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A Signal Subspace-Based Subband Approach
to Space-Time Adaptive Processing for Mobile
Communications

Kehu Yang Member, IEEEYimin Zhang Member, IEEEand Yoshihiko Mizuguchi

Abstract—In this paper, we present a novel space-time signal is usually composed of an antenna array and a set of FIR
subspace-based subband approach to space-time adaptive pro-ilters after the array elements to perform joint spatial and
cessing (STAP) that has been shown to be an effective method toyeyh6ra| adaptive processing. Despite its excellent steady-state

suppress both the intersymbol interference (I1SI) and the cochannel .
interference (CCI) in mobile communications. We first study the performance, a STAP system faces the problems of a high

performance of STAP and make clear the conditions of perfect cOmputational burden and a low convergence rate. These prob-
processing (i.e., perfect equalization of the desired user signal lems become particularly serious when it operates in the severe
and perfect suppression of CCl signals). Based on the polyphasefading environments where longer FIR filters are needed. For

representation and the supspace analysis of the signal channels,ﬁxamme, when LMS-type algorithms are used, the convergence
we propose a space-time signal subspace-based subband approac t il b t v sl d sub { |
to STAP, namely, the subband STAP, which highly improves the '&l€ Wil become exiremely slow, and subsequently, a long

convergence rate without loss of the steady-state performance. training sequence will be required. Furthermore, when the
Simulation results show its effectiveness under the procedure of batch processing-based algorithms [e.g., the sample matrix

signal subspace estimation and detection. inversion (SMI) method [14]] are employed, the long training

Index Terms—Mobile communications, multichannel modeling, Seguence required to estimate the correlation vector and the
space-time adaptive processing (STAP), space-time signal sub-computation burden of the sample matrix inversion will leave
space, subspace decomposition, subband filtering. real-time adaptation difficult or even impossible.

To ease these problems of the STAP, the authors have
proposed the subband adaptive array scheme [24], [26], which,
in essence, is an equivalent space-frequency domain approach
I T is known that in land mobile communications, the trangs STAP. The subband signal processing converts a wideband

mitting signals suffer from reflection and scattering by SUksignal processing problem into a set of parallel narrowband
roundings, and the receiving signals suffer from fading [1], [ZJroplems; hence, the equivalent time delay spread between
by multipath propagation. As the mobile communications afgytipath rays at each subband becomes much smaller. As a
developing toward the higher speed digital networks [7], the ggsult, the user signals are approximately equalized, and the
sociated communication channels become severely freque@@)hputational burden at each subband is greatly reduced.
selective, which makes the intersymbol interference (I1SI) highly By contrast, the applications of subband filtering in the tem-
pronounced. Additionally, due to frequency reuse and multius‘%rm domain, such as acoustic echo canceling (AEC) [19]-[21],
access, cochannel user interference (CCI) signals or multiplge demonstrated that decorrelating received signals by sub-
user access interference (MUAI) signals are present againstfa@q decomposition improves the convergence rate of LMS al-
desired user signal. Therefore, the system capacity and the c@ivithm under weighted criteria.
munication quality are greatly affected by both the ISI and CCl |, STAP cases, however, the signals received at different array
(or MUAI) problems. elements are highly correlated in both space and time. To im-

Adaptive arrays, particularly under space-time adaptiyRove the convergence rate of LMS-type algorithms for the un-
processing (STAP), provide effective ways to suppress both #&rying STAP systems, the decorrelation of the data with the
ISI and the CCl, subsequently improving the system capacif¥e of conventional time-domain filter banks is not efficient.
and the communication quality [9]-[13]. A STAP systeMrnerefore, decorrelating the signals in the joint spatial and tem-

poral domain simultaneously becomes an important issue.
In the last two decades, signal subspace-based processing has

been proposed and applied to various fields [16]. By taking ad-
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Such subspace projection can be realized by employing subA1)
band filtering, yielding the space-time signal subspace-based
subband STAP (SSTAP).

The contributions of this paper are twofold. First, some ad-
ditional new results of STAP are presented, in which the condi-
tions of perfect processing (i.e., perfect equalization of the de-
sired user signal and perfect suppression of CCl signals) are de-
rived, and the effect of the delay of the reference signal on theA2)
output performance is investigated. Second, a space-time signal
subspace-based subband approach to STAP is proposed, where
the polyphase representation is employed, and the convergence
rate is highly improved without loss of the steady-state perfor-
mance.

