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Subspace Analysis of Spatial Time—Frequency
Distribution Matrices

Yimin Zhang Member, IEEEWeifeng Mu, and Moeness G. Amikellow, IEEE

Abstract—Spatial time—frequency distributions (STFDs) have lems using multiple antenna arrays in nonstationary environ-
been recently introduced as the natural means to deal with source ments have been introduced in [5], [7], and [8], thus far, there has
signals that are localizable in the time—frequency domain. Previous been no sufficient analysis that explains their offerings and jus-
work in the area has not provided the eigenanalysis of STFD ma- tifies thei f The aim of thi is t ine th
trices, which is key to understanding their role in solving direc- '_'es €lr periormance. 1he a'm_ orthis paper_ls 0 e)_(ar.nlne €
tion finding and blind source separation problems in multisensor €igenstructure of the STFD matrices and provide statistical anal-
array receivers. The aim of this paper is to examine the eigenstruc- ysis of their respective signal and noise subspaces. The paper
ture of the STFDs matrices. We develop the analysis and statistical focuses on the class of frequency modulated (FM) signals as
properties of the subspace estimates based on STFDs forfrequencythey represent a clear case of nonstationary signals that are lo-
modulated (FM) sources. It is shown that improved estimates are ; . . .
achieved by constructing the subspaces from the time—frequency calizable in t.he time—frequency domain. It shows that th'e sub-
signatures of the signal arrivals rather than from the data covari- Spaces obtained from the STFDs are robust to both noise and
ance matrices, which are commonly used in conventional subspaceangular separation of the FM waveforms incident on the array.
estimation methods. This improvement s evidentin alow signal-to- This robustness is primarily due to spreading the noise power
noise ratio (SNR) environment and in the cases of closely spacedWh”e localizing the source energy in the time—frequency do-

sources. The paper considers the MUSIC technique to demonstrate - . . . L
the advantages of STFDs and uses it as grounds for comparison be-Main. By forming the STFD matrices from the points residing on

tween time—frequency and conventional subspace estimates. the _Source_time—frequ_ency gignatures, we increas_e, in essence,
Index Terms—Array signal processing, spatial time—frequency the input signal-to-noise ratio (SNR) and, hence, improve the

distribution, subspace analysis, time—frequency distribution, accuracy of the subspace estimates.
time—frequency MUSIC. This paper is organized as follows. Section Il presents the

signal model and considers nonstationary environments defined
by FM source signals. The statistical properties of signal and
noise subspace estimates for uncorrelated FM signals over the
HILE time—frequency distributions (TFDs) [1]-[4] observation period are delineated. In Section IIl, we give a brief
have been sought out and successfully used in the areagew of the definition and basic properties of the STFDs and
of speech, biomedicine, the automotive industry, and machigerive the signal and noise subspaces using STFD matrices for
monitoring, their use in sensor and spatial signal processitt@ general class of FM signals. We demonstrate the robust-
has not been properly investigated. The evaluation of quadraiigss of the STFD-based subspace estimates to both noise and
TFDs of the data snapshots across the array yields the “spagiatjular source separation, as compared with those obtained in
time-frequency distributions” (STFDs) [5], [6]. These spatiasection II, using covariance matrices. The analytical results of
distributions permit the application of eigenstructure subspagections Il and Ill are used in Section IV to examine the perfor-
technigues to the solution of a large class of channel estimatigance of the direction-finding MUSIC technique based on the
and equalization, blind source separation, and high-resolutiesvariance matrix and STFD noise subspace estimates. Numer-
direction-of-arrival (DOA) estimation problems. In the aregal simulations are given in Section V.
of blind source separation, the STFDs allow the separation
of Gaussian sources with identical spectral shape but with
different time—frequency localization properties, i.e., different
signatures in the time—frequency domain. For DOA estimatidh Signal Model

problems, the construction of the signal and noise subspaceg, narrowband array processing, whersignals arrive at an

using the source time—frequency signatures improves angulalelement array, the linear data model
resolution performance.

Although the applications of the spatial time—frequency dis-
tributions to blind source separation and DOA estimation prob-

. INTRODUCTION

Il. SUBSPACEANALYSIS FORFM SIGNALS

x(t) = y(¢) +n(t) = Ad(¢) +n(?) 1)

is commonly assumed, where the x n spatial matrix
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assume any structure. The analytical treatment in this pafBer Subspace Analysis for FM Signals
does not depend on any special structure of makrix
Due to the mixture of the signals at each sensor, the e
ments of them x 1 data vectox(t) are multicomponent sig-
nals, whereas each source sigidt) of then x 1 signal vector — d(t) = [dy(t), -+, du()]% = [D1e?? @ ... D, e O)T
d(t) is often a monocomponent signali¢) is an additive noise (6)
vector whose elements are modeled as stationary, spatially antkre D; and+;(¢) are the fixed amplitude and time-varying
temporally white, zero-mean complex random processes tipaase of theth source signal. For each sampling titel;(¢)
are independent of the source signals. That is has an instantaneous frequenfgt) = (1/2n)(dwy;(t)/dt).
FM signals are often encountered in applications such as
" radar and sonar [2]. The consideration of FM signals in this
En(t +7)n"(#)] =o8(1)L paper is motivated by the fact that these signals are uniquely
and characterized by their instantaneous frequencies, and therefore,
En(t + T)nT(t)] =0, for anyr (2) they have clear time—frequency signatures that can be utilized
by the STFD approach. In addition, FM signals have constant
whereé(7) is the delta functionI denotes the identity matrix, amplitudes. To simplify the analysis, we assume that the
o is the noise power at each sensor, superschpendT’, re- transmitted signals propagate in a stationary environment and
spectively, denote conjugate transpose and transposé;@hd are mutually uncorrelated over the observation peilod N]
is the statistical expectation operator. Subsequently, the corresponding covariance matrices are time
In (1), it is assumed that the number of sensors is largédependent. Under these assumptions, we have
than the number of sources, i.e;, > n. Further, matrixA ‘
is full column rank, which implies that the steering vectors 1 Zd‘ k)i (k) = 0 fori # j,
corresponding ton different angles of arrival are linearly N —
independent. We further assume that the correlation matrix (7
In this case, the signal correlation matrix in (4) is

In this paper, we focus on analytic frequency modulation
k?—'l\/l) signals, which are modeled as

ivjzlv"'vn'

