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ABSTRACT

The joint optimization of source beamformer and distributed relay coefficients is considered for a cooperative
network that uses the output mean-square error (MSE) as the performance metric. Two methods are proposed for
solving this nonconvex optimization problem. The first approach iteratively optimizes the source beamformer and
relay coefficients, whereas the second method optimizes the relay coefficients keeping the source beamformer as
the maximum-ratio-transmitter (MRT). Both approaches are reformulated as relaxed semidefinite programming
problems. The optimality of MRT is proven analytically under some conditions. The superiority of the proposed
methods is verified using numerical examples.
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1. INTRODUCTION

Recently, cooperative communications with multi-antenna nodes have received a lot of research interest1. The
optimal designs of a single and multiple (joint optimization) amplify-and-forward (AF) multiple-input multiple-
output (MIMO) relays have been investigated in2, 3 and4, respectively, for a point-to-point communication
scheme. However, these works do not consider the problem of also optimizing the linear processing at the
source, which is required for exploiting the transmit diversity. The problems of jointly optimizing the source
precoder and MIMO relay processing matrix have been solved in5, 6. In5 only a particular function such as the
mutual information is maximized while in6 a unified framework based on majorization theory has been presented
for solving a wide range of optimization problems with Schur convex and concave objective functions. The com-
mon assumption among all of these works is that the relay processing matrix is a full-matrix due to the fact that
the relay is a MIMO node. Consequently, in such cases, the optimal source precoder and MIMO relay turn to be
those which jointly diagonalize the MSE matrix, for instance, if the objective function is Schur concave (e.g., sum
mean-square error (MSE) minimization problem). The resulting optimization problem reduces to the problem
of allocating powers at the source and multi-antenna relay. The joint optimization of the source beamformer,
MIMO relay and the destination receiver has been solved in7 for both the systems with and without the direct
link. For the latter system model (i.e., without direct link), the optimal source and receive beamformers, and
the relay matrix have been shown to yield a matching solution. However, the considered problems5–7 become
different and also difficult to solve, if the relay matrix is constrained to be a diagonal matrix, which is the case
when the relay is not a MIMO node but a number of distributed single-antenna nodes. Intuitively, it can be said
that, since the relay processing matrix is not a full matrix, there is no sufficient degrees of freedom to obtain the
matching solution as in the case of7. Moreover, since it is difficult to use multiple antennas at each relay node
(due to implementation cost) and multi-antenna relays suffer more from antenna correlations as the number of
antennas increases, systems with distributed single-antenna relay nodes8 are of higher practical interest.
In this paper, we consider a point-to-point communication system supported by multiple single-antenna AF

relays. The source and destination nodes are equipped with multiple antennas. Considering that the CSI of
the source-relay and relay-destination channels are known perfectly, we solve the problem of jointly optimizing
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the source beamformer and relay coefficients. The objective is to minimize the MSE† under source and relay
sum-power constraints‡. This optimization problem is nonconvex whose solution is difficult to be obtained in
closed-form. We prove that, for the jointly optimal source beamformer and relay coefficients, the power con-
straints for the source and relay (sum-power) are satisfied with equality. We then propose to solve the considered
nonconvex optimization problem using the following two approaches. a) Iterative method: Keeping the source
beamformer fixed, we optimize the relay coefficients by reformulating the corresponding optimization problem
as a rank-relaxed semidefinite programming (SDP) problem. The best approximate rank-one solutions are ob-
tained from the relaxed solution. For the given relay coefficients, the source beamformer is another nonconvex
optimization problem which is also solved with the semidefinite relaxation. The abovementioned two steps
of optimization are repeated until required convergence accuracy is achieved. b) Relay optimization with the
maximal-ratio transmitter (MRT) source beamformer: We select the source beamformer (MRT solution) which
maximizes the total power radiated by the source beamformer towards the relays given that the available source
power is fixed. By taking such MRT solution, the remaining problem of optimizing the relay coefficients is
again solved using the SDP rank relaxation technique. We prove analytically that the MRT solution for source
beamformer is optimal for some conditions. Our numerical results show that the iterative method yields equal
or slightly improved performance compared to the non-iterative method, if the source beamformer of former
method is initialized with the MRT solution. As a result, the non-iterative approach is more preferable than
iterative method when system design demands computationally efficient method at the expense of some minor
loss in performance.

