration

reveals that there is at least one pair of adjacent sensors that
is separated only by the unit spacing, which is typically half
wavelength to avoid the grating lobe problem. In addition to the
mutual coupling effect as described above, there are situations
that such half-wavelength minimum spacing is infeasible or im-
practical. One of the examples is when the physical size of the
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antenna sensors is larger than half-wavelength (e.g., [14]). In-
deed, many parabola antennas are designed to have a large size
for enhanced directivity [15]. This problem is alleviated through
an effective array configuration design in which the minimum
inter-element spacing is much larger than the typical half-wave-
length requirement [1].
In this paper, we propose the generalization of the coprime

array concept, which comprises two operations. The first op-
eration is the compression of the inter-element spacing of one
constituting subarray in the coprime array by a positive integer.
The resulting coarray structure is referred to as coprime array
with compressed inter-element spacing (CACIS). As such, the
coprime array structure developed in [13], which doubles the
number of sensors in a constituting subarray, becomes a special
case of the proposed CACIS structure. The second operation in-
troduces a displacement between the two subarrays, yielding a
coprime array with displaced subarrays (CADiS). The resulting
CADiS structure allows the minimum inter-element spacing to
be much larger than the typical half-wavelength requirement.
These two operations can be performed separately or jointly.We
evaluate the performance of each individual generalized coarray
structure corresponding to these operations using their respec-
tive difference coarray equivalence. In particular, we derive the
analytical expressions of the coarray aperture, the achievable
number of unique lags, and the maximum number of consecu-
tive lags for quantitative evaluation, comparison, and optimal
design.
It is noted that the focus of this paper is the examination

of the generalized coprime array structures in the context of
narrowband DOA estimation. Wideband or multi-frequency
signals may further permit the utilization of frequency-domain
DOFs for enhanced DOA estimation capability. For example, it
is shown in [16] that coprime arrays that handle wideband sig-
nals can benefit from frequency diversity to achieve improved
DOA estimation performance. On the other hand, the exploita-
tion of two coprime frequencies in a uniform linear array can
generate an equivalent coprime array with an increased number
of DOFs [17], [18].
The rest of the paper is organized as follows. In Section II,

we first review the coprime array concept based on the dif-
ference coarray concept. Then two different DOA estimation
approaches, which are respectively based on the MUSIC algo-
rithm and compressive sensing (CS) techniques, exploiting co-
prime arrays are summarized in Section III. The two general-
ized coprime array structures, i.e., CACIS and CADiS, are re-
spectively described in Sections IV and V with the analytical
expressions of array aperture, unique coarray lags, and consec-
utive coarray lags. Different nested array structures are clarified
and compared in Section VI. Simulation results are provided
in Section VII to numerically compare the performance of the
different generalized coprime array configurations with the two
DOA estimation techniques. Such results reaffirm and demon-
strate the usefulness of the results presented in Sections IV and
V. Section VIII concludes this paper.
Notations: We use lower-case (upper-case) bold characters to

denote vectors (matrices). In particular, denotes the
identity matrix. implies complex conjugation, whereas
and respectively denote the transpose and conjugate trans-
pose of a matrix or vector. denotes the vectorization oper-
ator that turns a matrix into a vector by stacking all columns on

Fig. 1. The prototype coprime array configuration.

top of the another, and denotes a diagonal matrix that
uses the elements of as its diagonal elements. and
respectively denote the Euclidean and norms, and
is the statistical expectation operator. denotes the Kronecker
product, and and represent the real and imagi-
nary part operations. denotes joint complex Gaussian
distribution with mean vector and covariance matrix .

II. COPRIME ARRAY CONCEPT

A. Prototype Coprime Array Structure

A prototype coprime array [12], as described in the previous
section, is illustrated in Fig. 1, where and are coprime
integers. Without loss of generality, we assume . The
unit inter-element spacing is set to , where denotes the
wavelength. The array sensors are positioned at

(1)

Because the two subarrays share the first sensor at the zeroth po-
sition, the total number of the sensors used in the coprime array
is . Note that the minimum inter-element spacing in
this coprime array is .
Denote as the positions of the array

sensors where , , and the first
sensor is assumed as the reference, i.e., . Assume that
uncorrelated signals impinging on the array from angles

, and their discretized basebandwaveforms are ex-
pressed as , for . Then, the data
vector received at the coprime array is expressed as,