Rayx = E[x(t)x(1)] 3) Raq =diagD?, i =1, 2, ---, n]
is nonsingular and that the observation period consist/ of Where diag] is the diagonal matrix formed with the elements
snapshots withV > m. of its vector valued arguments. From the above assumptions, we
Under the above assumptions, the correlation matrix is giveave the following Lemma.
by Lemma 1: For uncorrelated FM signals with additive white
Gaussian noise, we have the following.
Ryx = E[x(1)x" (1)) = ARqqA" + 0T (4) a) The estimation error&; — s;) are asymptotically (for
largeN) jointly Gaussian distributed with zero means and
whereRaa = E[d(¢)d” (¢)] is the source correlation matrix. covariance matrices given by
Let)\l>)\2>"'>)\n>)\n+1:)\n+2:---: E R R H
A, = o denote the eigenvalues ® . It is assumed that [(8: —s)(8; —4)" ]
Ai,t = 1, .-+, n are distinct. The unit-norm eigenvectors as- AA m—n
sociated with\,, - - -, A, constitute the columns of matr& = = % Z o _’“ sH 4 Z o grgll | 6
[s1, -, sp], and those corresponding g1, - - -, A, make k
up matrixG = [g1, -+, &mn—n]. Since the columns oA and "#Z
S span the same subspace, tie G = 0. = W i g, (8)
In practice, R is unknown and, therefore, should be estlE[(S —s)(8; — ;)]
% (IACK] J
mated from the available data samples (snapshqig) ¢ =
o AitA—o) ¢
1,2, ---, N. The estimated correlation matrix is given by =—= 4253'% (1—46,)
N (A=)
A~
A SV, 9)
a N Hy-
Ryx = N Z x(i)x" (1). (®) b) The orthogonal projections ¢g; } onto the column space
=1 of S are asymptotically (for larg&) jointly Gaussian dis-
Let {51, -, 8n, &1, ) & } denote the unit-norm eigen- tributed with zero means and covariance matrices given by
vectors ofR. that are arranged in the descending order of the n
associated eigenvalues, and$eandG denote the matrices de-  E[(SS”g;)(SS" ;)] = [Z 5 SkSi, ] 8
fined by the set of vectorgs; } and{g;}, respectively. The sta- =1 (o=
tistical properties of the eigenvectors of the sample covariance Al
ok , . . = —-U¢, (20)
matrix R for signals modeled as independent processes with N ’

additive white noise are given in [9]. E[(SSfg)(SStg)T|=0  foralli, j. (12)
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The proof of part a) is given in Appendix A. The proof of part The spatial pseudo Wigner—Ville distribution (SPWVD) ma-
b) follows the same exact steps of the respective results deriter is obtained by replacing:(¢) by the data snapshot vector
in [9] and is not given here. Equations (8) and (9) hold strong(t)

similarity to those of [9]. The only difference is that the term

(AiAk)in[9, (3.8a) and (3.8b)] is replaced by A; + A\, — o) in (L=1)/2 '
(8) and (9), due to the uncorrelation property (7). Accordingly,Dxx(t, f) = Z x(t +7)xH(t — 1)e 4T, (13)
for high input SNR(A\, > o, £ =1, 2, - -, n), the estimation r=—((L—1)/2)

error of (§; — s;) can be greatly reduced. From (8) and (9), o ) .
each column of the signal subspace will be perfectly estimategostituting (1) into (13), we obtain
whengo = 0. This is in contrast with the estimation error that
would result under the same noise-free condition if we use th¥x(t, f)=Dyy (¢, f)+Dyn(t, f)+Duy(t, f)+Dun(t, f).
temporally independent signal characteristics considered in [9]. (14)

Equations (10) and (11) are identical to [9, (3.9) and (3.10){ve note thaDy (t, f), Dyy(t, f), Dyn(t, f), Duy(t, f),and
The reason of such identity is that despite the difference in thtun(f, f) are matrices of dimensian x m. Under the uncor-
signal eigenvectors in the two different scenarios, which are diglated signal and noise assumption and the zero-mean noise
cussed in this paper and in [9], the signal subspaces in both ca@@perty, the expectation of the crossterm STFD matrices be-
are identical and are spanned by the columns of mariAc- tween the signal and noise vectors is zero, EBDyn (¢, )] =
cordingly, the projection of the estimated noise eigenvectors &1Dny (t, f)] = 0, and it follows that
the true signal subspace for either FM signals or white random
processes yield equal results. EDxx(t, f)] =Dyy(t, f) + E[Dun(t, f)]

=ADua(t, /)A" + E[Dun(t, f)] (15)
[ll. SUBSPACEANALYSIS FOR STFD MATRICES where the source TED matrix
The purpose of this section is to show that the signal and noise

subspaces based on TFDs for nonstationary signals are more ro- (L-1)/2 - jamfr
bust to noise than those obtained from conventional array praPda(t; f) = Z d(t+7)d"(t —71)e (16)
cessing. r=—((L-1)/2)

is of dimensiom x n. For narrowband array signal processing
applications, the mixing matriA holds the spatial information
We first review the definition and basic properties of thand maps the auto- and cross-TFDs of the source signals into
STFDs. STFDs based on Cohen’s class of TFD were introducagto- and cross-TFDs of the data.
in [5], and its applications to direction finding and blind source Equation (15) is similar to the formula that has been com-
separation have been discussed in [5], [7], and [8]. In thigsonly used in DOA estimation and blind source separation
paper, we consider the simplest member of Cohen’s clapspblems, relating the signal correlation matrix to the data
namely, the pseudo Wigner—Ville distribution (PWVD) [1] andpatial correlation matrix. In the above formulation, however,
its respective spatial distribution. Only the time-frequency (t-fpe correlation matrices are replaced by the STFD matrices. The
points in the autoterm regions of PWVD are considered favell-established results in conventional array signal processing
STFD matrix construction. The autoterm region refers to thmuld, therefore, be utilized, and key problems in various
t-f points along the true instantaneous frequency (IF) of eaapplications of array processing, specifically those dealing with
signal. The crossterms may intrude on the autoterms througnstationary signal environments, can be approached using
the power in their mainlobes or/and sidelobes. This intrusidailinear transformations.
depends on the signal temporal structures and the windowlt is noted that (15) holds true for evef#, f) point. In order
size. In this paper, however, we assume that the crosstermstareeduce the effect of noise and ensure the full column rank
negligible over the autoterm regions. property of the STFD matrix, we consider multiple t-f points,
The discrete form of pseudo Wigner—Ville distribution of anstead of a single one. That is, the signal and noise subspaces
signalz(t), using a rectangular window of odd lengthis given are constructed using as mafty f) points in the source au-
by toterm regions as possible. This allows more information of the
source signal t—f signatures to be included into their respective
subspace formulation and, as such, enhances direction finding

