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Abstract—The objective of the beamforming with the exploita-
tion of a sensor array is to enhance the signals of the sources
from desired directions, suppress the noises and the interfering
signals from other directions, and/or simultaneously provide the
localization of the associated sources. In this paper, we present a
higher order cumulant-based beamforming algorithm, namely,
the super-exponential blind adaptive beamforming algorithm,
which is extended from the super-exponential algorithm (SEA)
and the inverse filter criteria (IFC). While both SEA and IFC
assume noise-free conditions, this requirement is no longer
needed, and all the noise components are taken into account in
the proposed algorithm. Two special conditions are derived under
which the proposed blind beamforming algorithm achieves the
performance of the corresponding optimal nonblind beamformer
in the sense of minimum mean square error (MMSE). Simulation
results show that the proposed algorithm is effective and robust to
diverse initial weight vectors; its performance with the use of the
fourth-order cumulants is close to that of the nonblind optimal
MMSE beamformer.

Index Terms—Adaptive array processing, blind beamforming,
high-order cumulants, inverse filter criteria (IFC), super-exponen-
tial algorithm (SEA).

1. INTRODUCTION

HE concept of the adaptive antenna [1] was first proposed

more than three decades ago. Since then, the adaptive array
or, in general, adaptive beamforming techniques, have been
widely investigated for various purposes [2], [3], [20], [26]. In
a variety of applications, the objective of the beamforming is
to enhance the signals of the sources from desired directions,
suppress the noises and the interfering signals from other
directions, and/or simultaneously provide the localization of
the associated source [20]. The optimal beamformer (or spatial
filter), in the sense of minimum mean square error (MMSE)
criteria, is specified by the Wiener—-Hopf equation [2], [3],
provided that the reference signal waveform or, alternatively, the
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spatial signature (spatial response of the associated antenna array)
of the desired source is available. However, it is often encountered
in practical situations that the duration of the reference signal is
not sufficiently long or that the reference signal is not available
at all. The former situations happen, for example, in many
mobile communication applications where the length of pilot
signals is limited to maintain a high communication capacity.
The later situations arise in communication countermeasure
and various passive radar and sonar applications. In such
situations, adaptive algorithms based on the MMSE criterion
cannot work properly. As a result, it becomes increasingly
important to develop blind adaptive beamforming algorithms
in the absence of a reference signal.

The constant modulus algorithm (CMA) is a well-known
algorithm originally developed for blind equalization [15], [16]
and has recently been used for blind beamforming [17]. Instead
of using training signals, the CMA uses the constant amplitude
property of the desired signals. Analyses reported in [18] and
[19] have shown that, in certain cases where, for instance,
the source signals are of high signal-to-noise ratio (SNR)
and are not closely spaced, the steady-state and convergence
performances of the CMA-based blind beamforming algorithm
are very close to those obtained from the corresponding
nonblind ones. However, the CMA-based blind beamformers
usually incur considerable performance degradation when
these conditions are not satisfied.

Applying higher order statistics, which are usually described
in terms of cumulants [7], or cyclostationary properties of
signals to blind beamforming is considered to be a new trend
to effectively make use of the inherent properties of the
signals [11]-[14]. However, the methods reported in the open
literature so far are only applicable to certain specific signal
environments. For example, the kurtosis (fourth-order cumu-
lant) maximization algorithm [11] globally converges only in
noise-free situations. The fourth-order cumulant-based blind
beamforming approach [12], [13] assumes that the interfering
signals are Gaussian distributed, that incoming signals are
coherent, or that the incoming signals are independent and
with the identical fourth-order cumulants. On the other hand,
to apply cyclostationarity in blind adaptive beamforming, a
priori knowledge of the exact cyclic frequency of the desired
signal is required [14]. Adaptive beamforming algorithms
based on cyclic correlation do not work properly when the
cyclic frequency of the desired source signal is not accurately
estimated [14].

The recent development of the cumulants-based blind decon-
volution algorithms, namely, the super-exponential algorithm
(SEA) [4], [6] and the inverse filter criteria (IFC) [5], [8], [9],
opened a new avenue for blind deconvolution and equalization
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[4]. The extensions of SEA [6] to multi-input multi-output
(MIMO) blind deconvolution problems proved to be effective
for blind equalization in multiuser wireless communications
[10], [22]-[24]. All the formulations of these single-input
single-output (SISO) or MIMO blind deconvolution problems
make the following assumptions:

1) infinite length of the overall channel (convolution of the
channel and the equalizer);

2) finite length of the FIR filters;

3) the absence of noise.

The noise-free assumption is basically justified by using a high-
input SNR. According to [6], [10], and [22]-[24], an implicit
condition required for formulating the SEA is that the number
of independent sources (which also include independent inter-
symbol interference components, if there are any) must exceed
the degrees of freedom (DOFs) of the system [3]. Violation of
this condition will result in failure to apply SEA because the
corresponding correlation matrix is rank deficient and, there-
fore, noninvertible [6], [22], [23]. This is a strict constraint and
is in conflict with the well-known requirement that the system
DOFs must exceed the number of independent sources for effec-
tive interference suppression. Situations with the number of the
independent sources being less than either the number of array
sensors or the number of the total taps of the space-time FIR fil-
ters are often encountered in various communications and radar
applications. In spite of such importance, applications of SEA
to such practical scenarios have not been well investigated thus
far.

Another very important factor to be considered is the system
noise, which highly limits the system performance. In practice,
noise is always present, and the input SNR could be moderate or
even low (examples of such situations include countermeasure
in communications, radar, and sonar, etc.). This fact underscores
the importance of developing new formulations of the SEA with
the noises taken into account.

The purpose of this paper is to formulate an SEA-based
blind beamforming algorithm with the consideration of array
noise and interference signals. The proposed algorithm works
robustly, independent of whether the number of independent
sources is more or less than the DOFs of the array system.
Without loss of generality, we confine our formulation to the
classical adaptive beamforming for independent non-Gaussian
source signals.