Notations: Upper (lower) bold face letters will be used for matrices (vectors); (·)T , (·)H , E {·}, In and diag(x)
denote transpose, Hermitian transpose, mathematical expectation, n×n identity matrix and the diagonal matrix
formed from x, respectively. tr(·), CM×M , � and A � 0 denote the matrix trace operator, space of M × M

matrices with complex entries, the Schur-Hadamard product and positive semidefiniteness of A, respectively.

2. SYSTEM MODEL

We consider the scenario where signal transmission from a multi-antenna source (with Ns antennas) to a multi-
antenna destination (with Nd antennas) is supported by R single-antenna relays. Each relay amplifies the signal
received from the source and forwards the resulting signal to the destination. Note that the direct link between
the source and destination is not considered since we assume that the direct link experiences relatively larger
path attenuation compared to the links via relays. We consider that the relays operate in half-duplex mode
which means that signal transmissions from source to the relays and from the relays to the destination take
place in two time slots. In the first time slot, the source sends its signal to the relays and in the second time
slot, the relays send their processed signals to the destination. We assume that the instantaneous channel state
information (CSI) of all channels are perfectly known. The channels between the source and the relays as well
as between the relays and destination are assumed to be flat fading. The signal received by the ith relay is given
by

yi = hT
i ws+ nr,i (1)

where hT
i ∈ C1×Ns is the channel vector between the source and the ith relay, w ∈ CNs×1 is the source beam-

forming vector, nr,i ∈ C1×1 is the additive white Gaussian noise at the ith relay and s is the random source
signal with zero-mean and a unit variance. The signal received by all relays can be expressed in the vector form
as

yr = Hws+ nr (2)

where H = [h1, · · · ,hR]
T ∈ CR×Ns and nr = [nr,1, · · · , nr,R]

T . We consider nr ∼ NC(0, σ
2
nr
IR), i.e., the entries of

nr are i.i.d. zero-mean circularly symmetric complex Gaussian (ZMCSCG) with the variance σ2
nr
. The ith relay

†A suboptimal approach for maximizing the lower bound of the signal-to-noise ratio is recently proposed in8.
‡Our proposed algorithms can be easily modified to solve the MSE minimization problem with individual power

constraints for relays.
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multiplies its received signal yi with a complex coefficient zi and forwards the resulting signal to the destination.
The signal received by the destination can be written as

yd = GZyr + nd (3)

where Z = diag([z1, · · · , zR]) ∈ CR×R, G = [g1, · · · ,gR], {gi}Ri=1 ∈ CNd×1 are the channels between the
relays and the destination, and nd ∈ CNd×1 is the additive noise at the destination. It is assumed that
nd ∼ NC(0, σ

2
nd
INd

). The destination uses a linear operator d ∈ CNd×1 to recover the source signal s. The
output of the destination is given by

ŝ = dHyd (4)

which with the help of (2) and (3) can be re-expressed as

ŝ = dH [GZHws+GZnr + nd]. (5)

The MSE f = E
{
|s− ŝ|2

}
can be written as

f = 1−wHHHZHGHd− dHGZHw + dH ·
[GZHwwHHHZHGH + σ2

nr
GZZHGH + σ2

nd
INd

]
︸ ︷︷ ︸

A

d.

(6)

Setting the first-order derivative of (6) w.r.t. d to zero yields the optimal receive beamformer as

d = A−1GZHw. (7)

Substituting (7) into (6), we can obtain the following minimium-mean-square error (MMSE) function

f = 1−wHHHZHGHA−1GZHw. (8)

The instantaneous sum-power of the relays can be given by

Pr = E
{
(ZHws+ Znr)

H(ZHws+ Znr)
}

= wHHHZHZHw + σ2
nr
tr(ZHZ) (9)

and that of the source as Ps = wHw.

3. PROPOSED OPTIMIZATION

In this section, we consider the problem of jointly optimizing the source beamforming vector w and the diag-
onal matrix Z that consists of relay weights under the source power and relay sum-power constraints. This
optimization problem can be mathematically formulated as

min
w,Z

f s.t. Pr ≤ Pm
R , Ps ≤ Pm

S (10)

where Pm
R and Pm

S are the maximum powers available for the relays and source, respectively. The closed-form
solution for this joint optimization problem is not known. Notice that if Z had not been a diagonal matrix, the
closed-form optimal structures of w and Z could be directly taken from7.