(2)

where

(3)

is the steering vector of the array corresponding to ,
, and . The ele-

ments of the noise vector are assumed to be independent
and identically distributed (i.i.d.) random variables following
the complex Gaussian distribution .
The covariance matrix of data vector is obtained as

(4)

where is the source
covariance matrix, with denoting the input signal power of
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Fig. 2. An example of prototype coprime configuration coarrays, where and . (a) The set and . (b) The lag positions in full set .

the th source, . In practice, the covariance matrix
is estimated using the available samples, i.e.,

(5)

From a pair of antennas located at the th and th positions in
, the correlation yields the th entry in
with lag . As such, all the available values of and ,
where and , yield
virtual sensors of the following difference coarray:

(6)

The significance of the difference coarray is that the correla-
tion of the received signal can be calculated at all differences in
set . Any application which depends only on such correlation
(e.g., DOA estimation) can exploit all the DOFs offered by the
resulting coarray structure. Using a part or the entire set of the
distinct auto-correlation terms in set , instead of the original
array, to perform DOA estimation, we can increase the number
of detectable sources by the array. The maximum number of
the DOFs is determined by the number of unique elements in
the following set

(7)

To gain more insights about the difference coarrays, we sep-
arately consider the self-differences of the two subarrays and
their cross-differences. Since the coarray is obtained from the
Hermitian matrix , the self-difference in the coarray has po-
sitions

(8)

and the corresponding mirrored positions
, whereas the cross-difference has positions

(9)

and the correspondingmirrored positions ,
for and . Consequently, the
full set of lags in the virtual array is given by,

(10)

An example is illustrated in Fig. 2, where and .
Fig. 2(a) show the self- and cross-lags described in (8) and (9). If
we include the negative mirror of the above set, then the full set
of lags becomes symmetric, as shown in Fig. 2(b). Notice that

some “holes”, e.g., , , , still exist in the difference
coarray and are indicated by in this figure. The total number
of lags in the symmetric set gives a global upper bound of the
achievable DOFs.

III. DOA ESTIMATION TECHNIQUES

To better understand the significance of the performance
metrics to be examined, i.e., the coarray aperture, the number
of consecutive coarray lags, and the number of unique lags
of coarray lags, we briefly review the two representative
DOA estimation techniques that are recently developed for
coprime array configurations. The first one is based on the
well-known MUSIC algorithm, and the spatial smoothing
technique [19]–[21] is applied to construct a suitable covari-
ance matrix from the virtual sensor output prior to performing
MUSIC spectrum estimation [12], [13]. Notice that, while
the use of virtual sensors substantially increases the available
number of DOFs, the application of spatial smoothing essen-
tially halves the number of available virtual sensors. A different
approach to perform DOA estimation exploiting coprime arrays
is through sparse signal reconstruction by taking advantages of
the fact that the spatial signal spectra are sparse. Such sparse
signal reconstruction is achieved using the recently developed
compressive sensing techniques [22], [23]. These two DOA
estimation techniques are summarized below.

A. MUSIC Algorithm

Vectorizing in (4) yields

(11)

where , ,
, . In addition,

and are used for notational
simplicity. The vector amounts to the received data from a
virtual array with an extended coarray aperture whose corre-
sponding steering matrix is defined by . However, the virtual
source signal becomes a single snapshot of . In addition, the
rank of the noise-free covariance matrix of , , is
one. As such, the problem is similar to handling fully coherent
sources, and subspace-based DOA estimation techniques, such
as MUSIC, fail to yield reliable DOA estimates when multiple
signals impinge to the array.
To overcome this problem, it is proposed in [13] to apply spa-

tial smoothing technique to the covariancematrix so that its rank
can be restored. Since spatial smoothing requires a consecutive
difference lag set so that every subarray has similar manifold,
we extract all the consecutive lag samples of and form a new
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vector . Denote as the consecutive lag range in .
Then, can be expressed as

(12)

where is identical to the manifold of a uniform linear array
(ULA) with sensors located from to and is
a vector of all zeros except a 1 at the th
position. We divide this virtual array into overlapping
subarrays, , , each with elements,
where the th subarray has sensors located at ,
with denoting the index of the overlap subarray
used in the spatial smoothing.
Define

(13)

Taking the average of over all , we obtain

(14)

which yields a full-rank covariance matrix so that the MUSIC
algorithm can be performed for DOA estimation directly. As a
result, DOFs are achieved, which are roughly equal to half of
the available consecutive lags of the resulting coarray.