The main contributions of this paper are three fold. First,
this paper presents a super-exponential blind beamforming al-
gorithm with the consideration of both noise and interference
signals. Second, two special conditions are derived for the algo-
rithm to converge to the optimal beamformer specified by the
Wiener—Hopf solution. Third, this paper proves that the inverse
filter criteria [8], [9] can be used as the objective function for the
proposed beamforming algorithm, and a complete blind beam-
forming algorithm is subsequently obtained.

The paper is organized as follows. In Section II, we formulate
the super-exponential blind beamforming algorithm and prove
the two special conditions. Section III reveals the relationship
between the proposed algorithm and the existing IFC, and the
complete blind beamforming algorithm is then derived. Sec-
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tion IV presents simulation results of the conventional applica-
tions. Section V concludes this paper.

II. FORMULATION OF BLIND ADAPTIVE BEAMFORMING
A. Formulation of Nonblind Adaptive Beamforming

Let us consider an antenna array of N(N > 1) elements with
P(P > 1) incident non-Gaussian sources. The signal vector
x(t) at the antenna array is expressed as

P
x(t) = 3" Ta(8, )b, (1) + Z(1) M
where a(f) and @(t) = [@1(t),...,@n(t)]" (the su-

perscript “T” denotes transpose) are the array steering
vector and the array noise vector, respectively, and
I' = diag{qe?,i=1,...,N} is a diagonal matrix
denoting array channels’ complex gains (gains and phases).
The steering vector, for example, of a half-wavelength spaced
linear array can be expressed as

a(9) = [e—j(%/wN—l)/z)dsin<e>7 =i (27 /N ((N=3)/2)d sin(6)

L eICTN(N=3)/2)dsin(®) 6j(27r/>\)((N71)/2)dsin(G)]T
with the phase reference point taken at the center of the array.
To simplify the notation without loss of generality, hereafter, let
us use a(f) instead of ['a(h).

The following assumptions are made for the sources’ signals
and the employed antenna array.

Al) The source signals b,(t), p = 1,..., P are indepen-
dent, stationary, and non-Gaussian processes with zero
mean and variance E |b,(t)|” = op -

The noise vector c(t) is zero-mean, spatially white
(but not limited) with E{@(t)&T(t)} = 0 and
E{&(t)a"(t)} = 02Iyxn, where the superscript
“H» denotes conjugate transpose, o2 expresses the
noise power at each element, and Iy v isthe N x N
identity matrix. <o(¢) is uncorrelated with all the
source signals.

The steering vectors of all the associated sources are
linearly independent when P < N.

A2)

A3)

For the purpose of later use, we denote b,(t) = o3 b,(t),
p=1...,P, ’{ﬂl(t) = Jwﬁl(t), Il =1,...,N,Inxn =

(et e8] and A(©) = [on,a(01)....,ov,a(0p)]
and we define
H= |:O-b1a(91)7 s 70'1”,3(913)7 O'weg\lf)xp ce 70we§\17v><)1i|
= [A(O)vxpo=Inxn] gy (var) )
and
&(t) = [Oél(t), cey Oép_Hv(t)]
= [bi(t),....bp(t), @1 (1), ...,mn(B)] . 3
Then
E[a(t)a@” ()] = I p4nyx(p+n)- “4)
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With straightforward manipulations, the signal vector of (1) can
be expressed as the following linear vector model:

x(t) = [o,a(61), .., 0,8(0p), 0meys - =W
r ba(t) T
bp(t)
A0
_ﬁN(t)_
=Hyy(v+p)Q(t) (N+P)x1- 5

In order to avoid confusion between the subsequent SEA ex-
tension and that presented in [6], [10], and [22]-[24], we high-
light the following two cases for ease of understanding.

Case1) 1 < P < N. This represents the kind of typical
cases in communications, radar, and sonar applica-
tions.

Case 2) P > N.Thisis the case where the associated system
does not have enough DOFs.

According to [6], [10], and [22]—[24], an implicit condition nec-
essary to formulate the exsiting SEA is that the number of in-
dependent sources (including independent intersymbol compo-
nents, if there are any) is greater than the DOFs of the system [3].
It is obvious that Case 2 satisfies this requirement. The above-
mentioned extension [6], [10], [22]-[24] can be directly applied
to Case 2, regardless of whether the system noises are consid-
ered or not.

Remark 1: Note that in the absence of noises and for P < N
(i.e., the assumption A2 in [23]), the signal model expressed by
(1) and (5) is a special case of [23, (1) and (2)] by setting k& = 0.
It is clear that H in (5) is of full column rank if 1 < P < N as
the noises are absent.

In this paper, we concentrate on Case 1 with the presence of
noise. In (5), the dimension of the combined signal vector &
is (N + P)x 1, which, regardless of the value of N and P, is
always greater than N.

Using assumptions Al and A2, the correlation matrix of the
array signal vector of x(t¢) can be expressed as

R =E [x(t)x"(t)] = HE [a(t)a" (1)) HY = HH"
=AO)AT(0) + oZInknN- (6)

The output of adaptive antenna is formulated as

2(t) = c'x(t) = cTHa(t) )
where ¢ = [¢1,¢2,...,¢ N]T is the complex weight vector. De-
fine

s=[s span]’ =H e ()

as the gain vector of all the signals and the noises. Then, the
output of the adaptive antenna can be rewritten as

P+N

2(t) = cx(t) =sTd(t) = Y span(t). )

n=1
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Note that there are only N weights that are actually controllable,
and the gains corresponding to all the signals and the noises
depend on the NV controllable weights.

Assume that b, (t), 1 < ng < P is the source signal of
interest. Using assumptions Al and A2, the mean square error
(MSE) between b,,, (t) and the output of the adaptive antenna
can be expressed as

) P+N
+ 2 Jsal’
n=1

n#ng
}2

(10)

MSE = B ([bu, (1) = 2(t)[°) = |50, — 0,

2
(no) _l|lgaT
_Hs—obnoe(P_FN)Xl =||H ¢ —o0yp

elmo
no ©(P+N)x1

Minimizing the MSE with respect to ¢ results in the optimal
weight vector, represented by the following Wiener—Hopf equa-
tion, which is called the optimal adaptive beamformer or MMSE
beamformer [2], [3], [26]:

—1 _
Copt = (HHH) (Ub”o H*eE;O—IZN)xl) = (RT) ' d (1)
where

H* e("O ) O—I?n

n (P+N)x1 = (12)

d=o0, 2" (0,)

where the superscript “*”” denotes complex conjugate.