Let us define v = GZHw and Ã = σ2
nr
GZZHGH + σ2

nd
INd

so that A = vvH + Ã. Applying the following
Sherman-Morrison formula

[vvH + Ã]−1 = Ã−1 − Ã−1vvHÃ−1

1 + vHÃ−1v
(11)
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into (8) and after some straightforward steps, we obtain

f =
1

1 + vHÃ−1v
=

1

1 +wHHHZGHw
(12)

where

ZG = ZHGH [σ2
nr
GZZHGH + σ2

nd
INd

]−1GZ. (13)

Due to the formulation (12), the power constrained MSE minimization problem (10) can be written as§

max
w,Z

wHHHZGHw s. t. Pr ≤ Pm
R , Ps ≤ Pm

S . (14)

Before, solving the optimization problem (14), we present the following proposition to get some useful insights
on (14).
Proposition 1: For the jointly optimal w and Z, the relay and source power constraints are satisfied with equality.
Proof: In order to prove this proposition, we use the following properties from matrix theory9.
Property 1: For any two positive definite Hermitian matrices A and B, A � B if and only if A−1 � B−1.
Property 2: For any two Hermitian matrices A and B, if A � B, then QHAQ � QHBQ where Q is an arbitrary
matrix.

We first show that the optimal w is the one for which the source power constraint wHw ≤ Pm
S is satisfied

with equality. Notice that the relay sum-power (9) can be rewritten as

Pr =
R∑

i=1




[HwwHHH ]i,i
︸ ︷︷ ︸

si(w)

+σ2
nr




 |zi|2

=

R∑

i=1

zi

√

si(w) + σ2
nr
z∗i

√

si(w) + σ2
nr

(15)

where si(w) = [HwwHHH ]i,i is the ith diagonal element of HwwHHH . Defining another optimization variable

as z̄i = zi
√
si(w) + σ2

nr
, the relay sum-power constraint can be expressed as

∑R

i=1 |z̄i|2 ≤ Pm
R . Thus, (14) can

be written as

max
w,Z̄

wHHH ˜̄Z
H

GH [σ2
nr
G ˜̄Z ˜̄Z

H

GH + σ2
nd
INd

]−1G ˜̄Z
︸ ︷︷ ︸

Z̄G

Hw

s. t.

R∑

i=1

|z̄i|2 ≤ Pm
R , wHw ≤ Pm

S , (16)

where Z̄ = diag(z̄1, · · · , z̄R) and ˜̄Z is

˜̄Z = diag

(

z̄1
√
s1(w) + σ2

nr

, ··, z̄R
√
sR(w) + σ2

nr

)

, BZ̄ (17)

Let wo and Z̄o be the optimal solutions of (16), and fo(wo, Z̄o) be the optimal objective value. Suppose that,
for w = wo, the source power constraint is satisfied with inequality, i.e., wH

o wo < Pm
S . Then, we can scale wo

§We propose to solve this optimization problem at the destination which is assumed to have knowledge of all instanta-

neous channels. The destination is considered to send the optimized w and Z to the source and relays, respectively. The

feedback requirement can be reduced by optimizing w and Z on the basis of the second-order statistics of the channels

rather than their instantaneous values.
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by
√
α with α > 1, and make the power constraint active, i.e., αwH

o wo = Pm
S . For w̃o ,

√
αwo, the objective

function in (16) can be given by

f̃o(w̃o, Z̄o)=wH
o HHDH

1 GH
[
σ2
nr
GD2G

H + σ2
nd
INd

]−1
GD1Hwo. (18)

where

D1 , diag

(

z̄1
√
α

√
αs1(wo) + σ2

nr

, · · · , z̄1
√
α

√
αsR(wo) + σ2

nr

)

D2 , diag

( |z̄1|2
αs1(wo) + σ2

nr

, · · · , |z̄R|2
αsR(wo) + σ2

nr

)

. (19)