A. Spatial Time—Frequency Distributions

(L-1)/2 . . - .
_ wlp | \—jdmfr and source separation performance. Joint-diagonalization [10]
Da(t, f) = do altnpt-r)c (12)  and t-f averaging are the two main approaches that have been
T=—(L-1/2) used for this purpose [5], [7], [11]. In this paper, however, we

wherex denotes complex conjugate. It should be noted that iﬂply consider averaging over multiple t-f points.

corporating multiple t-f points, via t-f averaging, over the au-

toterm region causes the crossterm components present atthe\R Enhancement

signal IF to cancel each other, rendering their overall effect neg-The TFD maps one-dimensional (1-D) signals in the time do-
ligible. main into two-dimensional (2-D) signals in the t—f domain. The
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TFD property of concentrating the input signal around its irfFM signalsd;(¢), ¢ = 1, ---, n and, hence, features the same
stantaneous frequency while spreading the noise over the enii®. The expectation of the averaged STFD matrix is
t—f domain increases the effective SNR and proves valuable in
the underlying problem. A 1

The ith diagonal element of the TFD matrRqq4(t, f) is D] no(N—L+1) ; ; [Diex(tis fo,i(t0))]
given by

n, N—L+1

3

4

1
(L—-1)/2 Mo 1
Duu(t, Y= 5. D2edls(n—sie—nl-jinsr, ! 22)
T=—((L-1)/2)

L
[LDZajall + o1] = — ARG (AT 40T

(17) whereRy, = diagD?,i = 1,2,---,n,], andA°’ = [ay,
Assume that the third-order derivative of the phase is negligilg ... a,, ] represent the signal correlation matrix and the
over the window lengtt, then along the true t-f points of themixing matrix formulated by considering, signals out of the
ith signal, f; (t) = (1/2m)(dvp;(t)/dt), ands;(t +7) —1:(t —  total number of signal arrivals, respectively.

7) — 4r fi(t)T = 0. Accordingly, for(L — 1)/2 < ¢t < N — It is clear from (22) that the SNR improvemefit= L /n,
(L—-1)/2 (we assumé. > n, throughout this paper) is inversely propor-
tional to the number of sources contributing mafidx There-
(L-1)/2 fore, from the SNR perspective, it is best to sgt= 1, i.e., to
Da.a,(t, fi() = > DI=LD;. (18) selectthe setsa¥ — L+ 1 tf points that belong to individual
T=—((L-1)/2) signals one set at a time and then separately evaluate the respec-

tive STFD matrices.
This procedure is made possible by the fact that STFD-based
direction finding is, in essence, a discriminatory technique in

Similarly, the noise STFD matriB,,,,(t, f) is

(E=1)/2 H janfr the sense that it does not require simultaneous localization and
Dun(t, f) = Z n(t+7n"(t - 7)e - (19)  extraction of all unknown signals received by the array. With
T=—((L-1)/2) STFDs, direction finding can be performed using STFDs of a

Under the spatially and temporally white assumptions, the sféjbdass of the impinging signals with specific t-f signatures.

- . 7 R this respect, the proposed direction finding technique acts
tistical expectation 0Dyun(t, f) is given by as a spatial filter, removing all other signals from considera-

tion and, subsequently, saving any downstream processing that

(L—1)/2 ) ; . . ;
_ Hyp _jarfr IS required to separate interference and signals of interest. It
EDun(t, )] = B Z Eln(t+ )07 (t =)l is also important to note that with the ability to construct the
TI_f((Lfl)/Q) (20) STFD matrix from one or few signal arrivals, the well-known
=0l

m > n condition on source localization using arrays can be
Theref h lect the tf points al the tf si treIaxed, i.e., we can perform direction finding or source separa-
eretore, when we select the 11 points along the 1 SIgnatygy, \yith the number of array sensors smaller than the number of

) . ) N
Orht.hf] IE of tha_th FM s%nfal, tgve SNR 'r? model (15) E’Dzég himpinging signals [6]. From the angular resolution perspective,
which has an improved factdr over the one associated wit closely spaced sources with different t—f signatures can be re-

model (4). The IF of the FM signals can be estimated from tI%%Ived by constructing two separate STFDs, each corresponding

employed TFD, Wh',Ch in this case IS the PWVP' It may glso bt% one source, and then proceeding with subspace decomposi-
given separately using any appro_pnate IF estimator. Itis nOtﬁgn for each STFD matrix, followed by an appropriate source
that th_e STFD equatmn (15) pro_v_ldes a n(_a\tural pIaFform for tl?gcalization method (MUSIC, for example). The drawback of
direct incorporation of ang priori information or estimates of performing direction finding several times using different STFD

the IF into DOA gstlmatlon. e matrices is, of course, the need for repeated computations of
The pseudo Wigner—Ville distribution of each FM source haeﬁ

. . L E‘qen—decompositions and source localizations.
a constant value over the observation period, providing that w
leave out the rising and falling power distributions at both ends, sjgnal and Noise Subspaces Using STFDs

of the data record. For convenience of analysis, we select thosef_he following Lemma provides the relationshio between the
N — L + 1 t-f points of constant distribution value for each . 9 P P

source signal. In the case where the STFD matrices are averal L‘?gengztﬁic::?gzsslgg?ﬁ ggrviﬁggr%r;ﬁgcesrgggst;idata covart-
over the t—f signatures af, sources, i.e., atotal af, (N —L+1) yp 9.

P o Lemma 2:Let A7 > A§ > --- > A) > Al . =
t—f points, the result is given by A, = - = X% = o denote the eigenvalues of
. e N L4l R2, = A°R9,(A%)H + oI, which is defined from a data
D= Do(ti, foi(ts 21y record of a mixture of the,, selected FM signals. Denote the

no(N —L+1) ; ; (s Jo,ilf))(2D) unit-norm eigenvectors associated wilfi, ---, A\ by the
columns ofS° = [s?, ---, s}, | and those corresponding to

where f, ;(t;) is the instantaneous frequency of ta signal X, .;, ---, A2, by the columns olG® = [g?,---, g% _,, .

at theith time samplex(t) is an instantaneous mixture of thewe also denote\'’ > Y > ... > N> )\;’:H =
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NS, = - = X = 5% as the eigenvalues d de- 10*
fmed in (22). The superscriptf denotes that the associated
term is derived from the STFD matri¥d. The unit-norm
eigenvectors associated withif S )\;{ are represented ol
by the columns of8*/ = [si/,---, s/], and those corre-
sponding to>\,, 1 ~~~, AtS are represented by the columns of
G =[gl’, .-, g'l_,. ]. Then, we have the following.

