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Abstract—The discrete fractional Fourier transform is a pow-
erful signal processing tool with broad applications for nonsta-
tionary signals. In this paper, we propose a sparse discrete frac-
tional Fourier transform (SDFrFT) algorithm to reduce the com-
putational complexity when dealing with large data sets that are
sparsely represented in the fractional Fourier domain. The pro-
posed technique achieves multicomponent resolution in addition
to its low computational complexity and robustness against noise.
In addition, we apply the SDFrFT to the synchronization of high
dynamic direct-sequence spread-spectrum signals. Furthermore,
a sparse fractional cross ambiguity function (SFrCAF) is devel-
oped, and the application of SFrCAF to a passive coherent loca-
tion system is presented. The experiment results confirm that the
proposed approach can substantially reduce the computation com-
plexity without degrading the precision.

Index Terms—Cross ambiguity function, global positioning
system, passive bistatic radar, sparse discrete fractional Fourier
transform.

I. INTRODUCTION

T HE discrete fractional Fourier transform (DFrFT) is a gen-
eralization of the discrete Fourier transform (DFT) with

an additional free order parameter [1], which requires a much
higher computational complexity than the DFT. Similar to the
fast Fourier transform (FFT) [2] that promoted the applications
of DFT, an efficient computation method is also needed to facil-
itate the applications of DFrFT.
A number of definitions and fast computational algorithms

of DFrFT have been derived in recent years. Among them, the
most common types include the eigenvector decomposition
type [3]–[5], the linear combination type [6] and the sampling
type [7]–[9]. However, the eigenvector decomposition based
approach cannot be expressed in a closed form, and the run-
time is for an -point data set, while the transformed
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results of the linear combination type do not match those of
the continuous fractional Fourier transform (FrFT). In contrast,
the sampling based approach has a closed form expression
with a relatively low complexity of , and the
transformed results approach that of the continuous FrFT [9].
Therefore, the sampling based DFrFT is widely employed in
engineering applications.
Among the various types of DFrFT algorithms, the lowest

complexity is achieved by the Pei’s algorithm [9]. The Pei’s al-
gorithm can be further optimized via a novel sub-linear algo-
rithm for DFT named sparse Fourier transform (SFT) developed
by Haitham et al. [10], [11]. When the input data have a large
size with a sparse spectrum, this algorithm reduces the com-
plexity of DFT to , where stands for
the number of large coefficients in the frequency domain. Con-
sider a wideband chirp signal with a sparse feature in the frac-
tional Fourier domain, to accelerate the time-frequency anal-
ysis of such signals, we propose an efficient scheme through
redesigning Pei’s algorithm by exploiting the advantage of the
SFT framework.
In addition to the SFT algorithm, pruning [12] is also a

frequently referred approach to implement DFT by exploiting
signal sparsity. Unlike SFT, however, the sparsity pattern of
the signal has to be known in advance when using pruning.
Another difference between the two algorithms is that the SFT
is a probabilistic algorithm while the pruning FFT algorithm is
deterministic.
In our previous related works, we investigated the spectral

analysis and reconstruction in the fractional Fourier domain
[13], the fractional power spectrum [14], the sampling theo-
rems in the fractional Fourier domain [15], [16], time delay
estimation of chirp signals in the fractional Fourier domain
[17], and the short-time FrFT [18]. On this basis, we propose
the sparse discrete fractional Fourier transform (SDFrFT) to
achieve fast computation of DFrFT in this paper.
Many challenging engineering applications can be formu-

lated as large-scale signal analysis problems in the fractional
Fourier domain. Therefore, the proposed algorithm can benefit
the applications in spectrum sensing, radio astronomy, radar
signal processing, digital medical imaging, communication,
cryptography and compression [19], [20]. Due to the limited
space, we only select two applications in this paper to illustrate
the effectiveness of the proposed algorithm: acquisition of high
dynamic direct-sequence spread-spectrum (DSSS) signals used
in the global positioning system (GPS) and coherent integration
of accelerating targets in passive coherent location (PCL)
systems.
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The contribution of this paper is fivefold: (1) We propose the
concept and algorithm of SDFrFT; (2) We analyze its impor-
tant properties such as the capability of resolvingmultiple signal
components; (3) We apply the SDFrFT to the fast synchroniza-
tion of high dynamic GPS signals; (4) We develop sparse frac-
tional cross ambiguity function (SFrCAF) to reduce the compu-
tational complexity of radar signal processing; (5) We apply the
proposed SFrCAF to a PCL system to yield desirable results.
The rest of the paper is arranged as follows. In Section II, the