B. Compressive Sensing Approach

Alternatively, (11) can be solved using the CS approach [23].
The desired result of , whose elements are the first entries
of vector , can be obtained from the solution to the following
constrained -norm minimization problem

(15)

where is a user-specific bound, is a sensing matrix con-
sisting of the searching steering vectors and , whereas is
the sparse entries in these search grids to be determined. The
sensing matrix and the entry vector are defined over a
finite grid , where . The last entry of de-
notes the estimate of , whereas the positions and values of the
non-zero entries in the other elements of represent the esti-
mated DOAs and the corresponding signal power.
This type of problems has been the objective of intensive

studies in the area of CS, and a number of effective numerical
computation methods have been developed [24]–[28]. In [23],
the batch Lasso method was used, but other methods may also
be used. The objective function of the Lasso algorithm is de-
fined as

(16)

where the norm in the objective function denotes the ordi-
nary least-squares (OLS) cost function, and the norm involves
the sparsity constraint. In addition, is a penalty parameter
which can be tuned to trade off the OLS error for the number of
nonzero entries (degree of sparsity) in the estimates [24]. The
above Lasso objective is convex in , and can be optimized
using linear programming techniques [29].

Fig. 3. The CACIS configuration.

IV. COPRIME ARRAY WITH COMPRESSED
INTER-ELEMENT SPACING

Now we present our main results that generalize coarray
structures in two operations, i.e., CACIS and CADiS. The
CACIS is presented in this section, whereas the CADiS is
examined in the following section.
We consider two subarrays with and sensors, where

and are coprime. Note that, in the sequel, the condition that
is no longer assumed. Unlike the prototype coprime

array, an integer compression factor is introduced for changing
the inter-element spacing of one subarray. Assume that can
be expressed as a product of two positive integers and , i.e.,

(17)

for some that takes a value between 2 and . It is easy to
confirm that and are also coprime since and do not
have common factors other than unity. As shown in Fig. 3, in the
generalized coprime array, the -element subarray has an inter-
element spacing of , whereas the -element subarray has an
inter-element space of . As such, the generalized
coprime array can be considered that the inter-element spacing
of one constituting subarray is compressed by an integer factor
of , thus comes the term of coprime array with compressed
inter-element spacing (CACIS). Note that all arrays consist of
the same physical antenna sensors and their aperture
is , regardless the value of . It is shown that the
variation of the coprime array configuration used in [13] is a
special case of the CACIS configuration by choosing .
In this array configuration, the self-lags of the two subarrays

are given by the following set1,

(18)

and the corresponding mirrored positions , whereas the
cross-lags between the two subarrays are given by

(19)

and the corresponding , where and
.

To completely exploit the DOFs of the CACIS configura-
tion, we summarize the properties of and in the following
proposition.
Proposition 1: The following facts hold for the CACIS:
(a) There are distinct integers in set .
(b) contains all the contiguous integers in the range

.

1 is used to emphasize variables corresponding to the CACIS structure.
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Fig. 4. An example of CACIS configuration coarrays, where , and . (a) The set and . (b) The full set .

(c) The negative values form a subset of the flipped positive
values in set , i.e.,

.
(d) The self-lags form a subset of the cross-lags, i.e.,

.
(e) There are “holes” located at both positive range and neg-

ative ranges of . The holes falling in the negative range
are located at , where , are in-
tegers.

The proof is provided in Appendix I.
Based on the properties (c) and (d) of Proposition 1, the entire

lag set in the virtual array defined in (10) consists of
, thus resulting in Proposi-

tion 2.
Proposition 2: The CACIS configuration defined in equation

(17) yields a virtual array such that:
(a) It contains unique lags of

virtual sensors.
(b) Among the unique lags, there are

consecutive integers within the range [
, ].

The proof is provided in Appendix II. In Fig. 4, is
considered as an illustrative example of above properties. It is
equivalent to the configuration proposed in [13]. In this case, the
virtual array consists of unique lags, among
which are consecutive. Note that
our result contains more consecutive lags and is more precise
than the result provided in [13], which is .
The difference, which is based on property (b) of Proposition 1,
is clarified in Appendix I.
According to Proposition 2, we can draw a conclusion that,

for a specific pair of and , smaller values of led to
more unique and consecutive coarray lags. In other words, both
numbers increase with the compression factor . The minimum
value that can take is 1. In this case, the CACIS configuration
becomes a nested array structure, which provides the highest
numbers of the unique and consecutive virtual sensors. More
detailed discussions about nested array configurations will be
given in Section VI.