a) The signal and noise subspacessbf and Gt/ are the

same as$8° andG*?, respectively.
b) The eigenvalues have the following relationship:

eigenvalues
-
[}
o
T

1< n, 10° ‘ =5 ‘ . ‘ ‘
tf ) -30 25 -20 -15 10 -5 0 5 10
o =0, n,<t<m. SNR (dB)

(@)

The proof of Lemma 2 is shown in Appendix B.
An important conclusion from Lemma 2 is that the largest SR
eigenvalues are amplified using STFD analysis. Fig. 1 shows tt - L=33
two principal (largest) eigenvalue$ (i.e., L = 1) and)\ﬁf (for L
L = 33 andL = 129), where a uniform linear array of eight ¢, A
sensorsiu = 8) separated by half a wavelength and receiving -
signal from two sourceg, = n = 2) is used. The two signals -
are of equal powerl); = D, = D), and their angular sepa-
ration Aé is defined a®, — 6;. We choos&; + 6, = 0, that
is, the two signals are symmetric with respect to the broadsics e ~
direction. Denote .7 / L

genvalues
-
o
N
A\

10" - v .
/3:£ 7 A T

llawl[2llazll2 - - .

as the spatial correlation coefficient between the two direction: oot =~ o ——em—" P
vectorsa; anda,, corresponding to the anglés andés. ||a||» 0 B B R 0 5 10
is the 2-norm of a vectas. The two largest eigenvalues for the

. . b
two uncorrelated signals are given by [12] ()
Fig. 1. Principal eigenvalues of the correlation and the STFD matrices. (a)
6, = —10°,6, = 10°. (b)#; = —1°, 0, = 1°.

A o =mD*[1£|8]] + 0. (24)
Hence, combining (23) and (24), we obtain where
mL A
My=—D[1£|8] +o0. (25) MOE Z Ai,
o i—n+1
The amplification of the largest, eigenvalues improves de- A m L/ (m=h)
tection of the number of the impinging signals on the array as it ORI Y
widens the separation between dominant and noise-level eigen- i=h+l
values. Determination of the number of signals is key to estab- f3(7) 2 A(2m — R). 27)

lishing the proper signal and noise subspaces and subsequently

plays a fundamental role in subspace-based applications [48]s clear from Fig. 2 that when the STFD is applied, the SNR

When the input SNR is low or the signals are closely spaced, fiigeshold level that is necessary for the correct determination of

number of signals may often be underdetermined. Fig. 2 showse number of signals is greatly reduced.

for the same signal scenario of Fig. 1, the threshold level of theNext, we consider the signal and noise subspace estimates

input SNR required to determine the correct number of signat®m a finite number of data samples. We form the STFD matrix

7 = 2 according to the Akaike information criterion (AIC) [14] based on the trug, f) points along the IF of the, FM signals.
Lemma 3: If the third-order derivative of the phase of the FM

signals is negligible over the time peripd- L + 1, ¢t + L — 1],

then we have the following.

fi(h)
f2(n)

H%ill N(m —n)log [ } + fa(n) (26)
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15 T ' B b) The orthogonal projections o{fng} onto the column
10} -- =33 || space ofSt/ are asymptotically (fotv >> L) jointly
sl — | Gaussian distributed with zero means and covariance
N matrices given by
O_ | ~ A
) E(SY(SY)" g\ (s¥) g
; 5L B No tf
s oL Ak tf/ tiNH
3 ~10} = Sy (Sk ) 6i7j
£ n,(N —L+1) ;(U_)‘ny
o 15} 1
-4 A tf
=———UY¢; 30
! (N—-L+1) - (30)
25| E(SY(SY)" g )8 (sY)gih)"
_sol =0 for all 4, j. (31)
-35-- . - , The proof of (28)_anq (29} is given in_ Appendix C, and the proof
10 L?] 1o saparstion (de relg) 10°  of (30) and (31) is given in Appendix D.
o6 sep @ 9 To demonstrate the performance advantage of using STFDs,
5 ‘ we substitute (23) into (28)—(30)
- ' - - L= 1
Tl -~ L=33 EsY — sﬁf)(éjf - szf)H
N — L=129
-10f R . _ g
Tl N-L+1
“ e
g1l o v (A —0) + (A o)+ o
s B x e S
3 AN b1 Az =AY
g-20 RN 1 ki
£ n
o m—n, ()\‘? — g) + BRAp
=z K L 07 0NH
@-25 + ; T o a2? gi(gr) | 6y (32)
B st - s
Mo
i ] ] s Mmoot e
10 10 10 10° - ' o _ )¢
number of snapshots N—-L+1 ()‘k = A 2
(b) x s9(s?) (1= 6;, ;) (33)
Fig. 2. SNR thresholds to identify two signals (= 8). (a) SNR threshold gnd
versus angle separatigd. = 1024). (b) SNR threshold versus number of . .
snapshot§Ag = 20°). E(SY(sY)Hglhy(st (st gl
o ne (A] — o)+ % o
a) The estimation errors in the signal vectors are asymptoti- = ———— o Towe se(sp) | 6 ;.
cally (for N > L) jointly Gaussian distributed with zero N-L+1 |~ (o= X%)
means and covariance matrices given by (34)
E(s —s) (s —sHH From (32)—(34), two important observations are in order.
First, if the signals are both localizable and separable in the t—f
oL i A )\Zf -0 (g H domain, then the reduction of the number of signals froio
= s )

ne(N — L+ 1) n, greatly reduces the estimation error, specifically when the
signals are closely spaced. The examples, which are given in
B the following section, show the advantages of using t-f MUSIC
+m N /(g7 | 5 with partially selected signals. The second observation relates
= (0— ,\Ef)2 ke ASk “7  to SNR enhancements. The above equations show that error
reductions using STFDs are more pronounced for the cases
a wils, ; (28) of low SNR and/or closely spaced signals. It is clear from
A tfoatf  tPT (32)—(34) that whem\{ > o forallk = 1,2, ---, n,, the
B8 —s7)(85 —s;) results are almost independentf(supposeV > L so that
oL NN —0) N — L +1 ~ N), and therefore, there would be no obvious
no(N—L+1) ()\;f_)\%f)Q s; (s )" (1=6; ) improvement in using the STFD over conventional array
J ’ processing. On the other hand, when some of the eigenvalues

2 foj (29) are close tor (XA} ~ o for somek = 1,2, ---, n,), which

' : 5y
k=1 ()\;cf - )‘;f)Q
ki
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is the case of weak or closely spaced signals, all the resu 05

of above three equations are reduced by a factor of up
G = L/n,, respectively. This factor represents, in essence, tt
gain achieved from using STFD processing. 04

IV. TIME-FREQUENCY MUSIC 0al

To demonstrate the robustness of the eigen-decompositiong
the STFDs when used in practical applications, we consider ;{
this section the recently proposed time-frequency MUSIC (t** 0.2t
MUSIC) algorithm [7]. The DOA estimation based on time-fre-
quency maximum likelihood (t-f ML) is investigated in [8].