B. Super-Exponential Iteration Principle

Without loss of generality, we present the super-exponential
iteration principle in the same manner as that of [6] with the use
of a finite dimensional complex gain vector s. Define

sh=s(s), n=1,....,P+ N (13a)
1
sgzms;” n=1,...,P+ N (13b)
where s’ = [s],...,5p,n] > and || = /05N |50 ) is
the norm of s’. Substituting s,, = sg«-n and s, = s, into

(13a) and (13b), we obtain the following iteration equation:

(sslk—n)f’ (sgc—n*) g

By )T
(14)

>

=1
In the case that s\ = s, = lan| 7P, an #0,n=1,..., P+
N, for k > 1, we have

sff): n=1...,

koo k
Gy _ lan|®H0" cio—0"en
S =

n
/PiN |al|2(p+(1)’c
=1

Whenp+q > 2andp —q = 1,if |a,,| > |a,|, Vn # ng, then,
goes to

n=1,...,P+N. (15

k
as k — oo, sy

k .

sgzlz) = eieno
k

o

k—o0

— 0, n=1,...,P+N,n#ng
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From (15), itis seen that s,, is forced to super-exponentially con-
verge to the desired response, i.e., the magnitude of the leading
component approaches 1, and the others approach 0. For more
general cases, let us reconsider the iteration procedure with a fi-
nite-modulus complex weighting sequence, and then, (13a) and
(13b) become

sh=Pust (s2), m=1,....P+N  (17a)
1
S{ri:” /||s/n7 n=1,..., P+N (17b)
s
where 3, = |Bn| /%", |B.] < 00,andn = 1,..., P+ N. For

k > 1, the equation corresponding to (14) becomes

o ( (k— 1)) (Sgcﬂ)*)q 1
s\ .

,n=1,..., P+ N.
\/PJ’N (k—1))1’ ( (k—1)*)‘1 2
51
(18)
Slmllar to (15), in the case where s( ) = Sp = |an| e’ n =

.,P+ N, for k > 1, we have

k—1 k—1
(p+q)*  i=) ontivm (r—2q)

o 15 %
Sn’ = k—1

P+N 2 (p+a) .

S B e

=1

n=1,....,P+N. (19)

When p + ¢ > 2, (19) can be rewritten as

3 (P—a)* en+ivn Z p—q)'

|5 |((p+q *—1)/(p+q— 1)|a |(p-|rq)A =0

o _ k

\/ 3 [P D g
n=1,....P+N. (20)

The convergent behavior of the above iteration sequence is de-
scribed by the following theorem.

Theorem 1: For an arbitrary weighting sequence with ele-
ments of finite modulus, i.e., B, = |Bn|e??", |Bn] < oo,
n = 1,...,P+ N, the conditions for the iterative updated vector
(20) to super-exponentially converge to a vector that the magni-
tude of the leading component equal to 1 and the other compo-
nents equal to 0, i.e.,

k—o00

(k)

Sng | — 1
(21)
)‘ =70, n=1 P+ N,n#ng
are p+ q > 2, and
(o 1Bna 7 > Jan 18] 7
no no n n
n=1,..., P+ N,n#mny. (22)

The proof of Theorem 1 is given in Appendix A.
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C. Formulation of Blind Adaptive Beamforming

It is seen that for & > 1, the associated gain vector is updated
by (8) with a given weight vector ¢*), i.e.,

s®) = [0 S8 1 =HTM. 23

On the other hand, the gain 351’“)’ can be directly updated

(k—1) S%k)/ ~- 8, (s%k—l))f’ (s%k—l)*)q’

based on s , 1.e.,
,P + N in accordance with (17a) without c(*).

This 1mphes that there are evident differences between sSL ) of
(23) and s,(z )y of (17a). However, due to the attractive property
of the super-exponential convergence shown in Theorem 1, it
is desired that the gains s%k), n = 1,..., P + N be updated
under (17a) and (17b). The best way to solve the problem is to
combine the iteration procedures of (17a) and (17b) with that of
(23) and then to minimize all the differences. This leads to the
following constrained minimum least square (LS) problem, i.e.,

n —

min 2 [ = n (s’ (Sgcﬂ)*)q
P+N
Y (24)
Define
g = [o (s87) (1707
ot () ($5)T - @

Then, substituting (23) into (24) yields

2
mln g(kfl) H ,

‘H c! subject to HHTC(k)H =1.
(26)
With the use of the method of Lagrange multipliers, the solution

for ¢(*) can be derived straightforwardly as

H*HT -1 H* (k—1)
c®) = ( ) & @)
\/(H*g(k—l))H (H+H7) ™' Hrg(k-1)
Define
d(k*l) — H*g(kfl) (28)

and with the definitions of (6) and (27), (28) can also be ex-
pressed as
R7) "' q¢*-1
) = (R7) (29)
\/(d(k—l))H (RT)_l d(k=1)

where R can be estimated from the samples (or array snapshots)
of x(t), and d*~1) will be estimated subsequently through a
high-order cumulant. Regarding (26), (27), and (29), we have
the following remark.

Remark 2: As mentioned in Remark 1, in the absence of
noise, H is of full column rank when 1 < P < N. In this case,
the correlation matrix R is rank-deficient. This implies that in
such a case, it is difficult to obtain an analytical solution for
the blind beamformer ¢*) from (26). As a result, the iteration
procedure given by [23, (39) and (40)] becomes inapplicable.
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Therefore, it is necessary to take the noises into account, and
treating the noise components as independent sources is a con-
venient and effective way to solve the problem for Case 1.