V. COPRIME ARRAY WITH DISPLACED SUBARRAYS

Sharing the same property as MRA, the prototype coprime
array and the CACIS structure provide sparse configurations
in which the minimum inter-element spacing remains the unit
spacing, which is typically half wavelength, to avoid the grating
lobe problem. In addition to the aforementioned challenges as-
sociated with half wavelength minimum spacing in regards of
antenna size and mutual coupling, there is a high number of
overlapping between the self- and cross-lags. This is the case

Fig. 5. The CADiS configuration.

for both the prototype coprime array and the CACIS structures
and is consequence of the collocated subarray placement. By in-
troducing a proper displacement between the two subarrays, the
new coprime array structure achieves a larger minimum inter-el-
ement spacing, a higher number of unique lags, and a larger vir-
tual array aperture. As we will see, however, the number of con-
secutive lags is reduced because the positive and negative lags
are no longer connected.
Consider two collinearly located uniform linear subarrays, as

depicted in Fig. 5, where one consists of antennas and the
other with antennas. As such, the total number of the
sensors is kept to . We refer to this coprime array
structure as coprime array with displaced subarrays (CADiS).
Similar to the CACIS configuration, we assume and are
coprime. The -element subarray has an inter-element spacing
of , and the -element subarray has an inter-ele-
ment spacing of , where, as indicated in (17), .
The difference to the CASIS structure lies in the fact that these
two subarrays in the CADiS structure are placed collinearly
with the closest spacing between the two subarrays set to ,
where . Note that is required to guar-
antee the minimum inter-element spacing to be larger than unit
spacing, but the nested structure under this configuration, i.e.,

, will also be discussed later as a special case. The
total number of array sensors in the CADiS structure remains

, which is the same as the CACIS configuration dis-
cussed earlier. Note that the minimum inter-element spacing in
the CADiS is , as compared to in the CACIS
structure. In addition, the total array aperture of the CADiS is

, which is much larger than the
of the CACIS. In practical application, however, a

small value of displacement should be chosen to avoid false
peaks.
For the CADiS configuration, the corresponding self-lags

and cross-lags are respectively given by2

(20)

(21)

2 is used to emphasize variables corresponding to the CADiS structure.
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Fig. 6. An example of CADiS configuration coarrays, where , , and .

TABLE I
COMPARISON OF THE COARRAY APERTURE, NUMBER OF UNIQUE LAGS, AND NUMBER OF CONSECUTIVE LAGS

and their corresponding mirrored positions and , respec-
tively, where and .
The following proposition reveals the properties of the re-

sulting virtual sensors of the CADiS configuration.
Proposition 3: Set and have the following properties

in the CADiS configuration:
(a) There are distinct integers in set .
(b) contains all the contiguous integers in the range

.
(c) There are “holes” located at

in set , where , are integers.
(d) .
The proof is provided in Appendix III.
In the CACIS configuration, the negative lags form a subset

of the flipped positive counterpart. Therefore, only non-negative
lags in are used. In the CADiS configuration, however, the
negative lags do not generally overlap with the flipped positive
lags because of the displacement between two subarrays, ne-
cessitating the consideration of both positive and negative lags.
As such, the CADiS configuration enjoys a higher number of
unique lags than the CACIS because of the utilization of neg-
ative lags. In addition, the self-lags are less likely to coincide
with the cross-lags in the CADiS configuration. Consequently,
the CADiS offers a larger virtual array aperture and a higher
number of virtual sensors. The role of the displacement is as
follows. On one hand, it reduces the overlaps between the self-
and cross-lags. On the other hand, because has holes located
at for integers and ,
the number of consecutive lags can be extended by choosing an
approximate value of so that some self-lags are aligned to the
cross-lag holes. For illustrative purpose, we consider the case
of , , and as an example.
The corresponding and are shown in Fig. 6. It is clear
that some holes in (12, 14, 15, 18 and 21) are aligned by ele-
ments of . The following proposition describes the selection
of the value of that maximizes the number of unique and con-
secutive lags.
Proposition 4: For the CADiS configuration,
(a) The maximum number of unique lags

can be achieved with .