We first recall that the DOAs are estimated in the MUSIC o.17
technique by determining the values of for which the fol-
lowing spatial spectrum is maximized [15]:

fMU(g) — [a (Q)GG a(9)] 1_ [a (9)(1 —SS )a(g)(]SSI) 100 200 300 400 ?'(i)r?'ne 600 700 800 900 1000
wherea(8) is the steering vector correspondingftoThe vari- Fig. 3. Pseudo Wigner—Ville distribution of the mixture of the two signals.
ance of those estimates in the conventional MUSIC technique,

assuming white noise processes, is given by [9] o'

. 1 a"(6;)Ua(6;) AN --- Music
E(wi — wi)Q _ N W (36) \\\\ ) \_\\ *__ _* &U;’I’C (exp)
wherew; is the spatial frequency associated with D@Aand N o o L=33(exp)
&, is its estimate obtained by the conventional MUSIC. Inthe | - >\0 AN o o t:lig (exp)
above equation 610 ] RN T : CRB 3
n )\k ﬁ ‘
4 " py
v lz (0= A2 ] g
k=1 ]
d(6;) = da(;)/dw el
h(6;) =d®(6,)GGHd(6;). (37)
From the results of Lemma 1, part &), = U, which implies
that (36) also holds true when the conventional MUSIC algc
rithm is applied to FM signals in white noise. 1072 . . s s s s .
Similarly, for t-f MUSIC with n, signals selected, the DOAs =3¢ 25 -20 -15 SN‘F}O(dB) -5 0 5 10
are determined by locating thg peaks of the spatial spectrum
defined from then, signals’ t-f regions. Fig. 4. Variance of DOA estimation versus SNR.

Ao (®) =" ()G (GH)Ta()]
=la®(H)(I — S/ (S YM)a(h)] L. (38) 01 arew,; = 0 andw., = m, whereas the corresponding two

) . ] frequencies for the other sourcefatarew,, = = andw.s = 0,
Following the same procedure in [9] and using the results gfspectively. The noise used in this simulation is zero-mean,
Lemmas 2 and 3, we obtain the variance of the DOA estimatgg,ssian distributed, and temporally white. The SNR ofthe
based on t-f MUSIC FM signal is defined as SNR= 10log(D? /). Fig. 3 shows

Bl — w)? = 1 afl(9,)Utfa(6,) (39) the PWVD of the mixed noise-free signals fbr= 129.
¢ ! 2AIN-L+1) ht/(6;) Fig. 4 displays the variance of the estimated DQAversus

e . . SNR for the caséfy, 65) = (—10°, 10°). The curves in this
yvhergwif IS the estimate af; obtained by the t-f MUSICU*/ figure show the tﬁeoreti)cal afnd experir‘rzental results of the con-
is defined in (30), and ventional MUSIC and t-f MUSIC (fol. = 33 and 129). The
R (6;) = dH (6,)GH (G d(6;) (40) Cramér—Rao bound (CRB) is also shown in Fig. 4 for compar-
ison. Both signals were selected when performing t-f MUSIC
(n, = n = 2). We assume that the number of signals is cor-
rectly estimated for each case. Simulation results were averaged
over 100 independent trials of Monte Carlo experiments. The

Consider a uniform linear array of eight sensors spaced aglvantages of t-f MUSIC in low SNR cases are evident from

half a wavelength and an observation period of 1024 sampl#ss figure. The experiment results deviate from the theoretical
Two chirp signals emitted from two sources positioned at anglesults for low SNR since we only considered the lowest order of
#; andf,. The start and end frequencies of the signal sourcethe coefficients of the perturbation expansionrgfn deriving

which is equal tox(6;,), if n, = n.

V. SIMULATION RESULTS
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It should be noted that the computation cost used to imple-
ment the t-f MUSIC is higher than the conventional MUSIC
because it involves the additional processing based on bilinear
t-f distributions. Nevertheless, the pseudo Wigner—Ville distri-
bution considered in this paper is relatively simple and only
requires a bilinear product and one FFT operation. Moreover,
there now exist several computationally efficient t-f kernels that
allow TFDs to be provided via spectrogram-based implemen-
tations, recursive, and multiplication-free processing. On the
issue of practical implementation, many procedures have been
devised so that any distribution can be calculated quickly with
minimum computer resources [16]. Recently, kernels have been
devised, specifically tailored to very fast computation, with the
binomial kernel devised by Jeong and Williams being the prime
example [17]. Methods for decomposition of kernels, leading to
40 ~10 10 4 fast computation and increased understanding, have also been

0 (deg) carried out by White [18], Amin [19], [20], Venkatesan and
Amin [21], and Cunningham and Williams [22].

Magnitude

Magnitude

Fig. 5. Estimated spatial spectraz (= 8, N = 1024, SNR = —20 dB,
L = 129 for t-f MUSIC).
VI. CONCLUSIONS

10° - MUSIC Subspace analyzes of spatial time-frequency distribution

(STFD) matrices have been presented. It has been shown
that for signals with clearly defined t-f signatures, such as
FM signals, smaller estimation errors in the signal and noise
subspaces can be achieved using STFD matrices over the
subspace estimates obtained from the data covariance matrix
A approach. This performance improvement is the result of
—40 2525 40 incorporating the t-f points along the instantaneous frequencies
. MUSIC of the impinging signals on the array into the subspace estima-
tion procedure. Under the assumption that the instantaneous
frequencies are ideally located, these points belong to autoterm
regions of high power concentrations, and as such, when used
in constructing STFDs, they provide high SNR matrices with
improved eigendecompositions.
» - The advantages of STFD-based direction finding over tradi-
—40 25 25 40 tional direction finding methods using data covariance matrices
8 (deg) were demonstrated using the MUSIC algorithm. It was shown
Fig. 6. Estimated spatial spectra for closely spaced signals:(8, N=1024, thatthe t-f MUSIC outperforms conventional MUSIC in the two
SNR= —5 dB, L = 129 for t-f MUSIC). situations of low SNR and closely spaced sources.
Unlike conventional array processing techniques, which are
. . . . __nandiscriminatory, and must therefore spatially localize all sig-
the t_heoret|cal results (see Appendix A). Fig. 5 shows eSt'matl"?gls incident on tr):e array, the STFD—basgd arrgy processing [:?ro-
spatial spectra at SNR —20 dB based on t-f MUSICL =  yjgeq the flexibility of dealing with all signal arrivals or only a
129) and the conventional MUSIC. The tf MUSIC SpeCtraLubset of them. In this respect, it does not suffer from the draw-
pea_ks are clearly resolved. . . back of requiring a higher number of sensors than sources. The
Fig. 6 shows examples of the estimated s_patlal S'C)(a(:tr%{ﬂilityto select fewer sources depends on the differences of their
based on t-f MUSIC L — 129) and the conv:eontlonal MH)SIC t-f signatures from those of other source signals. The eigenstruc-
where the angle fsep?ratmn Is small & —2.5% 02 = 2.5%). 4,0 of the STFD matrix constructed from the t-f points that be-
The input SNR is—5 dB. Two t-f MUSIC algorithms are long to the autoterm regions of a number of sources will only