proposed SDFrFT algorithm is presented, and its relationship
with the Pei’s algorithm and the SFT is discussed. Simulation
results and performance analysis of the proposed algorithm are
given in Section III. In Section IV, we apply the SFrCAF to the
fast acquisition of high dynamic DSSS signals. In Section V,
the principle of the proposed SFrCAF and its application to the
PCL signal processing is demonstrated. The paper is concluded
in Section VI.

II. METHODOLOGY

A. SDFrFT Algorithm

1) Algorithm Flow: From a practice perspective, the compu-
tational efficiency of an algorithm is a critical factor. The main
steps of the proposed SDFrFT algorithm are as follows:
Step 1) Construct the input signal of the SFT stage from the

original input signal by a chirp multiplication.
Note that must be sparse in fractional Fourier
domain and nonperiodic, and satisfy the Dirichlet
condition.

(1)

where is the sampling interval of the input signal,
is a real number representing the rotation angle of

FrFT.
Step 2) To tear apart the nearby coefficients in the spectrum,

a permutation is adopted to reorder the signal’s fre-
quency domain . This process is conducted by
modifying the time-domain signal as we do not
have access to the input signal’s Fourier spectrum,
which would require performing a DFT [21]. We
permutate the constructed signal as follows:

(2)

where is a random odd number that is
invertible mod , and mod denotes the modulo op-
eration that finds the remainder of division of one
number by another: Given two positive numbers
and , yields the remainder of the Eu-

clidean division of by . Assume that

(3)

so that the relation between the frequency domain
representations of and is [10]

(4)

Step 3) To extract parts of a signal in a smooth way and
avoid spectral leakage, a window function is used

[21]. Define a flat window function , which is
a symmetric vector, . Let denote the
window length in the time domain. Suppose that

is the frequency domain expression of ,
whose range obeys

,
,

(5)

where and are the truncation factors of the pass-
band and stopband, respectively, and denotes the
extent of ripple oscillation. Define a signal

, , then the support of sat-
isfies .

Step 4) Let be an exact divisor of integer . If ,
construct a signal

(6)

On the other hand, if , substitute the FFT
operation with IFFT. Assume that is the fre-
quency domain expression of signal . It can be
proved that [10], [29]

(7)

(7) indicates that aliasing in the time domain cor-
responds to subsampling in the frequency domain.
Store the value of and parameter employed
in (2).

Step 5) Define a hash function

(8)

and an offset function

(9)

Step 6) Location loops: Define another set

(10)

where contains the coordinates of the max-
imum magnitudes in . Output the preimage

(11)

The size of is 2 .
Step 7) Estimation loops: We can estimate the largest co-

efficients of as follows:

, (12)

Let be the number of loops, and be two
positive integers, and . For ,
execute the steps between Step 2–Step 6. For

, execute the steps between Step 2–Step 7.
The process is terminated when . It can be
seen that the location loops are actually executed for
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Fig. 1. Architecture for SDFrFT algorithm when .

times, and the estimation loops are executed
for times.

Step 8) The estimated output of can be obtained by
selecting the median values of the real and the imag-
inary parts separately:

(13)
Step 9) By multiplying another chirp function to the estima-

tion result obtained from the above steps, the
output of the SDFrFT algorithm is finally given by

(14)
where is the sampling interval of the output
signal, and is the length of the DFrFT output.
The detailed overall computation architecture for
the situation is presented in Fig. 1.

2) Selection of : With regard to the selection of the value
of , there are two cases in practice:
Case 1) The value of is already known. This kind of situ-

ation exists in many applications, for example, the
matched filtering in the linear frequency modula-
tion radar or in the synthetic aperture radar (SAR)
imaging.

Case 2) The value of is unknown. For this case, we estimate
the value of by the discrete polynomial-phase
transform (DPT) method [22], [23]. The estimation
precision can be further improved by searching with
a finer step size within a limited range around the es-
timated value of .