(b) is the choice that yields the largest number
of consecutive lags. In this case, there are
unique lags, among which the range

and its corresponding negative range
are respectively

consecutive.
The proof is provided in Appendix IV. Based on property (2)
of Proposition 4, it is clear that the number of unique lags in-
creases as increases, whereas the number of the consecutive
lags decreases. Particularly, for the nested array structure, i.e.,

, the positive range of consecutive lags is and
its corresponding negative range becomes , resulting
in all unique lags to be consecutive.
For comparison, we enlist in Table I the coarray aperture, the

maximum number of unique and consecutive lags for both pro-
posed configurations. As the results show, for a given coprime
pair of and , the nested structure achieves the maximum
number of consecutive and unique lags when using CACIS con-
figurations. In other word, it offers the highest number of DOFs
for DOA estimation. As for CADiS, the nested structure pro-
vides the highest number only for the consecutive lags. The
number of its unique lags, , on the other hand, is
less than that of the CADiS structure with a large separation
between the two subarrays. That is, the nested CADiS provides
the highest number of DOFs only when MUSIC or other sub-
space based methods are used for DOA estimation, but it be-
comes less effective when CS based DOA estimation methods
are applied. It is noted that, to estimate DOAs of up to
sources, the nested CADiS structure requires only
sensors, which are much less than the result of
sensors as exploited in [13].

VI. COMPARISON OF DIFFERENT NESTED STRUCTURES

The nested structure is referred to a structure consisting of
two uniform linear subarrays, where one subarray has a unit
inter-element spacing [9]. A nested array is usually designed
such that the virtual sensors in the resulting coarray are all con-
tiguous. The nested structure proposed in [9], as shown in Fig. 7,
consists of an inner -element subarray with a unit spacing
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TABLE II
OPTIMUM SOLUTION FOR DIFFERENT NESTED STRUCTURES THAT MAXIMIZES THE DOFS

Fig. 7. The nested configuration proposed in [9].

and an outer -element subarray with spacing , re-
sulting in contiguous lags. Note that the nested
array concept does not require a coprimality between and
. It is also important to note that, in the extension of the gener-

alized coprime array framework, different nested array configu-
rations can be defined, by setting to be one to the CACIS and
CADiS structures. These different nested configurations yield
different numbers of DOFs. For comparison of the three nested
array structures, we consider the same number, , of physical
sensors, and optimize the array configuration for each structure
to maximize the respective number of DOFs. Such optimal so-
lutions are summarized in Table II. It is clear that the structure
in [9] offers a higher number of DOFs than the nested CACIS
structure, but less than the nested CADiS.
For better illustrative purposes, we compare three different

optimized nested configurations with physical sensors
in Fig. 8. Fig. 8(a) shows the optimized nested CACIS configu-
ration. One subarray is of sensors with an inter-element
spacing of , whereas the other is of elements
with an inter-element spacing of . In addition, the two
subarrays share the first sensor at the zeroth position and form
a coarrays with 33 lag positions. The nested CADiS structure is
illustrated in Fig. 8(b). One 4-element subarray has an inter-ele-
ment spacing of , and the other subarray has an inter-el-
ement spacing of . In addition, there is a displacement

between the two subarrays. As a result,
its coarray has 41 lag positions. Finally, the nested array config-
uration proposed in [9] is depicted in Fig. 8(c), where the inner
subarray has elements with spacing and the outer sub-
array has elements with spacing . In

Fig. 8. Three different optimized nested configurations and their coarrays
. (a) The nested CACIS. (b) The nested CADiS. (c) The nested

configuration proposed in [9].

this case, the coarray has 39 lag positions. As a result, the nested
CADiS structure achieves a higher number of DOFs.

VII. SIMULATION RESULTS

For illustrative purposes, we consider and
with different values of the compression factor of the two con-
figurations, i.e., CACIS and CADiS. are consid-
ered for the CADiS configuration for the convenience of perfor-
mance comparison between both MUSIC and CS techniques.
All configurations consist of physical antenna
sensors and the unit inter-element spacing is .

A. Array Configurations

The virtual sensors corresponding to the CACIS and CADiS
structures are respectively shown in Fig. 9 and Fig. 10. Fig. 9(a)
depicts the CACIS configuration example for , where the
coprime array form a virtual array with 59 unique lags, among
which 47 lags within [ 23, 23] are consecutive. Fig. 9(b) shows
for the case of , and the resulting virtual array has 65
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Fig. 9. CACIS configuration coarrays, for different compression factor ( and ). (a) and . (b) and . (c) and
.