performed using two sets of t-f points, where each set belorwgld the signal subspace of these sources. It was shown that

to the tf _S|gnature of one source [ = 1). It is ewde_nt that_ the maximum improvement offered using STFD over data co-
the two signals cannot be resolved when MUSIC is apph;i

Magnitude

-5

10

Magnitude

i : ariance matrices is obtained when constructing the STFD from
whereas by applying t-f MUSIC separately for each sign ! Ices! inedw ucting

the two signals become clearly separated, and reasona rllgl one source signal.
DOA estimation is achieved. This is attributed to the signal’s
distinct t-f signatures. It is noted that there is a small bias in the
estimates of t-f MUSIC due to the imperfect separation of the For notational simplicity, we denote;, ¢ = 1,2, ---, m
two signals in the t-f domain. as the eigenvectors of the correlation mafitx,, where the

APPENDIX A
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first n vectors form the signal subspaeg,i = 1, 2, ---, n),
and the lastn — n vectors form the noise subspagg,(: =
1,2, ---,m—n).

To derive the covariance matrices, we follow the same proce-
dure in [9] and [23] but note the fact that the underlying signals
are deterministic rather than white random processes, which are
considered in [9] and [23]. We defif in terms of a random
perturbation taR .« with a perturbation factop, 0 < p <« 1.

Thus

IA{'xx = Rxx + (f{xx - Rxx) = Rxx +pB (Al)
When the source signals are FM and the noise vector forms
a multivariate white Gaussian process, th&rns a Hermitian,
zero-mean random matrix whose elements are asymptotically
jointly Gaussian. Let; denote the unnormalized perturbed ver-
sion of the eigenvector;. According to [24]

k=1 \I=1
ki

(A.2)

wheretg,?, =1, 2, --. are the coefficients of the perturbation
expansion of; alongvy. By keeping the term with the lowest
order ofp, then [23]

[ VHBVZ‘ .
£ = h ki (A.3)
The mean square value tif,z is given by
|2 vABv,vEBv,
E||f9] | = p| =20 20k A4
[ H } [ (A = Ai)? } A9

To evaluate the numerator in the above equation, we consider
the following general case:

ENvIBv;v]Bv]

S
- pQ E[ (3 (Rxx
N
<Z VZHx(t,,)xH(t,,)vj>
7*=1]V
X <vax(tq)x}q(tq)vl>]

H H
— Z? v,  Rux Vv, Rxxvy.
It can be easily realized that the expected value in (A.5) is taken
from a product of four nonzero mean Gaussian random vari-
ables. It is well known that for Gaussian random variable
T2, T3, T4 With nonzero means

Rxx)vj VkH (f{xx - Rxx)vl]

1
e ©

E[$1$2$3$4] IE[]I1]I2]E[]J3]J4] +E[$1$3]E[$2$4]
+E[,’L’1.’L’4]E[!L’2$3]—2E[,’L’1]E[$2]E[!L’3]E[!L’4}
(A.6)
Using the properties of the zero-mean circular complex

Gaussian noise vector and the deterministic source signal
vector

Ex(t,)] =y (t)
Elx(t-)x" (t)] =y (t)y" (t) + 016,
Elx(t)x" (t)] =y (t:)y" (t).

a a
~ 3 [61‘71V£{Rnyj + VZHRnyl(s,'7 k] + N—])2 61‘716,'7 I3
g
= N—])2 [61‘71V£{(Rxx — O’I)Vj + V?(Rxx — O’I)Vl(st]
2
g
NP 6i,10;, x
g

Accordingly, (A.5) can be written as

EvIBv;v{Bv]

N N

— ﬁ Z ZE[VZHx(t,,)xH(t,,)Vj]

r=1g=1
x Elvi!x(t,)x" (t,)v1]
1 N N
+ EvEx(t,)vEx(t
(My;§;[<>k<m
x Blx (t)vix (t)vi]
1 N N
+t 3 E[vEx(t,)x" (t,)v
(My;§;[<> (tq)vi]
X E[fo(tq)xH(t,,)vj]
1 N N
-2 EvEx(t)Ex"(t)v,;
(My;;;[ (tER" (t)v;]
x Elvi!x(t)]E[x" (t,)v]
1
- P VﬁRxijVkHRxXVl
N N
Z Z[Vﬁvla&‘, ,IVkHy(tq)yH(tT)Vj]
r=1 g=1
N N
Z Z[VZHY(tr)yH(tq)VlVEVjO'(Sh q]
r=1qg=1
N N

1 H  H_ 2
+ ) ZZ[VZ Vivi Vo0, 4]
N

1
~ (Np)?

L
(Np)?

r=1g=1
.

1

(Np)? > 8 00vi y )y (8 )v]

1
" (Np)* ;[Vﬁy(t”)y}[(tr)vzﬁx, e

N
1
+ VEYIRY] 2[617 16,'7 kO'Q].
(Np)* —

By using the uncorrelation assumption (7)

1 X |
(A.5) N ;y(tr)y”(tr) =A lﬁ ;d(t,,)d'q(t,,)] Al

=ARg4A" =Ry, = Ryx — 01
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(A.7)

(A.8)

(A.7) simplifies to

ENvEBv;viBv]

2

H H
N2 [(51‘71Vk Rxij + v, Rxxvléj, k— 0'(51‘7 1(5]'7 k]

g
N—])2 [)\z + )\j - 0']6171(5j7k.