Next, we present the method of estimating d*=1) First of all,
let cum (z1; 2; - - - ; £ ) denote the joint cumulant of L random
variables {z1, %2, ...,z }, and define

cum(z(l)(t) cpi 2% (1) q;x*(t))

= cum| 20(8); 520 (); 20 (1); - 207 (0); x* (1)

q terms

(30)

p terms

where z(*)(t) is the output of the beamformer c(*) at the kth
iteration, i.e.,

P+N
2W(t) = WTx(t) = sWTa(t) = Y sPan(t). 3D
n=1
Using the linearity property of cumulants [7], ie.,
cum(), bjx;;---) = >, bjcum(z;;---), and  substituting

(31) and (5) into (30), (30) can be rewritten as (32), shown at
the bottom of the page. Define

Bn = cum (an(t) s psag(t) s g+ 1),n=

as the cumulants of order (p, g + 1) of all sources. From (25),
(28), and (32), we conclude that

d*=1Y — cum (z(k_l)(t) :p;z(k_l)*(t) : q;X*(t)) L))

P+ N (33)

According to (31), d*~1) can be estimated by c(*~1) and the
data samples x(t).
Equations (29), (31), and (34), rewritten as

(®7)”
\/(d(k—l))H (RT)_l d(k-1)
= :Cum(z(k—l)(t):p;z(k_l)*(t):(ﬂ

A= () = (c<k—1>)Tx<t)

define the super-exponential blind beamfoming algorithm. A re-
mark on it is given as follows.

dk-1
k) —

(35a)

x*(t)) (35b)

(35¢)
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Remark 3: It is noted that the above blind super-exponential
beamfoming algorithm is valid for P > 1 and can be applied
regardless of the array configurations and the number of non-
Gaussian (i.e., nonzero cumulants) sources, which, therefore,
is very important to diverse applications, e.g., communications,
radar, sonar, etc.

When the noises are Gaussian distributed, then for p+ g > 2
andn = P+1,..., P+ N, f3, equals zero [7]. In this case, the
beamforming weight vector given by (35a) can be written as

o (RT) a0, (00 (5007)

T e
(36)

It is evident from (36) that the iterative weight vector is a linear
combination of the optimal weight vectors corresponding to all
the source signals. Furthermore, substituting (36) into (8) yields

S o () (s8-07)!

o) —

s = =1 - - (37
- Hi ’ Sk—l) Sk—l)*
PG (s"7)" (s87)
where
£(0:) = o, HT (RT) ™ 2 (6) (38)

is the gain vector of the optimal adaptive antenna with respect
to the 7th source, and
-1

&) = o2a” @) (R7) a0,

It is obvious that the optimum s*) is also a linear combination
of £(6).

From (36) and (37), it is seen that the convergent beamformer
c(®) depends on the initial vector C(O), p + g, input SNRs, the
spatial responses of the sources, and spatial correlation between
the sources.

We know that due to the constraint of (24), |s,(qk)| < 1 always
hold for Kk > 1and n = 1,..., P + N. If the initial weight
vector ¢(©) is chosen such that

) =1, ..,P+N,n;én0},1§n0§P
(40)

(39)

> max{ 1S,

cum(z<k)(t) 2 (1) : qx*(t)) =cum (z(k)(t) :p; 2% (¢)

=H"cum (z(k)(t) :

P+N
=H"*cum Z s, (); -
n=1

~

P+N
IO
n=1

@ (1))
RN ORA0)

P+N P+N

Z k)* *

n=1 =1

p terms

(s17)" (5877 cum (@1 ) pr a3 (1) s g + 1)

q terms

(32)

P « \ Y ’ .
(sgfj_N) (352-1\7) cum (ap+N(t) cpsapyn(t) g+ 1)
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then, from (18) or (37), it is obvious that for arbitrary |3,| <
400, n =1,...,P

—

‘ ()

J(p—q) arg(s'y)
(1)ptapoeo € 0
S —

[5C»
(0)

where arg( sy, ) denotes the phase of s,(m) Note that (40) and (41)
indicate that the super-exponential blind beamforming algorithm
converges faster foralarger value of p+ ¢. However, alarger value
of p 4+ q usually gives rise to a larger variance of the estimated
d*=1 [see (35b)] thusleading toalarger variance of the designed
beamfomer. Nevertheless, for an appropriate p + ¢ > 2, as the
gain of all the undesired signals are smaller than that of the desired
signal under c(?), the super-exponential beamforming algorithm
will converge fast and closely to the optimal beamformer. In other
words, if ¢(?) is chosen such that

0 _ é;(ano)

(41)

(42)
(6no)
then under an appropriate p + g > 2, we have
i(p—q) arg(st)) &
s — e’ 0/&(Ony) + 43)

ej(pw)arg(sno‘ By) + 4

where £'is an error vector with ||€]] much smaller than Hé’ (0ng)

In order to give more insight into the behavior and the per’-
formance of the proposed algorithm, we present two theorems
in the following for two special cases, respectively. In the first
case, the SNRs of all source signals approach infinity, whereas
in the second, the desired source is spatially orthogonal to the
other sources.

Theorem 2: When P < N, p + q > 2, and the noise com-
ponents are Gaussian distributed, the algorithm specified by
(35a)—(35c¢) performs perfect suppression of all the interfering
signals lfU /0 — +00,7=1,...,P,and

1B | {|ﬁn|1/(;v+f1—1) ‘81(70)‘
S Pon#ng}

n=1

where [3,, is defined by (33).

Theorem 2 is proved in Appendix B.

Remark 4: Theorem 2 implies that the higher the SNRs of all
the source signals, the closer the blind beamformer approaches
the nonblind optimal beamformer (the MMSE beamformer). In
addition, the blind beamformer approaches the nonblind one
when the SNRs of all the sources approach infinity.