Fig. 10. CADiS configuration coarrays with displacement , corresponding the compression factor ( and ). (a) , and
. (b) , and . (c) , and .

unique lags, among which 59 lags within [ 29, 29] are consec-
utive. When , i.e., , as shown in Fig. 9(c),
the coprime array becomes the nested array structure with 71
unique lags, which are all consecutive. It is clear that both num-
bers of the unique and consecutive lags increase with , and the
nested array achieves the maximum number for both. For the
CADiS configuration with , the case of is
presented in Fig. 10(a). In this case, the entire virtual array has
89 unique lags, among which lags within [ 44, 12] and [12,
44] are respectively consecutive. For , there are 87 distinct
lags, resulting consecutive lags in [ 43, 6] and in [6, 43] as
shown in Fig. 10(b). In Fig. 10(c), the nested CADiS with
and is considered as a special case. It is noted that all
85 lags in the full symmetric set of [ 42, 42] are consecutive.

B. MUSIC and CS Spectra

In Figs. 11 and 12, we present numerical examples to demon-
strate the number of achievable DOFs for DOA estimation using
the generalized coprime arrays. As the virtual sensor lags are
obtained from the estimated covariance matrix based on the re-
ceived data samples as in (5), the virtual steering matrix is sen-
sitive to the noise contamination. To clearly demonstrate the
number of achievable DOFs, therefore, we use 2000 noise-free
snapshots to obtain a relatively clean covariancematrix.
uncorrelated narrowband sources are considered, which are uni-
formly distributed between and . For the MUSIC al-
gorithm which requires consecutive lags, we respectively obtain
23, 29 and 35 DOFs of CACIS configuration for ,
and as shown in Figs. 11(a), 11(c) and 11(e). On the other
hand, 17, 19 and 42 DOFs are obtained using the CADiS con-
figuration as shown in Figs. 11(b), 11(d) and 11(f). Note that
only the nested structures have a sufficient number of DOFs to
resolve all 33 impinging signals. This is verified in Fig. 11 in
which only the cases of resolve all the 33 signals for both
configurations, whereas not all sources are correctly identified
for the cases of and . In addition, it is evident
that the “nested CADiS” has better performance than “nested
CACIS” due to the higher DOFs of the former. When the CS
technique is applied for DOA estimation, a higher number of

DOFs is achieved because all unique lags are exploited. The re-
sults obtained from the Lasso are shown in Fig. 12, where a grid
interval of and the penalty parameter of
are used. It is clearly shown that only the nested structure can re-
cover all 33 sources using the CACIS configuration, whereas all
these signals can be detected for all the CADiS configurations
examined in Fig. 12 due to their higher unique lags. In addition,
the CS based technique results in better estimated spectra, when
comparing the MUSIC spectra depicted in Fig. 11.
To compare the performance between the CACIS and CADiS

structures as well as between the MUSIC and CS methods, we
use the respective nested structures and compute the results in
the presence of noise with a 0 dB SNR for all signals, and the
number of snapshots is reduced to 500. In this case, the per-
turbation in the covariance matrix becomes higher due to noise
and the limited number of samples, and the resulting DOA esti-
mation performance degrades. The DOA estimation results are
compared in Fig. 13 for sources, which is smaller than
the available DOFs for both array configurations. It is evident
that the nested CADiS outperforms the nested CACIS, and the
CS based method achieves a better spatial spectrum estimation
performance.

C. Root Mean Square Error Versus SNR and Number of
Snapshots

We further compare the DOA estimation performance of dif-
ferent CACIS and CADiS configurations through Monte Carlo
simulations. The average root mean square error (RMSE) of the
estimated DOAs, expressed as

is used as the performance metric, where is the estimate of
for the th Monte Carlo trial, . We use

independent trials in all simulations.
To enable comparison, we consider narrowband un-

correlated sources, which are lower than the available DOFs for
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Fig. 11. Spatial spectra estimated using MUSIC for both configurations (
, and ). (a) CACIS with . (b) CADiS with . (c)

CACIS with . (d) CADiS with . (e) CACIS with . (f) CADiS
with .