Since α > 1, it is easy to see

D2 � D3 , ˜̄Z ˜̄Z
H

(20)

which, according to the property 2, means that σ2
nr
GD2G

H+σ2
nd
INd

� σ2
nr
GD3G

H+σ2
nd
INd

. Using property 1,
the latter relation can be expressed as [σ2

nr
GD2G

H +σ2
nd
INd

]−1 � [σ2
nr
GD3G

H +σ2
nd
INd

]−1. Once again, using

property 2, we can see that D4 , GH [σ2
nr
GD2G

H + σ2
nd
INd

]−1G � GH [σ2
nr
GD3G

H + σ2
nd
INd

]−1G. Based on
these discussions and noting that α

αsi(wo)+σ2
nr

≥ 1
si(wo)+σ2

nr

for α ≥ 1, we can find that the new objective function

f̃o(w̃o, Z̄o) = wH
o HHDH

1 D4D1Hwo > fo(wo, Z̄o). Since the objective function is increased with the scaled wo

that satisfies the source power constraint with equality, it can be concluded that, for the optimal solutions of w
and Z̄, the source power constraint is active at optimality.
In order to show that the relay power constraint is also satisfied with equality at optimality, we use matrix

inversion Lemma and rewrite Z̄G as

Z̄G =
1

σ2
nr

IR − σ2
nd

σ2
nr

[σ2
nr
Z̄HBHGHGBZ̄+ σ2

nd
IR]

−1. (21)

Suppose at the optimal solution Z̄ = Z̄o, the relay power constraint is inactive, i.e., tr(Z̄H
o Z̄o) < Pm

R . Using a
scaling factor

√
β where β > 1, and new Z̄o which is

√
βZ̄o, the inactive relay power constraint can be satisfied

with equality. With this scaled (new) Z̄o, the objective function of (16) can be written as

f̃o(wo,
√

βZ̄o)=
wH

o HHHwo

σ2
nr

− σ2
nd

σ2
nr

wH
o HH

[
βZ̄H

o BHGHGBZ̄oσ
2
nr

+ σ2
nd
IR
]−1

Hwo (22)

Clearly, since β > 1, βZ̄H
o BHGHGBZ̄o � Z̄H

o BHGHGBZ̄o. Using the properties 1 and 2, we can thus easily
see that the second term of (22) decreases with the scaled Z̄o. This means that f̃o(wo,

√
βZ̄o) > fo(wo, Z̄o). As

a result, the relay power constraint also must be satisfied with equality.

In the following, we propose two methods for optimizing Z and w.

3.1 Method I-Iterative Approach

In this method, the relay coefficients and the source beamformer are alternatively optimized within a iterative
framework.
Optimization over Z for the given w = wf : Again using matrix inversion lemma, we can rewrite (13) as

ZG =
1

σ2
nr

IR − σ2
nd

σ2
nr

[σ2
nr
ZHGHGZ+ σ2

nd
IR]

−1. (23)

Substituting (23) into (14), for the given w = wf that satisfies the source power constraint, we can write the
optimization problem (14) w.r.t. Z as

max
Z

{
t− awH

f HH [σ2
nr
ZHGHGZ+ σ2

nd
IR]

−1Hwf

}

s.t. wH
f HHZHZHwf + σ2

nr
tr(ZHZ) ≤ Pm

R (24)

Proc. of SPIE Vol. 8404  84040H-5



where t =
wH

f
HHHwf

σ2
nr

and a =
σ2

nd

σ2
nr

. Since Z is a diagonal matrix, we can write

ZHGHGZ = [GHG]� Z̃T (25)

where Z̃ = [z1, · · · , zR]T [z∗1 , · · · , z∗R] is a rank-one matrix. The relay sum-power constraint can be written in
terms of Z̃ as

wH
f HHZHZHwf + σ2

nr
tr(ZHZ) = tr




[Hwfw

H
f HH + σ2

nr
IR]

︸ ︷︷ ︸

H̃

(IR � Z̃)




 ≤ Pm

R . (26)

The resulting optimization problem in terms of Z̃ becomes

min
Z̃

wH
f HH

[

[GHG]� Z̃Tσ2
nr

+ σ2
nd
IR

]−1

Hwf

s.t. tr
(

H̃(IR � Z̃)
)

≤ Pm
R , rank(Z̃) = 1. (27)

Introducing auxiliary variable r ≥ 0, (27) can be written as

min
Z̃,r

r s. t. r ≥ wH
f HH

[

[GHG]� Z̃Tσ2
nr

+ σ2
nd
I
]−1

Hwf ,

tr
(

H̃(IR � Z̃)
)

≤ Pm
R , rank(Z̃) = 1. (28)

Using the Schur-complement theorem14, (28) can be written as

min
Z̃,r

r

s.t.