Theorem 3: When P < N, p + q > 2, and the noise com-
ponents are Gaussian distributed, the algorithm specified by
(35a2)—(35c¢) converges to the nonblind optimal (MMSE) beam-
former if the steering vector of the ngth (1 < ng < P) source
is spatially orthogonal to those of all the other sources, i.e.,
a’(,)a*(0,,) =0,n=1,...,P,n#ng (44)
and

Ho |/Bn0|

nO#m071Sm07TOSP (45)
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where
[))n =
cum (@ (£): piaf(t) 1 g+ 1), n=1,...P
0, n=P+1,...,P+ N
. (46)
Br, = max
-1
Z}ab op,a’(6,)(RT)a*(6;)|6i],n=1,..., P,n#ng
1#"0
(47)
‘s,(gg‘:max{‘sgo)’,nzl,...,P} (48)
[[ateng)|[*oi
o2
Ho = < 1. (49)

]

The proof is in Appendlx C.

Remark 5: Note that under (45), the algorithm converges to
the conventional beamformer shown by (C8) in Appendix C.
This provides some insights of the performance behavior of the
proposed algorithm.

III. OBJECTIVE FUNCTION OF THE BLIND
ADAPTIVE BEAMFORMING

In many adaptive processing problems, we know that appro-
priate objective functions, or cost functions, are very important
in developing adaptive algorithms and evaluating their perfor-
mance. It has been shown in [5], [8], and [9] that the following
inverse filter criteria

O, {e(F)} ]

~ |om,n{e<(->}| - Ol
" |G fe(k) O e
e

are suitable objective functions for blind deconvolution, where
e(k) represents the output of the associated blind equalizer, m +
n > 2, and the cumulant of e(k) is defined as

Crn {e(k)} = cum{e(k) : m,e* (k) : n}
= cum e(k),...,e(kz,e*(k),...,e*(kz (5D

In the absence of noises, the objective function is bounded by
the maximum modulus of the cumulants of all the signal com-
ponents [5], [8], [9]. In this section, our purpose is to show that
the inverse filter criteria can also be an objective function for the
proposed blind beamforming algorithm.

Replacing e(k) in (50) with the z(t) in (7)—(9), one can obtain
P4N

(m,n) m / x\n
v s (s

(G fe®OH El ()

|Cl 1 {Z(t)}|(m+n)/2 P+N (m+n)/2
’ Z ol
(52)
where

7 = cum S au(t), - e(t), af (1), af(H) b (53)

~~ ~~
m terms n terms
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represents the (m, n)th-order cumulant of the /th source signal.
According to (4), we have

A = cum {au(t), 0 (0} = E{lau(®P} = 1. (54)
Defining
pin (/2
=1

which is the root mean square (RMS) of the total output power,
(52) can then be expressed as

P+N mo e\
> (5) ()
=1 S S
Since most of the digital signal waveforms employed in com-
munications and radar applications are of symmetric distribu-
tions, it can be shown that all their odd-order moments and cu-
mulants are equal to zero. In the following, the situation where
m = n > 1 is considered. In this case, (56) becomes

P+N

3 A

=1

Imn(c) = (56)

2
51

Jam(€) = Jm,m(c) = 5.

(57)

From the above equation, we see that for a given nyg,

1 < mng < P, the necessary and sufficient condition
for Jop(c) = L;,y,(]glm)‘ is that |s,,|] = 1 and s, = 0,
n=1,...,P+ N,n # ngy, which corresponds to the perfect

suppression of all the interfering signals described in Theorem
2. In practice, when the blind beamformer makes [s,,,| > |sn],
n=1...,P+ N,n # ng, 1 < mng < P, then (57) can be
expressed as

s 2m P+N ’_y(m,m) 51 2\ ™
Jam(e) = [ySe™ |5 1+ Y s (s— )
s =1 rY'n/OI 0
I#ng

58
where the ratio (|s;]?/|sn,|?)™ will decrease as m increa(ses).
This indicates that the larger the m, i.e., the higher the em-
ployed order of the cumulant, the more the reduced contribu-
tions of%(Lm), n=1,...,P+ N,n # ng to Jop,(c). The term
|50 |?/|51|? denotes the suppression ratio of the beamformer to
the [th source. The higher the suppression ratio, the smaller the
contribution of the /th source to the objective function.

The gradient of the objective function with respect to the
weight vector is derived as

anm(c)
Jc
_sgn (Crm {2(t)}) xmxcum{z(t):m, 2*(t) :m — 1,x*(¢)}
(cTRc*)™
X Con ZON | g, )

(cTRc*)"™
where sgn (Cr,.m {2(t)}) expresses the sign of the cumulant
Chn.m {2(t)}. Because Ja,,(c) is a nonlinear function with re-
spect to c, the stationary points [5], [8], [11] of (58) can be ob-
tained from

(9J2m (C)

—— =0.

dc (60)
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We have the following theorem to show the relationship between
the stationary points and the algorithm.

Theorem 4: The super-exponential iterative algorithm spec-
ified by (35a)—(35c) converges to the stationary points of the
objective function (58).

Theorem 4 is proved in Appendix D.

The associated cumulant terms in (35a)—(35¢) and (50) with
order (2,2), (3,3), and (4,4) are derived in Appendix E.

From Appendix D, we see that the stationary points of the
objective function cannot be expressed by an analytical solu-
tion, and the algorithm described by (35a) and (35b) satisfies
(D2), which specifies the stationary points. Because the initial
c(® could be different, the algorithm may converge to the dif-
ferent stationary points. In essence, Theorem 4 shows that the
inverse filter criteria can be an objective function of the blind
beamforming. Based on Theorem 4, the complete super-expo-
nential blind adaptive beamforming algorithm can be cast into
the following three steps.

Step 1) Let k = 1, given the accuracy p(= 10~°), ¢(*) and

the order of the cumulant.

Step 2) Letp = mand ¢ = p — 1, perform (35a)—(35c¢), and

obtain c(*).
Step 3) If |Jon (€M) — Jap (cB=D)| < p, then stop; Else
let k =k + 1, go to Step 1.