all cases with both MUSIC and CS techniques. Fig. 14 com-
pares the RMSE performance as a function of the input SNR,
where 500 snapshots are used. In Fig. 15, we compare the per-
formance of different array configurations and DOA techniques
with respect to the number of snapshots, where the input SNR is
set to 0 dB. It is evident that the DOA estimation performance
is improved with the increase of the input SNR and the number
of snapshots. For the CACIS structure, the performance of both
MUSIC and CS approaches improves as the compression factor
increases because of the increased number of consecutive and
unique lags. As a result, the nested array structure achieves the
best performance. For CADiS, MUSIC-based DOA estimation
for non-nested CADiS structures suffers from significant per-
formance degradation because of the disconnected coarray lags.
As such, the nested array is the preferred CADiS structure when
theMUSIC algorithm is used for DOA estimation. Furthermore,
the nested CADiS slightly outperforms the nested CACIS as a
result of higher number of consecutive lags. However, because
it has the fewest unique lags, the nested structure is least ef-
fective among the three CADiS array structures when the CS
technique is exploited. As a conclusion, the CS-based method
obtains better performance than theMUSIC counterparts. In ad-
dition, when the CS-based technique is used, the CADiS outper-
forms the corresponding CACIS structures.

VIII. CONCLUSIONS

We have proposed the generalized coprime array concept in
two aspects: compression of the inter-element of spacing of one

Fig. 12. Spatial spectra estimated using Lasso for both configurations (
, and ). (a) CACIS with . (b) CADiS with . (c)

CACIS with . (d) CADiS with . (e) CACIS with . (f) CADiS
with .

Fig. 13. Estimated spatial spectra ( , 500 snapshots, ).
(a) MUSIC with nested CACIS. (b) MUSIC with nested CADiS. (c) LASSO
with nested CACIS. (d) LASSO with nested CADiS.

constituting subarray, and the displacement of the two subar-
rays. The first operation yields flexibility of trading-off between
unique lags and consecutive lags for effective direction-of-ar-
rival (DOA) estimation based on different algorithms, whereas
the second operation further allows a larger minimum inter-ele-
ment spacing beyond the typical half-wavelength requirement.



1386 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 6, MARCH 15, 2015

Fig. 14. RMSE versus SNR (500 snapshots, ). (a) The CACIS config-
urations. (b) The CADiS configurations.

The performance of the generalized coarray structures was eval-
uated using their difference coarray equivalence, and the analyt-
ical expressions of the coarray aperture, the achievable number
of unique lags, and the maximum number of consecutive lags
were derived for quantitative evaluation, comparison, and op-
timal design. The usefulness of these results was demonstrated
using examples applied for DOA estimations.

APPENDIX I
PROOF OF PROPOSITION 1

(a) We prove it using contradiction. Denote
and as two arbitrary lags in

set , where , ,
and . Had

been held, we would have

(22)

Since , (22) cannot be hold due to the copri-
mality of and . That is, and cannot be equal.
Thus, has distinct integers.

(b) Given an arbitrary integer in set satisfying

(23)

Fig. 15. RMSE versus the number of snapshots ( , ). (a)
The CACIS configurations. (b) The CADiS configurations.

we need to prove that there exist integers
and such that holds. The
requirement is equivalent to

(24)

Because , we obtain the following rela-
tionship by combining (23) and (24),

(25)

This result can be equivalently expressed as
, which implies . Because

is an integer, this requirement is equivalent to

(26)

which is satisfied in the underlying coprime array.
Remark: The configuration proposed in [13] becomes a
special case of CACIS configuration, as . As
a result, the set contains all the integers in the range

. Apparently, our re-
sult contains more consecutive lags and more precise than
the results provided in [13] using the same configuration.
In [13], they only count the consecutive in the range

.
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Fig. 16. The geometry of and .

(c) Given an arbitrary integer in set satisfying
, where and , the

following relationship can be obtained

(27)

Consequently, the set , which consists of the negative
elements in , can be expressed as

(28)

where and . Considering
an arbitrary integer in set , where

, and ,
then we need to prove that there always exists in set
to satisfy

(29)

where integers and .
Then the relationship

(30)

must be valid. Since and and
are coprime, it is indicated that cannot be reduced
to a ratio of smaller integers. As a result, the requirement
is equivalent to

(31)

It is clear that there always exists
and to satisfy (31).

(d) Because the two subarrays share the first sensor at the
zeroth position, the self-lags can be taken as cross-lags
between every sensor of one subarray and the first sensor
of the other subarray. Thus, .

(e) We prove the proposition by contradiction. Based on (28),
we suppose holds for some
integers and , where and

are integers, then relationship

(32)

must be valid. From and , we find
. As such, due to the coprimality between

and , we cannot find an integer that satisfies (32).
Therefore, , i.e., there are
holes at in set .