This paper is organized as follows. In Section Il, after intro-
ducing the signal model, we derive the conditions of perfect
processing and the residual error power of STAP. Section IlI
establishes the relationship between the space-time signal sutA4)
space and STAP, as well as the detection of signals’ components.

In Section IV, a space-time signal subspace-based subband ap-
proach to STAP is proposed, and the convergence improvement
of LMS algorithm under the proposed approach is confirmed by

A3)

theoretical analysis. Several simulation results are presented iBenote A as

Section V. Section VI concludes the paper.

Il. PERFORMANCEANALYSIS OF STAP
A. Signal Model

Consider a base station using an antenna array ¢fv >
1) elements withP (P > 1) users. The signal of the desired
user is denoted as (¢), whereas signals from other users are
denoted as,(t), p =2, ..., P. The array output vecta«(¢) is
expressed as
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The user signals are wide-sense cyclostationary when
they are sampled at fractionally spaced symbol cycle,
and are wide-sense stationary when they are sampled
atthe symbol rate. A wide-sense cyclostationary signal
vector is defined byE[x(t;)x" (t2)] = E[x(t; +
TYx (t,+1)] [5], [15], where(-) denotes conjugate
transpose, and’[-] denotes statistical expectation.

The information symbols,(m), p = 1,...,P are
independent and identically distributed (i.i.d.) with
E{5,(m)s;(m)} = 1andE{5,(m)5;(m — k)} =0

for Yk # 0 and uncorrelated with the channel noise
vector, wherd-)* denotes complex conjugation.

All channels{h,(t),p = 1,..., P} are linearly time-
invariant, and each of them is of a finite duration within
[0, D,/ T], whereD, is called the channel order of the
pth user.

The noise vector is zero-mean and temporally and spa-
tially white with
E{n(t)n" ()} =0, E{n(t)n"(t)} =1
where()T" denotes transpose.

the sampling cycle, and Iét= T/A (J > 1)

be the factor of oversampling. Sampliagt) att = ¢A + nT,
n € (—oo,+00), (1) becomes

x(iA 4+ nT)

r D,
5p(n — d)hy(iA +dT) +n(iA +nT)

p=1d=0

LT—1. (4)

With the exploitation of the cyclostationarity of user signals

L, [15], [16], [18] described in Assumption Al, the scheme of the

x(t) =D al]) s, (t—7) +n(t)

e
= §=) 2 Slmiy(t—mT) +a() )
where where
sp(t) = if sp(m)pp(t = mT) @)
b, () = Z a(f)&p(t—1f). @3)

=1

The following notations are used in (1)—(3):

{00, 1,&'} Angle-of-arrival (AOA), time delay, and prop-
agation loss corresponding to thil path of
the pth user.

a(f Array steering vector corresponding&o

5,(m) mth information symbol of theth user.

Pp(t) Pulse shaping function of theh user.

L, Total number of multipath rays of theh user.

T Symbol duration.

n(t) Array noise vector.

We make the following assumptions.

extended multichannel model of fractionally spaced STAP, as
illustrated in Fig. 1, can be easily established as

x(m) =33 sn- dbyd)+um) 6
x(n) = :
Lx[nT — (J — 1)A]
- hldr] -
b[dT — Al
h(d) = |
Lh[dT — (J - 1)A]
n(n) = :
Ln[nT — (J — 1)A]

For eachn, the dimension ok(n) is N = N.J, which is called
the number of the extended channél$e limit of the number
of the extended channels by oversampling is discussed in [8].
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from other
elements

For the consecutive samples during the periodbsymbols, ""h array element
we form the following vectors:

r x(n
(n) 5(71(—)1) STAP output
X(n) = . .
: Symbol rate
_K(TL - M+ 1) Training
_ Sequence
[ *Zp(”) ) - L
§p n—1 Wy M P Performance
Sp(n) = . [i?l - v DR Criterion
[5,(n— M — D, +1) ey L
i Q(”) Fig. 1. Scheme of the fractionally spaced STAP.
n(n—1)
N = . . . . .
() : is the space-time correlation matrix of the signal vector, and
Ln(n— M +1)

r(v) = E[57(n —v)X(n)] (14)
Defining the following Sylvester convolution matrix of ugein

terms ofthe(Dp+1)NJ length impulse response of its channels the correlation vector between the training signal and the
[h;(()),h;(l),--- ( ,)]7, as shown in (6) at the bottom of signal vector. From (6), (7), (14), and A2, it is evident thet)

the page. Then, (5) can be extended to is the (v + 1)th column of the signature matrM(M) when