We explain how to choose the value of as follows.
An important method to estimate the rotation angle is the

maximum likelihood estimation (MLE) technique [24]. In [25],
the discrete chirp Fourier transform, which is the discrete form
of theMLE, is proposed to estimate the chirp rate. However, due
to the exhausting two-dimensional maximization process of the
MLE, suboptimal methods are preferred. The phase unwrapping
method [26] is developed based on the finite difference operator,

but it appears incapable of analyzing multicomponent signals.
As a computationally efficient alternative to the MLE method,
the DPT with order 2 converts the chirp signal into a sinusoidal
wave [23]. In this way, the rotation angles of the multicompo-
nent signals can be quickly determined.
In our work, we adopt the DPT-based approach to estimate

the rotation angle . Let be a complex-valued function of a
real discrete variable , and be a positive integer representing
delay parameter. The operators and
are defined as

(15)

(16)

where denotes conjugate operation.We also introduce an oper-
ator , which is the DFT of . Note that performs
phase differencing, and it can be proved that differencing re-
duces the order of the polynomial by one.
Consider a signal , where

represents the sampling interval, and is the chirp rate. We get

(17)

According to (17), the energy of
will concentrate at

(18)

and it is proved that the best estimation precision can be ob-
tained with . Then, can be correctly estimated from .
However, influenced by the input channel noise, the estima-

tion precision may not be sufficient for some application sce-
narios. For these cases, a fine search for the value of within
a limited range around the estimated result is required. In the
process, the selection of the step size mainly depends on
the chirp rate resolution and application requirement. Here we
derive the upper bound of under the constraint of chirp rate
resolution . From (18) we know that

(19)

Let be the time length of the signal, and choose . Then
we can get

(20)

Comparing (1) with (17), we can find that

(21)

where denotes first-order derivative operator.
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B. Relation to the Pei’s Sampling-Type Algorithm and the
Concept of SFT

The continuous FrFT [27] is defined as (22), at the bottom
of the page, where denotes the fractional Fourier domain
frequency, is an integer, , and the phase of

is constrained in the range of .
The Pei’s sampling-type algorithm [9] is derived based on

(22). First, the input and the output signals are directly sampled
by the intervals and , respectively. Second, to satisfy the
reversible property, the sampling interval is restricted by

(23)

Denote the length of input signal by . Then, the constraint
must be satisfied. We only discuss the situ-

ation in this paper. In this case, the form of DFrFT can be ob-
tained as shown in (24) at the bottom of the page.
Generally, if , the Pei’s sampling-type algorithm can

be seen as two times of multiplication with chirp signals and one
time of FFT. Therefore, the overall multiplication complexity of
the Pei’s algorithm is .
As the most efficient numerical algorithm of DFrFT, the Pei’s

sampling-type algorithm is suited for a broad spectrum of ap-
plications. However, the computational complexity will be high
when the data length is large, in which the FFT stage ac-
counts for a major proportion. When the signal is sparse, i.e.,
most of its coefficients are zero or negligible, it is recently re-
vealed that the computational complexity of DFT can be signifi-
cantly reduced by a novel fast algorithm named SFT [10], which
is far superior to the FFT. The key idea of SFT is to first parti-
tion the frequency domain of the sparse signal into individual
buckets using a specially designed filter that is concentrated
both in time and frequency domains, which is obtained by con-
volving a Dolph-Chebyshev function with a box-car function,

then locate and estimate the large coefficients in a manner sim-
ilar to the sketching/streaming algorithms, where either iteration
or interpolation, the expensive process in the previous methods,
is needed. This makes it possible for further improvement of the
algorithm efficiency on the basis of the Pei’s sampling-type al-
gorithm. Fortunately, it happens that the algorithm architecture
of the Pei’s algorithm is suited for this kind of modification.
The revised Pei’s algorithm, termed SDFrFT, is designed for

the signals that meet the following descriptions: The signal is
non-stationary with a large scale, and is -sparse in the frac-
tional Fourier domain, where the signal size and the number
of large coefficients satisfy . This kind of signal is
common in many applications, such as SAR signal processing
and nuclear magnetic resonance imaging.