IV. COMPUTER SIMULATIONS

In order to confirm the effectiveness of the proposed algo-
rithm, computer simulations are performed. In the simulations,
a six-element uniform linear array with half-wavelength
spacing is employed. The array is not calibrated, i.e., the
complex gains of the array elements are perturbed from their
nominal value. Herein, we assume that the perturbation gains
are time-invariant, whereas their exact values are unknown.
The respective nominal values of the amplitude and phase of
the complex gains are set to 1 (0 dB) and 0 rad. We choose the
perturbation gain from the samples of uniformly distributed
random numbers, where the standard deviation of the amplitude
is assumed as 0.1, and that of the phase is assumed as 0.1 rad.
As a result, the perturbation gain vector used in the simulations
is randomly generated, and the set of the samples

{1.0236 — 0.1233j,0.8636 — 0.0075], 1.1470 + 0.1185j
1.0491 — 0.0626], 0.8854 — 0.1041j, 1.1536 + 0.1937j}

is selected.

We consider the scenario where three signal sources illuminate
the antenna array from the far field. All the source signals are
quadrature phase shift keying signals. The strongest source is
assumed to be the desired one, which is located at 12.3° from the
broadside of the antenna array (the broadside here is considered
as the reference direction-of-arrival signals). The power of the
second source is assumed to be 0.5 dB lower than that of the
desired signal, and its incident angle is 16.5° from the broadside.
The power of the third source is 2 dB lower than that of the desired
signal, and its incident angle is —1.7° from the broadside.

As mentioned in Sections II and III, different initial weight
vectors may lead to different convergent results. For compar-
ison, the following two initial weight vectors are considered.
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Fig. 1. Output SINR of the desired source.

I1)

c® = 3(9)|9=12.3°
— |:e—j(27r/A)(5/2)d sin(f) 76—_7'(277/)\)(3/2)(1 sin(f)

. 7ej(27r/k)(3/2)d sin(@)7 ej(27r/A)(5/2)d sin(G):| T

6=12.3°

12) <@ =71,0,...,0".

It is obvious that under 11, a beam toward the desired source
is formed, whereas the array response (pattern) under 12 is om-
nidirectional. Although better beamformer performance is ex-
pected when 11 is used, nevertheless, 12 is often used in practice
because the a priori information of the spatial signature of the
desired source is usually not available.

In Fig. 1(a) and (b), we depict the output SINR versus the
input SNR under the initial weight vectors I1 and 12, respec-
tively. The number of the samples employed is 5000, and p =
1 x 10~ is used. In these figures, “BB” stands for the proposed
blind algorithm and “MMSE” stands for the nonblind MMSE
optimal beamformer. It is evident from these figures that when
the input SNR is not too low (input SNR > —5 dB), the higher
the order of the cumulants used, the closer the performance of
the blind algorithm approaches that of the MMSE beamformer.
It is also seen that the results under I1 are slightly better than
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Fig. 2. Comparison of the convergence performance.

that under 12. When the input SNR is high, on the other hand,
all the results of the blind algorithm with both initial weight vec-
tors I1 and I2 and different cumulant orders of (2,2), (3,3), and
(4,4) approach that of the MMSE beamformer with negligible
difference.

Fig. 2(a) and (b) show the convergence performance of the
blind algorithm under I1 and 12, respectively, where the input
SNR is 10 dB, and 5000 data samples are employed. From these
figures, we see that the convergence rates under both the two
initial weight vectors are basically the same.

To investigate the effects of the number of the array signal
samples on the performance of the proposed algorithm, Fig. 3
shows the output SINR versus the number of the array data sam-
ples, where the input SNR is fixed to 10 dB. It is seen that the
longer the samples, the more closely the blind algorithm under
both I1 and I2 will converge to the optimum result. However,
because the power of the second source signal is close to that
of the desired source signal, it would be possible for the algo-
rithm to mistakenly converge to the result corresponding to the
second source when 12 is employed. Fig. 3(c) shows the phe-
nomenon for the case of the sample size equal to 1000. This is
natural because all blind algorithms are blind to the order of all
the corresponding signals, provided that the a priori informa-
tion is available to distinguish them.

Finally, we show the beam patterns in Fig. 4 with both initial
conditions, where 5000 samples are used, and the input SNR
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is 10 dB. It is seen that the convergent beam patterns corre-
sponding to both initial conditions are very close to that of the
optimal nonblind MMSE beamformer.

As a conclusion of the simulation results depicted in
Figs. 1-4, we see that the proposed beamforming algorithm is
robust and effective. The simulation results demonstrated that
the cumulant orders, i.e., (2, 2), (3, 3), and (4, 4) are applicable,
and using the order (2, 2) leads to lower computations. Al-
though using higher order comulants is helpful to improve the
convergence rate, the algorithm will be more sensitive to the
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Fig. 4. Convergent patterns.

accuracy of cumulant estimation when a higher order is used.
Regarding the initial array patterns, the simulation results show
that the algorithm under the omnidirectional pattern by 12 is
robust in most situations, even when there are small differences
in power between the desired source signal and the undesired
source signals.

V. CONCLUSIONS

In this paper, we have presented the super-exponential blind
adaptive beamforming algorithm, which is an extension from
the super-exponential blind deconvolution theory and the in-
verse filter criteria. This extension theoretically considers the
presence of noise such that the proposed beamforming algo-
rithm is applicable, regardless of whether the number of inde-
pendent sources exceeds the system degrees of freedom or not.
We have also proved two special conditions under which the
performance of the proposed blind algorithm approaches that
of the optimal nonblind MMSE beamformer. Simulation results
have shown that the proposed algorithm is effective and robust,
even when the initial weight vector corresponding to the om-
nidirectional pattern is used. It should be noted that using the
higher order cumulants increases the computational complexity
and the sensitivity to the estimation accuracy of the cumulants
and decreases the robustness to the model assumptions.
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APPENDIX A
PROOF OF THEOREM 1
A. Proof
When p + ¢ > 2, (20) can be expressed as
X0

k—1
_ o l
</6"0 )1/(p+q 1)<M>(MYVJ(H)ﬁPnﬂ¢YZ(H)

=0
Bl B [TFTT €

PN 18, | 2/(ptg1)
1+ > ( El > <
=1

#ng

an

2 k
Iazll,@zll/(”"*l) (p+a)
1/(p+q—1)

|an0 Bng

(A1)
Under the condition (22), that is
|an| |ﬂn|1/(z7+q—1)

| e < b=l PN ng
no no

where 3, = |ﬂn| el >

. k
nominator of | sy,

(A2)