APPENDIX II
PROOF OF PROPOSITION 2

(a) In line with the property (d) of Proposition 1, the full sym-
metric set of lags which defined in (10) can be expressed
as

(33)

Because can be denoted as

(34)

(33) is equivalent to

(35)

Based on the property (c) of Proposition 1, the negative
values form a subset of the flipped positive values in set
. It is indicated that

and
. Finally, the set becomes

(36)
Denote and as the number of distinct lags in set
and , respectively. As a result of (36), the number of
distinct lags in set can be expressed as

(37)

where represents the number of non-negative lags
in set . Due to the property (a) of Proposition 1, there
are distinct integers in set . It is easy to confirm
that

(38)

can be obtained easily if given . Next, the deriva-
tion of is given as follows. According to the definition
of defined in (28),

where and .
For illustration, the geometry distribution of and , is
shown in Fig. 16. As such, the boundary and interior of
the shadow part represents all elements in . Since
and are coprime, there is no integer point on the di-

agonal line between OB. In addition, the shadow part
is symmetric with . As a consequence, for obtaining
the number of elements in set , we can first calculate
the number of integer points in the rectangle within [0,
] and [1, ] and then get the half of that number.

There are and integers in the range [0,
] and [1, ], respectively, thus, we obtain

(39)
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Finally, substituting (38) and (39) into (37),

(40)

is derived analytically.
(b) On the basis of property (b) of Proposition 1, contains

all the contiguous integers in the range
. Then, it is easy to confirm that

contains consecutive integers in
the range [ , ]
in terms of (36).

APPENDIX III
PROOF OF PROPOSITION 3

(a) The proof can be extended from the proof of property
(a) of Proposition 1, i.e., two arbitrary lags and in
set cannot be equal. Thus, has distinct
integers.

(b) The set can be rewritten as

(41)

where and , for different
values of that falls into the following set,

(42)

Extended from the proof of the property (b) of Proposition
1, we can conclude that is consecutive in the range

(43)

Combining (41) and (43), contains all the contiguous
integers in the range

(44)

(c) Based on the proof of property (e) of Proposition 1, it
is easy to confirm that there are some holes located at

in the negative range of set , where
are integers. Then we can draw a conclusion that

there are holes located at
in set by combining (41) and (42).

(d) Due to the displacement, the two subarray do not share
the first sensor any more. Considering the elements in set
, because the minimum value in is , which

is larger than 1. Consequently, .

APPENDIX IV
PROOF OF PROPOSITION 4

(a) Denote and as the number of the distinct lags in sets
and , respectively, and as the number of overlaps

between the and . Based on the definition of
and in (21), all lags in these sets are positive. As a
consequence of this, the number of full symmetric set of
lags in the virtual array can be expressed as

(45)

Because of the coprimality of and , for
and . As such,

(46)

In line with the property (a) of Proposition 1, we can ob-
tain

(47)

Substituting (46) and (47) into (45), the relationship is
equivalent to

(48)

When , the maximum value in is
less than the minimum value in . It signifies that there
is no overlap between and , i.e., . Then the
maximum number of unique lags, which is
, can be achieved.

(b) Due to the coprimality of and , any integer value for
displacement, , can be realized by an appropriate choice
of integers and , i.e.,[30]

(49)

Based on the property (c) of the Proposition 3, there are
holes located at in set
, where with and are integers and ,

. If some holes are aligned by the elements in ,
the following relationship

(50)

or

(51)

must be valid. Substituting (49) into (50) and (51), the
requirement is equivalent to

or

i.e.,

(52)

Then the requirement further becomes

(53)

so that the first hole ( and ), which is outside
the consecutive range of , can be aligned.When ,
i.e., , the holes, where and arbitrary

,

(54)
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When , i.e., , the holes, where
arbitrary and ,

are aligned. Thus, , i.e., , is
the optimal choice since all above holes can be aligned.
In this case, the holes, where and ,
and , and , are aligned. As a result,
the first hole outside the consecutive range of becomes

where and .
Then, the set contains all the consecutive integers in
the range

(55)
where . It is simplified as,

(56)

Next, we give the proof of the number of the unique lags
when . The following relationship

(57)

or

(58)

must be valid if overlaps with . It is equivalent to

(59)

or

(60)

In (59), must be equal to 0 because is an integer,
yielding

(61)

It is clear to confirm since
. This suggests that the number of the overlaps

in (59) is . Similarly, we can show the number
of overlaps in (60) is 0. Hence,

(62)

Substituting (62) into (48), we can obtain the number of
unique lags to be

(63)
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