III. PERFORMANCE OF PROPOSED SDFRFT

A. Resolution Performance

In the following an example is given to illustrate the resolu-
tion performance of the proposed SDFrFT in the multi-rotation
angle case. The initial frequencies of the four frequency com-
ponents are 100, 200, 300 and 300.1 Hz, respectively, and the
chirp rates of these components are 10, 11.85, 13.85 and 13.85
Hz/s, respectively. The sampling rate is , and the
data length is . The input signal is corrupted by a white
Gaussian noise, and the SNRs of the four frequency components
are 12, 18, 24 and 24 dB, respectively. In the simulation
process, the number of computed large coefficients in the fre-
quency domain is set to . The loop number parameters
are set as and , respectively. The filter pa-
rameters are set as , , , and

. The length of subsampled FFT is . In
every location loop, as many as maximum magnitudes
are searched out from .

,

,
,

(22)

,

,

,
.

(24)



6586 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 24, DECEMBER 15, 2014

Fig. 2. The resolution performance of SDFrFT: (a) The frequency domain of the input signal. (b) (d) (f) The matched-order DFrFT of the four components
respectively. (c) (e) (g) The matched-order SDFrFT of the four components, respectively.

The simulation results are shown in Fig. 2, where Fig. 2(a)
shows the frequency domain magnitude of the input signal,
and the rest are arranged in 3 rows and 2 columns. The results
in each row are obtained by setting the rotation angle in
the fractional Fourier domain such that one of the frequency
components is focused. The simulation results demonstrate
that, in this multi-rotation angle case, the estimation precision
of the fractional frequency and the amplitude value of the

sparse component in the fractional Fourier domain can be
guaranteed by the proposed SDFrFT. On the other hand,
in the estimated fractional Fourier domain, the components
which do not behave sparse and focused will be estimated
as dense fractional spectral lines with lower amplitude as
compared with the correctly estimated large values. The
enlargements in Figs. 2(f) and (g) reveal the local details of
the immediately adjacent spectral lines with the same chirp
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Fig. 3. Comparison of the computational complexity between conventional
DFrFT and SDFrFT approaches.

rate, indicating that the SDFrFT processing does not affect
the resolution performance.

B. Computational Complexity

The calculation of the proposed SDFrFT involves a total
number of

(25)

complex multiplication operations, where the function
expresses the cardinality of a set.
The comparative result of the computation complexity be-

tween SDFrFT and DFrFT is shown in Fig. 3. Note that the re-
sult is simply based on the number of complex multiplications
in the unoptimized algorithm flow as depicted in (25). In the
simulation process, we assume the number of computed large
coefficients in the frequency domain to be . The loop
number parameters are set as and , respec-
tively. It can be seen that, when the data length is increased to
a moderate level, the advantage of the SDFrFT over the DFrFT
in computational complexity becomes more evident.
The proposed SDFrFT algorithm is designed based on the

SFT theory [10] and code versions 1 and 2 [28]. As is pointed
out in [21], the computational complexity of these two versions
closely correlates with the signal size . The version 3 and
4 codes are not published yet. However, the theories of these
two versions have been described in [29], and some analysis
of version 3 can be found in [21]. It is proved that, in code
version 3, the correlation between signal size and computational
complexity becomes less significant. Thus it is reasonable to
expect that the SDFrFT based on SFT code version 3 will not
necessarily require such a large signal size to exceed the classic
algorithm.
On the other hand, our algorithm is already computation-

ally faster for signals with length around , which is a quite
common size in many application scenarios. Some of the exam-
ples will be presented in Section IV and Section V.

C. Algorithm Robustness

As illustrated in [10], the SFT’s reduced runtime does not
compromise its robustness to noise. The robustness to noise of
the proposed algorithm is examined by simulations. Let

Fig. 4. Robustness vs. SNR.

, , and rad. 20000Monte Carlo trials are con-
ducted with different SNRs ranging from 10 dB to 30 dB. For
each trial, we compute the average value of the estimation error
per large entry between the SDFrFT output and the
best -sparse approximation of the DFrFT output ,
which can be expressed as

(26)

Fig. 4 plots the average error of the SDFrFT obtained from
the numeric simulation results, which confirms the robustness
of the algorithm under noisy circumstance.