Bn| < co,m=1,...,P+ N, and the
super-exponentially ((p + q)*) converges to

zero as k — oo, i.e., as in (A3) and (A4), shown at the bottom
of the page. Therefore, as k — oo

’sg“)‘—>0,n:1,...,P+N,n7én0 (A5)

]sg{?\ Y (A6)

Thus, the theorem has been proved. O
APPENDIX B

PROOF OF THEOREM 2
A. Proof

By substituting (27) and (25) into (23) and by (2), the gain
vector at the iteration k can be simplified as

(k)

51
W= || = e H (RY) T Y
S8
P+N
. [AT(©)(RT)'A*(©) o0,AT(0) (RT)
= T B _

8 (Sgk—m)” (sgk—m*)q
X : (BI)

S (S50 (8207)
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where

Alk=1) \/(d(k—l))H (RT)_l dk-1)
= |a" @En) TEet| @2
Because the cumulants of Gaussian noises are equal to zeros
whenp+ g > 2 and P < N, (B1) thus becomes
A7(©) (RT)™' A%(0)
0w (RT) ™ A%(0)
E-D\? [ (k—1)x\7
o () ()
X : . (B3)
SN [ (k—1)x\?
or (s V) (s2)
With the use of Sherman—Morrison—Woodbury formula [25],
under assumption A3, the inversion of RT can be written as

(RT)™ = (R7(©)AT(O)+02T)

= 1A% <I+%) A7(0)
AT A * -1
i (ROA0)
AT * -1
X (1+ (A (GU)ZA (9)) ) AT(©). (B4
Therefore _ _
AT(E)(RT) 'A10) = ALUAO)
” T A * -1
L snoroEEA19)

AT wem— 1\ !
[T+ (A (?QA (®)> ) AT(0)A%(0)
_ <I+ <AT(@;)§*(®)>_ ) (B5)
Similarly B
O (RT) _1A*(®) — A;(G)
AT * -1\ 1
~Lxe (1+ (A ©A (9)) )
X <W)_ AT(©)A*(0)
= A*(0) <I+ AT(0)A *(®)>_1 (B6)
O o2

|| |ﬂn|1/(11+qf1)

[Bna [\ /070
()

(p+a)*
lan, |18 |1/(P+q—1)> —0
ng ng
(A3)

gy 2/(r+a-1 _1y 20t
- Z <|/8n0|> /(p+q—1) < |az||ﬂz|l/(p+q 1) ) k—_))ool'
— \ |4l |ang | |G |/ @+a=D)

I#ng

(A4)
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When o} /02, — +00,i=1,..., P, (B5) and (B6) approach

the following results:

AT(©) (RT) 'A% (0) >1 (B7)
0w (RT) T A%(©) =0 (BS)
and substituting (B7) and (B8) into (B3), we have
1\ P 1w\ 7
i () (47)
1 .
® = — : (B9)
(k—1) - e
S () ()
0
where
p 2
A = ‘ﬂn s=D)F (=)« ,,‘ . (BIO)
3 [ (4£°0)” (7)

Because (B9) actually corresponds to a special case of (18) con-
sidered in Theorem 1, applying the conclusion of Theorem 1
proves Theorem 2.

APPENDIX C
PROOF OF THEOREM 3

A. Proof

Similar to the proof of Theorem 2, when P < N and the asso-
ciated noises are Gaussian distributed, we rewrite the iterative
gain vector of (B3) as (C1), shown at the bottom of the page.
Define

AL(G)) = [O'bla(al),. .. ,O'biila(ei_l)7 mea(a,;_,_l), -3 0bp a(Hp)]
(C2)
R; =A(0)AH(©)+¢iL (C3)
The condition that aT (6,,)a*(6,,,) = 0,n = 1,...,P,n # ng
implies

AT (©)a*(0,,) = 0. (C4)

Because of (6), R can be expressed as
R =Ry, + 03, a(0n,) (00,,a(00,))" . (C5)

According to the Sherman—Morrison—Woodbury formula [25],

the inversion of R can be denoted as
_ _ R” ) o 0,,)op. a'(b,
Ry () B o0 ), 2O

1+ 07 aT(0n,) (RT,)

-1
J(Rr,)
a*(n,)

(Co)
Similarly, by employing the Sherman—Morrison—Woodbury for-
mula to (RZ )" and with (C4), we obtain
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Therefore
1 a*(gng)
RT) " a*(0,,) = » .
(RY) ™ & () oo,

Substituting (C8) into (C1) and by (C4), we have (C9), shown
at the bottom of the next page, where

Ak=1)

(‘NO/BTLO ( o 1)) (37(1,3_1)*)“’
P P
5[ s s

(9 )/81( (k- 1)) (Ek 1)*)‘1

1=1|i=1
I#ng|i#ng
o\ 1/2
Zawdb (RT) ((k 1)) (gk—n*)q
(C10)
Ho
“a(eﬂo)Hzﬂgno
= % <1 (C11)
||a(9”0)|| bno
0.2
According to (C9), the following inequalities stand:
5
P
+
<X Z‘Ub apal( RT) a(fi) o
s
n=1,...,P,n#ng (C12a)
35;:3
p-‘rq
A(k 5510 B |3 (C12b)
‘SPH‘
S (k=D [ (k=1)x\?
5 k—1 k—1)=
= s (= (RF)a000) () (57
=1
l=1,...,N. (C12c)

It can be seen that sgf_)i_l, | = , N depends on s( )
n = 1,...,P, whereas we are only concerned with the

iterative behav1or of s( ) = 1,...,P. Let ‘37(22)

max{ ) P,n;éno},i.e.,forn:1,...,P

S l,m=1,...,

-1 * 1 *
(R7,) @ (bng) = —a"(0ny)- (C7) \sg»\ < ‘55}33 . (C13)
2aT(6)) (RT) " a*(6y) onon,aT(01) (RT) "ar(0p)] 1y (s (s’
() — (i . S L “ :
A ov.o,a’ (0p) (RT) ™ a*(01) ppal (0p) (RT) " a*(fp) 5 ( <k_1>)3”( <k_1>*)q
O, O (RT)i1 a*(0) Obp O (RT)71 a*(fp) P\%p °p