(A.9)
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Therefore For the signal subspace; iss;, ¢ = 1,---, n, and (A.14)
yields (9), and this concludes the proof for part a) of Lemma
|2 vABv,vHBv, 1
(A = Ai)?
__0 (N + A — o) k£i (AL0) APPENDIX B
Np?2 (A=) Using eigendecomposition theory, we have
and
B[4 (4] = Vi Bvivi'Bvi ARy (A" = QEQ" (B.1)
(A = Ai) (A = Aj)
=0, E#4, k+#j. (A.11) whereE = diag¢y, -+, &,,, 0, -+, 0] is a diagonal matrix
whose elements are the eigenvalueAsR3 4 (A°)H, andQ
It is shown in [13] that is the corresponding eigenvector matrix. Cleagly= \? — o

t=1,---,n, andQ = [S°|G°].

.. o tf .
cov(¥1, ¥3) = cov(¥y, ;) + o(N72). From the definition of\? and )’ , it is evident that

L L
By ignoring the terms ofV—2, then D= o QEQY +01=Q [n— =+ O'I:| QY. (B.2)
cov(Vi, Vj) ~ CO’U_(‘V’iv vj) Therefore,RS,, and D share the same set of eigenvectors,
o H which proves part a) of Lemma 2. Thth eigenvalue oD is
~E 40 ) (L/no)éi + 0 = (L/ng)(A¢ — 0)'—1— o for ¢ < n, and isc for
kz::l PR Z 1k PVE n, < i < m, subsequently leading to part b).
ki k;ﬁ j
i APPENDIX C
m 12
=E|> £ PPVl s Similar to Appendix A, we lev;, i = 1, 2, - -+, m represent
k=1 the whole eigenvectors of the STFD matfix where the first
k# n, vectors form the signal subspacéfc i =1,2,---,n,),
Z Ai + A — VkV;f’éi ; (A.12) Whereas the last — n,, vectors form the noise subspagg|,
N (Ai — )2 i=1,2, ---, m—n,). As discussed in Section Ill, we assume
k#z that the selected t-f points belong to regions where no crossterm
_ o components are present.
Replacingvy, by s, or g leads to (8). Similarly For an array mixture of FM signals, we select points from
n, signals at the t-f domain, where the pseudo Wigner-Ville
cov(V;, Vi) =2 cov(Vy, V7) distribution matrix is defined in (13). We defiri@ in terms of
T a random perturbation t® with a perturbation factop, 0 <
m m p < 1. Thus
~F Z t_%zpv Z t(J)pvk
"2 i D=D+(D-D)=D +B. (C.1)
Matrix B is a Hermitian, zero-mean random matrix whose el-
p 1k 1k2 ks kz ements are asymptotically jointly Gaussian [8]. Similar to Ap-
ﬁ;} Y pendix A, we derive
BV vE By,
— 2 E i ko J T . H H
=p kzl kzl )‘kl D Oka—2)) Vi1 Vi, Elv; BVJVk Bv|
k17t ko#j = — E[ (D D)VJVk (D D)Vl]
(A.13) v

1
" (nop(N —L+1))?

No —L+1
(z S Dt )

From (A.9), itis clear that the above equation has nonzero value
only whenk,; = j andks = 4. Noting the fact thak; # ¢ and
ks # j, (A.13) becomes

No —L+1
2
P D H . .
cov (v, Vj) :_WE[ vEBv, Vi BVJ]VJ (1 8 ) X <qu1 ZE=1 vy Do (i, fq,z)Vl)]
o At A - T 1w H
= N m AL (1 - 61‘,3’)- (A-14) - Pvi DVij Dv,. (C.Z)
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Substituting (21) and (A.7) into (C.2), we obtain

EvEBv,viBv(]
Mo Mo —L4+1 N—L+1

"~ (nep(N — L+1QZZZ Z

qg1=lgz=1 =1 tg=1

(L-1)/2 (L—1)/2
> Z e 947 fay iy Tit fag, i T2]
T1=—((L—1)/2) 2=—((L—1)/2)
x {B[vIx(t;, +m)x(t;, - T1)V,]
X E[Vk x(t;, +m2)xH(t;, — )i
ENvEx(t;, +m)vEx(t;, + )]
Ex"(ti, —n)vx"(ti, — n)vi]
E[vEx(t;, +m)x"(t;, — m0)vi]
X E[Vk x(t;, +72)xH (t;, — TL)V,]
—2E[vEx(t;, + )BT (t;, — T1)Vj]
x E[vEx(t;, +72)|E[x" (t;, — 12)vi]}
1

H H
e vi'Dv;vi vy

Ne Mo —L4+1 N—-L+1

~ (nop(N — L+1QZZZ Z

q1=1gz=1 41=1 ip=1

(r—1)/2 (L—1)/2

Z Z e*j47"[f<1177'17_1+f<1277'27_21

T=—((L=1)/2) 72=—((L.—1)/2)
X [Vf{Y(ti,l +T1)yH(t7;2 — TQ)VIU(S":kétil—n,tiz—l—rz
+ 08,164 41,0, -V Y (tiy + )y ()

+ 078,185, k64, 11, 6y, ma)-

—T1)V;

(C.3)

Under the assumption of no crossterms,should be equiva-
lent to g2 to have nonzero values, and in this cage= ¢ =
q. Note that within the t-f region of theth signal,y(¢)
Y(z(t)
is negligible oveflt — L + 1, ¢ + L — 1] for any signal and any
t, we have

E[VHBV]'VEBVI]
no N—L+1 N—L+1
SRRNE M D »
= 1= 2=
(L-1)/2 (L-1)/2

X

2. 2.

T1=—((L—1)/2) T2=—((L—1)/2)
x vyt + )y (4, — T2)VIT8; kOt 7y i, 4o

+06; l5ti1+ﬁ,tilfﬁvzry(tiz + 1)y (t:, — 1)vy]
2
T iILL+ 1)p? 4,104,
= no(N_O——fW n£0 (Ni—o)+(Nj—0o)+ 0] 6165k
= oL [()‘Zf + )\Z'f — 0)]6:,16;, - (C.49)

no(N — L+ 1)p?