IV. APPLICATION TO THE SYNCHRONIZATION OF HIGH
DYNAMIC DSSS SIGNAL

DSSS communication and navigation systems [30] have the
advantages of low spectral density, high information security
and resistance to jamming, and are easy to realize multiple ac-
cess communications and high-precision measurements. Hence,
they are widely used in both civilian and military applications.
The well-known GPS [31] is an example of DSSS system. To
ensure correct despreading and demodulation, signal synchro-
nization is needed at the receiver end. The synchronization in
a DSSS system normally consists of two steps: acquisition and
tracking, where acquisition is the prerequisite for tracking. GPS
receivers are now frequently used in the field of aerospace engi-
neering. The commonly occurring high dynamic relative motion
between the navigation satellite and the receiver platform will
induce acute variations in the phase of the carrier. The high ve-
locity and acceleration of the motion are characterized as a large
Doppler shift and its derivative.
Conventional FFT based fast acquisition approaches

[32]–[34] solely compensate for the Doppler shift compo-
nent caused by the high velocity, whereas the impact of the
change rate of the Doppler frequency is ignored. However,
if the change rate of the Doppler frequency is high, then the
spectral expansion results in a reduction of the signal peak, and
thereby, makes the acquisition difficult, especially with an ex-
tremely low SNR. In this section, we propose a fast acquisition
method based on the SDFrFT to synchronize high dynamic
DSSS signals. By compensating the quadratic phase term with
SDFrFT, a notably enhanced acquisition performance can be
achieved.
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Fig. 5. The relationship between integration loss and dynamic strain.

A. Principle

Let and be the initial velocity and acceleration of the
receiver platform relative to the transmitter respectively. Let
denote the carrier wavelength, so the Doppler frequency at
time can be written as

(27)

Thus, the received signal can be expressed as

(28)

where and represent the modulated data code and
spread spectrum code, respectively, and denotes the in-
termediate frequency (IF). It can be seen from (28) that the
relative accelerating motion of the receiver platform will bring
in a quadratic phase term to the modulated signal, which will
directly influence the acquisition performance. Take GPS
receiver for instance. When FFT is adopted to process the
received signal, the impact of acceleration on the signal peak
is shown in Fig. 5, where the wavelength is 0.1904 m, the
sampling rate is 5 MHz, and the integration time is 0.08 s. It
can be concluded from Fig. 5 that the amplitude of the signal
peak declines with the increase of the acceleration. The loss of
signal peak is about 4 dB when the acceleration is 10 g, whilst
the loss reaches 10 dB when the acceleration is 40 g, where

represents the gravity acceleration.
The fastest GPS synchronization algorithm is presented in

[34], where SFT is exploited to reduce the computational com-
plexity. For real GPS signals, the results in [34] show that the
new algorithm reduces the median number of multiplications by
a factor of 2.2 in comparison to the FFT-based synchronization
algorithm. Based on this method, a SDFrFT based synchroniza-
tion algorithm is proposed to deal with the high dynamic situa-
tion as shown in Fig. 6.
It is emphasized that the synchronization output has a single

major peak at the correct rotation angle and time delay, while the
FrFT of the input signal is not sparse. Therefore, in the inverse
FrFT step, the proposed SDFrFT can be adopted to lower the
runtime. Since the function of the front FrFT step is to provide
the input for the inverse FrFT step, and the SDFrFT step needs
only few samples of the FrFT output, a subsampled DFrFT is

Fig. 6. The architecture of the SDFrFT based synchronization algorithm.

Fig. 7. The relationship between acceleration and transform order.

adopted to further reduce the computational complexity. When
searching for the Doppler frequency , the input signal
is first multiplied by to obtain , where

. As subsampling a signal in the frequency domain
is equivalent to aliasing it in the time domain, and vice versa,
signal is aliased to obtain its subsampled version as

(29)

where is the number of samples. The output is divided into
buckets with samples in each bucket. Then a subsampled
DFrFT of size is performed on the aliased time signal. The
result of DFrFT is multiplied by the conjugate of the FFT of the
local code which is of length and downsampled by . By
performing an inverse sparse Fourier transform (ISFT) to the
multiplication result, the aliased time domain output is obtained
as

(30)

where denotes the ISFT operation.
To determine the unique solution, we first find the bucket with

the maximum magnitude among the buckets; then, we check
the correlation of each of the possible time shifts which
are aliased into this bucket, and ultimately select the shift that
corresponds to the maximum correlation.
Let denote the chirp frequency modulation rate,

where . From (22) and (28) we know that when
, the chirp signals will focus in the frac-

tional Fourier domain. That is to say, for high dynamic signals,
the transform order is relevant to the acceleration of the receiver
platform. The relationship between acceleration and transform
order is shown in Fig. 7.