[

[GHG]� Z̃Tσ2
nr

+ σ2
nd
IR Hwf

wH
f HH r

]

� 0, (29)

tr
(

H̃(IR � Z̃)
)

≤ Pm
R , rank(Z̃) = 1.

The objective and constraints of (29) are all convex except the rank-one constraint. Relaxing the latter constraint,
we get the following convex optimization problem:

min
Z̃,r

r

s.t.

[

[GHG]� Z̃Tσ2
nr

+ σ2
nd
IR Hwf

wH
f HH r

]

� 0, (30)

tr
(

H̃(IR � Z̃)
)

≤ Pm
R , Z̃ � 0.

Notice that, due to rank relaxation, by solving (30), we only solve the convex approximation of the original
problem (29). If the rank of Z̃ is one, the solution of (30) is also optimal for (29). In this case, Z can be
recovered from the eigen decomposition (ED) of Z̃ . However, if Z̃ is not rank-one, the best rank-one solution
should be approximated from Z̃. In the literature10–12, for various type of applications, it has been shown that
Gaussian randomization technique gives very good approximations of rank-one solutions. Let the ED of Z̃ be
given by Z̃ = U1Λ1U

H
1 and consider ṽ ∼ NC(0, IR) i.e., the entries of ṽ are i.i.d. ZMCSCG with unit variance.

We generate the candidate vector zc as zc = U1Λ
1

2

1 ṽ. The vector zc requires to be properly scaled. Using
√
µzc

in (27), where
√
µ > 0, the optimization problem w.r.t. µ can be given as

min
µ

wH
f HH

[
[GHG]� µ(zc(zc)H)Tσ2

nr
+ σ2

nd
IR
]−1

Hwf

s.t. µtr
(

H̃(IR � (zc(zc)H))
)

≤ Pm
R . (31)
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The objective of (31) decreases monotonically with µ. Thus, it is very easy to see that the optimal scaling factor
µ is

µ =
Pm
R

tr
(

H̃(IR � (zc(zc)H))
) . (32)

The candidate vector
√
µzc is obtained for a particular realization of v. The process is repeated for a number

of realizations, and that candidate vector zc and the corresponding scaling factor
√
µ which give the minimum

objective value are chosen.
Optimization over w for the given Z = Zf : For the given Z = Zf , (14) turns to the problem of maximizing

a quadratic convex objective function with two quadratic convex inequality constraints. Due to the fact that the
convex objective function has to be maximized, the optimization problem for the known Z is not a convex problem
and cannot be solved using standard convex optimization tools. We propose to use semidefinite relaxation
technique to solve (14) for the given Z. Defining W = wwH and relaxing the rank-one constraint on W, we get
the following SDP optimization problem

max
W

tr
(
WHHZGf

H
)

s.t. tr
(
WHHZH

f ZfH
)
≤ Pm

R − σ2
nr
tr(ZH

0 Z0), (33)

tr(W) ≤ Pm
S , W � 0

where ZGf
is obtained after substituting Z = Zf into ZG.

By analyzing the complementary slackness conditions13 for the primal (33) and its dual problem, it can be
shown that the gap between the optimal value of (33) and that of the corresponding non-relaxed problem is
zero. The rank-one solution can be obtained from (33) using the method described for (30). Let

√
γwc be

the candidate vector generated from the randomization step. The scaling factor γ can be determined from the
following expression:

γ = min

{

Pm
S

(wc)Hwc
,

Pm
R − σ2

nr
tr(ZH

f Zf)

tr
(
wc(wc)HHHZH

f ZfH
)

}

. (34)

The optimization problems (30) and (33) can be solved alternatively in an iterative manner as shown in Algo-

rithm 1. After each update of Z̃ and/or W, the objective function decreases and, since the MSE function is

Algorithm 1 Iterative algorithm for optimizing w and Z.

1. Set n = 1 and initialize w such that wHw = Pm
S .

2. repeat

• Compute Z̃ by solving (30).

• Compute ED of Z̃. If rank(Z̃) = 1, set Z =
√
αzdiag(uz) where uz is the principal eigenvector and

αz is the corresponding eigenvalue. Otherwise, use the randomization technique for getting the best
rank-one approximation for Z̃.

• Compute W by solving (33).