2 Ad,(t). When the third-order derivative of the phase
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Let ¥; denote the unnormalized eigenvector given in a per-
turbation expansions by

Vi=vi+ Z <Zt(z) ’)

wheretg,?, [ =1, 2, --- are the coefficients of the perturbation
expansion o¥; alongvy, and keeping the term with the lowest
order ofp, then

(C.5)

H
() _ Vi BVi £
Ik = if vt # i (C.6)
)\Zf _ )\Zf
Therefore
L2 HBv.vABv,
E[t&? }:E AR
W = A7)?
B oL ()\Zf-l-)\zf—a) ki
S no(N=L+1p? (A -2
(C.7)
and
H H
i AN * vy Bv,viBvy
£ ()] -2 |t ser
()‘k _)‘i )()‘k _)‘j )
=0, k#i, k#3j. (C.8)
Similar to Appendix A, we follow
cov(V;, V;) ~ cov(V;, V;)
r H
~FE Z t&)pv Z tgjk)pvk
L k;éz k;éj
=F Z tlk pQVkaH(SZ‘J
k=1
L ki
oL NS —i—)\zf -0
= — , ViVi Hg. e
V- L) & (7 -y
ki
(C.9)

Equation (28) follows by properly replacing, by s.’ or g&/.
Similarly

cov(V;, V1)

~ cov(V;, Vj)

T
~E Z i | | 3 Qv
k=1
(= k]
H
2 VleV7 VkZBVJ .
= Vk Vk
lnz—:l kQE_:l )\i{ — )\:f ) ( )\z _ )\Ef ) 1V ko
kii ke##j
2
P - y .
T vl i)
tf tf
N NULL 1 K t;r & tf :VJV;‘F(l —0;,j)-
no(N = L+1) (3 =)
(C.10)
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For the columns of signal subspa&ebecomesﬁf, and (C.10)  [5] A. Belouchrani and M. Amin, “Blind source separation based on time-
becomes (29). frequency signal representatiodPEE Trans. Signal Processingol.
46, pp. 2888-2898, Nov. 1998.
[6] M. G. Amin, “Spatial time-frequency distributions for direction finding

APPENDIX D and blind source separatiorPfoc. SPIE: Wavelet Applications JVol.
3723, pp. 62-70, Apr. 1999.
This Appendix follows the procedure of [9]. Denote [71 A. Belouchrani and M. Amin, “Time-frequency MUSICIEEE Signal
Processing Lett.vol. 6, pp. 109-110, May 1999.
r= (Stf)Hﬁth [8] Y. Zhang, W. Mu, and M. G. Amin, “Time-frequency maximum likeli-

hood methods for direction findingJ. Franklin Inst, vol. 337, no. 4,
. . pp. 483-497, July 2000.
and-y; theith column ofI". Using the results of (C.2)—(C.4) and [9] P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and
the fact(S!/ )Y DG* = 0, we have Cramer—Rao boundJEEE Trans. Acoust., Speech, Signal Processing
vol. 37, pp. 720-741, May 1989.
Elv.~H — El((stNHhHDetf tIVHDgtf [10] G. H. Golub and C. F. Van LoanMatrix Computations 3rd
[%% Jt.q [((s:") 8i )((gj ) a )l ed. Baltimore, MD: Johns Hopkins Univ. Press, 1996.
. oL )\tfé s D1 [11] K. Sekihara, S. Nagarajan, D. Poeppel, and Y. Miyashita, “Time-fre-
~n (N — L+ 1) t Ut,qU, 5 ( : ) guency MEG-MUSIC algorithm,lTEEE Trans. Med. Imagvol. 18, pp.
° 92-97, Jan. 1999.
Subsequently [12] J._E. HudsonAdaptive Array Principles London, U.K.: Peter Pere-
grinus, 1981.
H1_ LINH LS tINH At [13] L. C. Godara, “Application of antenna arrays to mobile communica-
E[%"Yj ] - E[((S f) Dgi )((gj ) DS f)] tions—Part Il: Beam-forming and direction-of-arrival considerations,”
L Proc. IEEE vol. 85, pp. 1195-1245, Aug. 1997.
g tf | ; . ) )
= AT (D.2) [14] M. Wax and T. Kailath, “Detection of signals by information theo-
o (N - L+ 1) retic criteria,” IEEE Trans. Acoust., Speech, Signal Processiraj.
ASSP-33, pp. 387-392, Apr. 1985.
whereA!/ = diag[)\tlf7 e )\;f], Similarly, [15] R. O. Schmidt, “Multiple emitter location and signal parameter estima-
° tion,” IEEE Trans. Antennas Propagatol. AP-34, pp. 276-280, Mar.
AT — tIVH) ot tINHP S\ — 1986.
Ehﬂ] ]t:‘l - E[((St ) Dgi )((Sq ) ng )] =0 (D'S) [16] L.Cohen, “Recent developments in the core of digital signal processing:
Time-frequency analysis[EEE Signal Processing Magvol. 16, pp.
and subsequently 22-28, J?m, 13199, Y 9 9 Mag PP
[17] J. Jeong and W. Williams, “Kernel design for reduced interference dis-
E[%%T] = 0. (D.4) ar;bguztions,”lEEE Trans. Signal Processingol. 40, pp. 402—-412, Feb.
[18] L. White, “Transition kernels for bilinear time-frequency signal repre-

SinceStf(Stf)ngf has the same limiting distribution as that sentations,IEEE Trans. Signal Processingol. 39, pp. 542-544, Feb.
1991.

_StH(T — —1.. i
of —SY(I' — oT)™"~; [8], then it follows that [19] M. Amin, “Spectral decomposition of the time-frequency distribution

kernels,”IEEE Trans. Signal Processingol. 42, pp. 11561166, May

t tfNH 5t t tFNH st fNH
E(SY(SY)Hgll)(sH(s)"g!) 1994,
oL [20] ——, “Recursive kernels for time-frequency signal representations,”
= = [S(Atf_gI)—lAtf(Atf_gI)—lsH](Si ; IEEE Signal Processing Lettvol. 3, pp. 16-18, Jan. 1996.
no(N —L+ 1) ’ [21] G.Venkatesanand M. Amin, “Time-frequency distribution kernel design
I No AL I over a discrete powers-of-two spaclsEE Signal Processing Letuol.
o ; tfo tfNH 3, pp. 305-306, Dec. 1996.
= no(N - L+ 1) Z (U B k)\tf)g Skf(skf) 6i7j [22] G.Fg]unningham and W. Williams, “Fast implementation of generalized
k=1 k discrete time-frequency distributiondEEE Trans. Signal Processing
(D.5) vol. 42, pp. 1496-1508, June 1994.

[23] M. Kaveh and A. J. Barabell, “The statistical performance of the
and MUSIC and the minimum-norm algorithms in resolving plane waves in
E(Stf(Stf)ngf) (Stf(Stf)Hgt»f)T noise,”|EEE Trans. Acoust., Speech, Signal Processing ASSP-34,

J pp. 331-340, Apr. 1986.
=0 for all ¢, 5. (D.6)  [24] J. H. Wilkinson,The Algebraic Eigenvalue ProblemNew York: Ox-
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