B. Algorithm Verification

In this section, the algorithm implementation of high dynamic
DSSS signal synchronization is conducted on a GPS naviga-
tion platform, which is illustrated in Fig. 8. We first amplify the
received satellite signal, and then perform down conversion to
the amplified signal, where the adopted IF is 0.42 MHz. After
passing through the A/D converter with the sampling rate of
5 MHz, the digitized signals in the two orthogonal inphase (I)
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Fig. 8. The architecture of the experimental GPS receiver system.

TABLE I
SIMULATION PARAMETERS

Fig. 9. Simulation results of GPS acquisition using different approaches:
(a) FFT. (b) DFrFT. (c) SFT. (d) SDFrFT.

and quadrature (Q) channels are conveyed to the acquisition and
tracking module to reconstruct the navigation message.
The following simulation is based on the coarse/acquisition

(C/A) code. The C/A code is a pseudo-random (PN) binary se-
quence, which is transmitted at a rate of 1.023 Mchips/s with
the information data rate of 50 bps. The PN sequences only
strongly correlate when they are exactly aligned. We choose the
L1 wave band as the carrier frequency, whose center frequency
is 1575.42 MHz.
The other simulation parameters are listed in Table I. Fig. 9

shows the simulation results using FFT, DFrFT, SFT and SD-
FrFT. It can be seen that, with the acceleration de-chirped, a
more concentrating correlation peak can be obtained by using
FrFT approach than by FFT approach. The SDFrFT method
only outputs the most significant peak, and the algorithm per-
forms well even in a relatively low SNR environment. By re-
ferring to Fig. 3, we draw the conclusion that the proposed
method can greatly increase both the probability and the speed
of acquisition.

V. SFRCAF AND ITS APPLICATION TO PCL

In this section, we consider another application of the SD-
FrFT. The cross ambiguity function (CAF) is a frequently used
mathematical tool in radar signal processing, which is used pri-
marily to determine the range andDoppler resolutions of a target
in a particular waveform. Other important applications of the
CAF embrace estimating the time/frequency difference of ar-
rival at two spatially separated receivers [35] to determine the
emitter location and performing coherent integration in a PCL
system [36]. Here we mainly focus on its application to the PCL
system.
Due to the extraordinary merits of low cost, electromagnetic

compatibility, potential anti-stealth capacity and immunity to
electronic countermeasures [37], the past few years have wit-
nessed a significant growth of interest and extensive research
achievements in the realm of PCL technology. The CAF plays
an important role in PCL to increase the signal-to-interference
plus noise ratio (SINR) to a detectable level. The corresponding
information of targets such as time delay and Doppler shift can
be directly obtained from the CAF map [38].
Generally, long time integration is adopted to improve the

SINR for weak signals, yet it is accompanied by increased
computational complexity. Thus, it is rational that down
sampling and the FFT are used to decrease the computation
burden, and various versions of CAF are commonly based
on this idea [39], [40]. However, in the application scenario
where a high frequency resolution is required, the calculation
complexity for FFT becomes extremely high because FFT
requires multiplications. In most application
situations, nevertheless, only a small number of targets appear
in one range cell. Consequently, the CAF plane is dominated by
a small number of peaks, namely, a sparse feature is presented.
In this case, we propose a novel SFrCAF algorithm based on
the SDFrFT to promote the operation efficiency.

A. Principle

In this section, the definition and the derivation of the novel
SFrCAF are discussed in a PCL radar scenario.
A PCL system utilizes the direct wave signal and the target

echo signal to calculate CAF. The CAF is calculated as

(31)

where is the echo signal received by the surveillance an-
tenna, is the direct path signal received by the reference
antenna, and denote the time delay and the Doppler shift,
respectively, and is the integration time. It is worth noting
that the CAF in (31) can be interpreted as the Fourier transform
of the product of the delayed version of and the conjugate
of .
The discrete definition of CAF can be written as follows:

(32)

where and are the sampled echo and reference sig-
nals, respectively. In addition, is the number of delay bins,
is the number of Doppler shift bins, and refers to the in-

tegration length of data. Then, the integration time of CAF is
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Fig. 10. The bistatic geometry of PCL.