• Compute the ED of W. If its rank is one, then set w =
√
αwuw where uw is the principal eigenvector

of W and αw is the eigenvalue. Otherwise, use randomization technique to get
√
γwc.

• n = n+ 1;

until |fn − fn+1| ≤ ε, where ε is the required precision.

bounded above zero, the algorithm can be guaranteed to converge.
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3.2 Method II - Relay optimization with MRT beamformer

The iterative optimization algorithm can be computationally costly when the numbers of relays and antennas at
the source and destination increase. Here, we present an alternative approach where the source beamformer (also
called MRT solution) maximizes wHHHHw, i.e., the total power radiated by the source towards the relays. It
can be easily shown that the corresponding solution is

w , wMRT =
√

Pm
S vH,1 (35)

where vH,1 is the column vector of VH corresponding to the largest singular value σ1
h of H whose singular value

decomposition is given by H = UHΣHVH
H . Here, UH ∈ CR×R and VH ∈ CNs×Ns are the unitary matrices and

ΣH is the diagonal matrix with non-zero elements σi
h (i = 1, · · · ,min(R,Ns)) in decreasing order. Substituting

(35) into (14), noting that σ1
huH,1 = UHΣHVHvH,1, and introducing an auxiliary variable τ ≥ 0, we can write

(14) as

max
Z,τ

τ s.t.

τ ≤ 1

σ2
nr

− auH
H,1

[
ZHGHGZσ2

nr
+ σ2

nd
IR
]−1

uH,1 (36)

tr
(
[Pm

S (σ1
h)

2uH,1u
H
H,1 + σ2

nr
IR]Z

HZ
)
≤ Pm

R .

After using (25), the Schur-complement theorem14 and rank relaxation, (36) can be finally given by

max
Z̃,τ

τ s.t.

[

[GHG]� Z̃Tσ2
nr

+ σ2
nd
IR

√
auH,1√

auH
H,1

1
σ2
nr

− τ

]

� 0 (37)

tr
(

[Pm
S (σ1

h)
2uH,1u

H
H,1 + σ2

nr
IR](IR � Z̃)

)

≤ Pm
R , Z̃ � 0

which is the SDP problem that can be solved efficiently using convex optimization tools (e.g.15). The remaining
problem of approximating the best-rank one solution from Z̃ of (37) is solved using Gaussian randomization
method as described for the optimization problem (30).
Remark 1: The optimality of MRT solution (35) can be proven under some conditions. To this end, we propose
following proposition.
Proposition 2: If signal transmissions from the relays to the destination occur over R orthogonal channels,
under the approximation that σ2

nd
σ2
nr

<< |z̄i|2|gi|2σ2
nr

+ wHh∗
ih

H
i wσ2

nd
, the MRT solution (35) is optimal if

||gi||2 = ||g||2, ∀i ∈ {1, · · · , R}.
Proof: After substituting GHG = diag(||g1||2, · · · , ||gR||2) into (16), and using the approximation σ2

nd
σ2
nr

<<

|z̄i|2||gi||2σ2
nr

+wHh∗
ih

H
i wσ2

nd
, we get

max
w,Z̄

R∑

i=1

1
σ2
nr

wHh∗

i
hH

i
w

+
σ2
nd

|z̄i|2||gi||2
s. t.

R∑

i=1

|z̄i|2 = Pm
R , wHw = Pm

S (38)

It is clear that the phases of {z̄i}Ri=1 do not affect the objective function and the constraints of the optimization

problem (38). Thus, w.l.o.g, {z̄i}Ri=1 can be considered to be real. For the givenw with wHw = Pm
S , we can solve

the optimization problem (38) w.r.t. xi , z̄2i using Lagrangian multiplier method. For the case ||gi||2 = ||g||2,
it is easy to show

xi =

{ σnd
bi

σ2
nr

||g||2
(

||g||√
λ
− σnd

)

for λ ≤ ||g||2
σ2
nd

0 otherwise
(39)
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where bi = wHh∗
ih

H
i w and λ is Lagrangian multiplier. Substituting (39) into

∑R

i=1 xi = Pm
R , λ can be expressed

as

√
λ =

||g||σnd

∑R
i=1 bi

Pm
R σ2

nr
||g||2 + σ2

nd

∑R

i=1 bi
. (40)

With the help of (40), xi of (39) for λ ≤ ||g||2
σ2
nd

can be expressed as

xi =
biP

m
R

∑R

i=1 bi
(41)

whereas, for λ >
||g||2
σ2
nd

, xi = 0. Let f̃ be the objective function of the optimization problem (38). Substituting

xi from (41) into f̃ , we obtain

f̃ =
Pm
R ||g||2∑R

i=1 bi

||g||2Pm
R σ2

nr
+ σ2

nd

∑R

i=1 bi
. (42)

Since
∑R

i=1 bi = wH
∑R

i=1 h
∗
ih

H
i w = wHHHHw, and f̃ monotonically increases with

∑R
i=1 bi, f̃ is maximized

when
∑R

i=1 bi is maximized. Thus, (35) is optimal.