(CI)
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By (C13), (C12a) and (C12b), the following relations can be

T a (1)
easily inferred: A(l) Z‘ab O, al R ‘ 1Bi| |s;
s
1 ~ [~ A
Yas 1 < ——0n <5T 553) )
<o p ey s o s (B 2
L et .0 (p+9)
z;éno < A(l)ﬂ e ,n=1,..., P,n#ngy (C18a)
n=1,...,P,n#ng (Cl4a)
(1) @] — ﬂp+q+1 ) (r+a)* - §P+‘I+1’5 (r1a)?
Sno no A(l) no = Ao mo :
1 p+q (C18b)
= X Ho1Bnol |5 (C14b)
A0 Repeatedly, we have the iterative equations
_ <|,3n0|2 7(3]) (p+4a) ng)
2 5((p+q)k—1 /(p+a=1) | 4(0) (P+o)"
P | P Ak— 1) no
T\~ (0) (0)+\* (r+a)*
3| Lennal(e) (RY) a0 )6 (s12)" (+7) L nneen [y 1o
1_710 ’7?"0 )
P 2 1/2 Sn
™ _xpya [0 0=\ . - (r+a)*
+ ;owobf (R") "a (01)/31( ) ( ) ) . NG l)ﬂ((:ﬂ+q) —~1)/(p+a—1) 523
_ n_l .., P+ N,n#ng (C19b)
Define (CI5) A(k_l)
3 ! > : 2(p+a)*
Bn = Z ‘UbnabiaT(H )(RT) a*(0:)] 6 — <l83l;<((p+q)k_1)/(p+q—l) ‘sg?‘ p+q
= ,
n=1,...,P,n #ng (Cl6a) P | P
3 / / (k=1) (k—1)x\?
Bro = 110 |Bn, | (C16b) +Z ZﬂbﬂbiaT(f?z)(RT) a’(f )ﬂz( ) ( )
~ ~ I=1]i=1
Bry =max{Ban=1,...., P,n#nol 1<ro< P (Clée)  1nali7nn
2\ 1/2
SO we have , .
) 1 ~ Niax Zawob (RT) "a (6, )ﬂz((k 1)) (sl(kfl)*)
Sn (O)ﬂn <W/8r0 Simg 7n:1,...,P.
A
(C17) (C19¢)
r P VIR
5 onona (60) (RT) ™ a6 (5170) (577
img
p :
5 o1y una (1) (R) ™ a0 ()" (s’
i=1
i#ng
P _1)x\ ¢
1 1405n, (SEJE 1)) (SEJE 2 )
s(F) =AGTD | & . B\ [ (ho1ye)? (C9)
; b,y 10,8 (Onpi1) (RT) " a*(6,)8; (si ) (si )
et
P :
oo al (0p) (RT L 0,)5; g1 p gk D) 1
P 7 1 1
o
P
;a o, (RT)_la*(Hi)ﬂi (sgk_n)l’ (sgk_n*)q
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Therefore

~ \ V(pt+a-1) §1/<p+q—1) KO (r+a)*
()| < 18"0 To mg
syl < | =2 Tl

ﬂro /Bno ’sn(]’

n=1,...,P,n#%ng. (C20)

When B}lé(pﬂ*l) Js&?}‘ > B}({(p“*”s&?g, as k — oo, the

following term will super-exponentially converges to zero:
S/ G+a-1) [ 0]\ @0
i oo "2 C21)
O B —
21/(p+q—1) | (0) ’ (
Jé; s
ng ng
Because of (C8), (C21) implies that
s;“‘ki»”o,n:l,...,P,n;éno (C22a)
— 00 1
s ks ) (C22b)
1+ —
laton)lI*o5

2

GW

Therefore, from (C9), we have

g(k) F2dee Tbo, HT (RT)_1 a*(0,,)
HT a* (0,10)0',,710
= T= . (C23)
[0 o3,
1+ —F—

It can be easily seen from (C23) that as k increases, s(*) ap-
proaches the gain vector of the optimal nonblind MMSE beam-
former up to a complex rotating phase factor. Thus, Theorem 3
has been proved. O

APPENDIX D
PROOF OF THEOREM 4

A. Proof

When the super-exponential iterative algorithm converges,
(35a)—(35c¢) can be written as

(R7)"'d
c = (Dla)
d” (RT) 'd
d =cum (z(t) : m; 2" (¢t) : m — 1;x*(¢t)) (DI1b)
2(t) =cTx(t). (Dlc)
Substituting (D1a) into (59), we have
8J2m(c) o
E2m8E) — x| sen (Conm {2(00})
xcum{z(t) :m, 2*(t) :m—1,x*(t)} — Md (D2)

\/dFRT)™d
where ¢’ Rc* = 1 is used. Based on the linearity property of
the cumulants [7] and with (D1b) and (D1c)

Conm {2(t)} =ceum {2(t) : m, 2*(t) : m — 1, x*(t)}

a# (RT) 'd

=cfld = >0 (D3)

d” (RT)"'d
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which means

sgn (Cpym {2(1)}) = +1. (D4)
Therefore
0Jam
Jam(€) _ (D5)
Jdc
and Theorem 4 has been proved. O
APPENDIX E

CUMULANTS cum(z(t) : m; z2*(t) : m) FOR m = 2,3, 4

Because analytical signals (complex envelope) in communi-
cations, radar, etc., are often of symmetrical distributions with
odd order cumulants equal to zero, the following are formulae
for computing 2mth-order cumulants of z(¢) for m = 2, 3, and
4 as defined in [7]:

cum (z(t) : 2;2"(¢) : 2)
(Ela)

cum (z(t) : 3;2"(¢) : 3)

=E(j=(1)°)-9E (| (1)) B (=) +12(E (|z(t)|2))3
(E2a)

(E3b)
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