. By adopting low-pass filtering and times
down sampling to the product of , we can ob-
tain , where , and the number of integration
points is . Then, the calculation of (32) can be sim-
plified as

(33)

After down sampling, the frequency domain observation range
is , where denotes the base-
band sampling rate.
In practice, when the frequency spectrum of the targets is

sparse, the FFT can be replaced by the SDFrFT in the calculation
of the CAF to improve the operation efficiency.
When a target with accelerating motion is to be detected, the

Doppler migration should be considered. The bistatic configu-
ration of PCL is illustrated in Fig. 10, where and denote
the location of the non-cooperative transmitter and the receiver,
respectively. At the initial time, the target is located at O, accel-
erating with the initial velocity and a constant acceleration
along the straight line which slants at an angle of to the

bistatic angular bisector. The bistatic angular is , and de-
notes the baseline distance. At time , it reaches the location P.
, , and represent the distance between the

target and the transmitter or the receiver at the initial time or at
, respectively.
From Fig. 10, we can obtain the bistatic range as (34), shown

at the bottom of the page. Let c be the velocity of light. The
bistatic time delay and Doppler frequency can be derived from
(35) and (36), respectively, and expressed as

(35)

(36)

Substituting (34) into (35) and (36), then performing Taylor se-
ries expansion at with the quadratic and higher terms
neglected, we can get

(37)

(38)

Therefore, the relationship between the echo signal and the di-
rect path signal can be written as

(39)

where represents the amplitude of the echo signal. Note that
(39) describes an ideal model of the relationship between the
received signals, which is derived from the scenario illustrated
in Fig. 10 with a single target, which undergoes maneuvering
with a constant acceleration within the integration time. As we
pointed out prior to (37) and (38), the quadratic and higher terms
are neglected. Empirical knowledge and studies in other litera-
tures [41], [42] reveal that the simplified model is sufficient for
theoretical discussion and practical applications.
In this case, DFrFT is an effective measure to compensate the

Doppler migration so as to improve the SINR. Comparing (31)
and (39) with (22), we can see that, to reach the best compensa-
tion performance, the rotation angle needs to satisfy

(40)

At this point, the time delay, the Doppler frequency and the ac-
celeration of a certain target can be estimated by the -order
FrCAF as

(41)

(34)



LIU et al.: SPARSE DISCRETE FRACTIONAL FOURIER TRANSFORM AND ITS APPLICATIONS 6591

Fig. 11. Simulation results of coherent integration using different approaches: (a) CAF result with FFT. (b) Side view of Doppler-amplitude section of the CAF
map in (a). (c) SFrCAF result with SFT, namely . (d) Side view of Doppler-amplitude section of the SFrCAF map in (c). (e) SFrCAF result, where Doppler
migration has been compensated at . (f) Side view of Doppler-amplitude section of the SFrCAF map in (e).

For the additional dimension to the conventional CAF, the
FrCAF is more time-consuming, and thus greatly limits its
application range. By adopting the proposed SDFrFT based
method, a significant reduction in the overall runtime can be
achieved. Thus, the proposed -order SFrCAF can be expressed
as

(42)

where denotes the -order SDFrFT operation to
signal .

In the case where a priori information suggests that the target
remains in its state of radial uniform motion during the integra-
tion time, the SDFrFT process can be further simplified to the
SFT.

B. Algorithm Verification

The aforementioned algorithm is validated by the following
simulation and real data experiment, where the digital video
broadcast signal is adopted as the non-cooperative transmitted
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Fig. 12. Real data experiment results of coherent integration using different approaches: (a) CAF result of real data. (b) Side view of Doppler-amplitude section
of the CAF map in (a). (c) SFrCAF result with SFT, namely . (d) Side view of Doppler-amplitude section of the SFrCAF map in (c). (e) SFrCAF result of
real data, where . (f) Side view of Doppler-amplitude section of the SFrCAF map in (e).

TABLE II
TARGET PARAMETERS OF THE TARGET WITH ACCELERATING MOTION

signal. The bandwidth , the carrier frequency and the base-
band sampling rate are 7.56 MHz, 674 MHz and 9 MHz,
respectively.
1) Simulation: Detection of Target With Accelerating Mo-

tion: In the simulation, the other corresponding parameters of
the accelerating target are as listed in Table II. The target uni-
formly accelerates along the bistatic angular bisector with the
initial velocity and acceleration . Figs. 11(a) and (b) show
the CAF results using FFT, where the Doppler migration is
highly conspicuous, thus the energy of the target echo does
not focus in a single frequency bin. By adopting the SFrCAF