4. NUMERICAL RESULTS

For all numerical simulations, we take R = 4, Nd = 5, Pm
S = Pm

R = P0 and all channel coefficients are taken as
i.i.d. ZMCSCG variables with the unit variance. The average MSE is determined from 200 independent random
channel realizations. In all cases, the relaxed optimization problems (30), (33) and (37) are solved using CVX
software15. If the optimum solutions for Z̃ in (30) and (37), and the optimum solution for W in (33) are rank-one,
their principal components are used to determine Z and w, respectively, otherwise the best rank-one solutions
are obtained using the randomization technique. For iterative optimization (Method I), we take ε = 10−4 and we
have noticed that the algorithm converges within 5-8 iterations. The average MSE as a function of SNRrd = P0

σ2
nd

,

−2 3 8 13 18 23

10
−2

10
−1

SNR
rd

, dB

M
S

E

 

 

Method I,  w
 in

= w
 MRT

, N
 s

=2

Method II, N
 s

=2

Method I,  w
 in

= w
 MRT

, N
 s

=4

Method II, N
 s

=4

No source BF, N
 s

=4

Figure 1. MSE as a function of SNRrd = P0

σ2
nd

.

is displayed in Fig. 1 for both the methods I and II using different values of Ns. The performance of method I is
shown for the initialization win = wMRT (see (35)). For Fig. 1, we fix the relay noise power to −10 dBW, take
P0 = 3 dBW and vary σ2

nd
. It can be seen from Fig. 1 that the iterative method with win = wMRT provides

better performance than method II. However, there is almost no difference between the two methods for high
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SNRrd. This observation can be explained from the fact that, for a high SNRrd (given that SNRsr = P0

σ2
nr

is

fixed), the source-relay links dominate the MSE at the destination, and thus, MRT tends to be optimal solution.
Fig. 2 shows the average MSE versus SNRsr = P0

σ2
nr

, for both methods with different values of Ns. In Fig. 2,

−2 3 8 13 18 23
10

−2

10
−1

SNR
sr

, dB
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= w
 MRT
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=2
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=2

Method I,  w
 in

= w
 MRT

, N
 s

=4

Method II, N
 s

=4

No source BF, N
 s

=4

Figure 2. MSE as a function of SNRsr =
P0

σ2
nr

.

we take P0 = 3 dBW, keep σ2
nd

to −5 dBW and vary σ2
nr
. It can be observed from Fig. 2 that the difference

between method I with win = wMRT and method II is negligible for low values of SNRsr but visible for higher
values of SNRsr. The latter observation can be explained from the fact that, for a low SNRsr (given SNRrd is
fixed), the source-relay links dominate the end-to-end MSE and thus, MRT approaches to optimality. It can also
be observed from Figs. 1 and 2, that the proposed methods significantly outperform the system that employs
no beamforming at the source. The MSE error floor in both figures can be easily explained from the fact that
either σ2

nr
or σ2

nd
is kept fixed. Although, method II gives same or slightly inferior performance compared to

method I with the initialization win = wMRT, the former requires solving only one relaxed SDP problem (which
is (37)). This means that method II is more preferable than method I, if computational cost is a major concern
for system design.

5. CONCLUSIONS

The joint optimization problem of the source beamformer and relay coefficients has been solved for a point-
to-point system that consists of multi-antenna source and destination, and multiple single-antenna relays. An
iterative optimization technique which alternatively optimizes the source and relay beamformers at a time, has
been shown to have relaxed SDP formulation. The considered numerical examples show that, by keeping the
source beamformer equal to the MRT solution of the source-relay channel and solving the optimization w.r.t.
relay coefficients, the computational cost can be decreased significantly with a reasonably low performance loss.
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