of the same data length, when is rotated to an appropriate
angle, the Doppler migration is compensated, which is shown in
Figs. 11(e) and (f), while the runtime is dramatically decreased.
According to (41), with the optimum rotation angle and the
location of the delay/Doppler bin, we can estimate the bistatic
acceleration, range and velocity of the target.
Note that an obvious range migration can be observed in the

simulation result depicted in Fig. 11(e). However, the Keystone
transform based solution to this problem has been well estab-
lished in our previous work [41]. We do not discuss it here for
conciseness since it is out of the scope of this paper.
2) Real Offline Data Experiment: In this example, we use a

real recorded experiment data set to conduct the offline signal
processing. The processed results of the CAF and the SFrCAF
are shown in Fig. 12. The length of the data to be processed is
3932160 samples, which is downsampled by a rate of 120 before
performing coherent integration. In the SFrCAF processing, the
optimum rotation angle is estimated as . The
bistatic Doppler frequency, the time delay, and the variation rate
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Fig. 13. Superposition of detection results over data files sequence.

of the bistatic velocity are estimated as 437.2 Hz, 501.8 ,
and , respectively.
The effectiveness of the proposed SFrCAF is verified by the

performance as shown in Fig. 12, where the motion parameters
of the target are accurately estimated by SDFrFT, and a fine de-
tection performance is achieved with a notably reduced compu-
tational complexity. By comparing the algorithm performances
shown in Figs. 12(d) and (f), the target’s amplitude in Fig. 12(f)
is approximately 4.9 dB higher than that in Fig. 12(d). There-
fore, we can conclude that the peak energy of the accelerating
target is more concentrated with SDFrFT than with SFT, so that
the target can be better distinguished from interference. It is ra-
tional to predict that in CAF application, the advantage of SD-
FrFT over SFT will be more pronounced when the acceleration
is higher.
In the following, we further demonstrate target detection over

multiple coherent processing intervals by performing SFrCAF
on a sequence of 9 consecutive data files. The length of each
data file is 0.5 s, i.e., samples, in which the first
3932160 samples are utilized. Then we draw the superposi-
tion of the processing results over these data files plotted in
Fig. 13, yielding the trajectory of the target that moves away
from the radar. In particular, the interval between the neigh-
boring trace points matches the product of the target Doppler
and the length of data file, and the changing rate of the Doppler
frequency also matches the estimated acceleration. On the other
hand, other non-target components randomly scatter on the CAF
surface, and no connection between them can be observed. The
offline data detection results have also been compared against
the recorded log of the ADS-B receiver in our experimental data
acquisition system to verify their consistency with the ground
truth. As such, through the superposition of the consecutive pro-
cessing results, we are able to clearly identify and track a weak
target in the presence of other strong echo components.
To summarize, the proposed SFrCAF is applicable to the

detection scenarios where the data length is sufficiently large
and the radial acceleration remains roughly stable during the
integration time. When SFrCAF is adopted, a relatively higher
integration gain can be obtained with a faster acceleration rate
of the target, and an accelerated algorithm computation can be
achieved with a larger data length. From the implementation
perspective, the inherent data-parallelism of the proposed
SFrCAF, which is embodied in the computing patterns of

location/estimation loops and Doppler filtering at different time
delays, may facilitate its efficient realization on a programmable
graphic processing unit (GPU) via NVidia’s compute unified
device architecture (CUDA) paradigm, thus GPU could be a
preferred selection in practice.

VI. CONCLUSION

The objective of this paper was to develop a numerical algo-
rithm for the fast computation of DFrFT when the signal spec-
trum can be sparsely represented in the fractional Fourier do-
main. By recurring to the merit of SFT, we have redesigned the
Pei’s algorithm and proposed a novel approach, which signif-
icantly outperforms the existing algorithms in the runtime as-
pect. The application of the proposed SDFrFT algorithm for the
fast synchronization of the high dynamic DSSS signal was then
presented. We have also proposed a SFrCAF for radar signal
processing and applied it to the coherent integration in a PCL
system. The simulation results clearly demonstrated the appli-
cability of the proposed algorithm to the fast analysis of non-sta-
tionary signals with a large size and sparse spectrum in the frac-
tional Fourier domain. Our future work will concentrate on fur-
ther optimizing the algorithm, and generalizing the method to
the case of the discrete linear canonical transform.
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