0 S v S D1 + M —1.

H(M)S N 7 From (;0)_—(14), the r.esidual error power of STAP under the
Z )+ N ). 0 MMSE criterion is obtained as
Furthermore, let; 1,w; 5, ..., w; a represent thé/ weights ormsp(v) = El51(n — v) — y(n))?
at theith extended channel, and denote = E|51(n — v)|* = WihuspRx Winise
W é [wll,rnv e 7wNJ,rn]T7 m = 17 27 vy M (8) - E|§1(7’L)|2 N rH(U)R)_(lr(U) (15)
w2 [wi,... ,E}ff]T. (9) where the Hermitian property @t x is used.
o The residual error poweri,sp(v) is affected by several
Then, the output of the STAP is given by parameters, such asand M, etc. In Theorem 1, we prove the
M relationship between? ,;sr(v) andv, and in Theorem 2, we
= Z wlx(n—m+1)=W'X(n). (10) investigate the selection dff and other conditions for perfect
m=1 processing of a STAP system.
Theorem 1: For a givenw, the residual error power is given
B. Residual Error Power as
Under the minimum mean square error (MMSE) criterion, the o2 o) = Elsi ()2 — r R.r 16
optimum weights of the STAP are solved from ase(v) [s1(n)f" = x5’ () Rearo () (16)
where
min E|5,(n — v) —y(n)|? (11)
v PRUPT = [Ba C (17)
and are given by the well-known Wiener—Hopf equation Ry P =1 o B
Winuse = Ry'r(v) (12) P,r(v) = {ro(()v)} (18)

wheres; (n) is the training sequence of the desired user signal

v > 0is a delay of the training signal required for the realizatiofherero(v) is a nonzero element vector composedigfm),
of causal filtering m =0,...,D;, R, isasquare matrix with the same dimension

of ro(v), andP,, is a permutation matrix [6] that depends on the

Rx = E[X(n)X(n)] (13) zero-element structure ofv), which is denoted as (19), shown
h,(0) h,(Dp) 0 0
0 h (0 . h (D 0 . 0
moo— | 0 B B0 | (6)

0 0 h,(0) - h,(Dy) MNJx(M+D,)
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at the bottom of the page, whefeandI,,, denote the identity Proof: The first condition is common for single user cases
matrices of dimensiod/ N.J andm, respectively. and the proofis givenin[16] and [17]. The second condition can
Proof: Theorem 1 can be proved directly from (15), thalbe proved by counterevidence. Denoting
is
T
) S(n) = [S{(n),...,Sh(n)] (24)
onmsE(Y)
= Elsi(n)]* — v (v)R3'r(v) in the noise-free case, (7) can be written as
= Elsi(n)]* - v (v)PIP,RYPIP, (v
v v _ (]\l)
= Blss(n)]” — (Por(v))" (P.R5PT) (P,r(v)) *ln) = HES(n) (25)
= Els1(n)|]* — rg (v)Raro(v) (20)  and the output of STAP is given by
u y(n) = WEX(n) = WITHM S(n), (26)

It is clear from Theorem 1 that only a part Bfy, i.e., R 4,
contributes to the residual error power of STAP. The dimefrgfoct processing implies that
sion of R 4 depends on the length of nonzero elementgof.r
This implies that plays an important role in the output of the
residual error power and, therefore, should be properly deter-
mined based on the channel characteristics. For example, in :
cases ot = 0 orv = D; + M — 1, only one weight is ac- 6*?%quwalently
tive at each extended channel, and the total degrees-of-freedom
(DOF’s) of the STAP system is as little &/ — 1. Therefore, 1
in those two cases, the output performances will degrade. WTHM = [0],,,1,07, ] (28)

From (6), we understand that in the case ef D,, the vector
r(v) has longest nonzero length. That is to say, when the chanwélere M, = Z;};l(Dp +M)-v-1,0<v <D +M-1.

y(n)zgl(n—v), 0<v<M+D -1 (27)

s1(n—v)

length is estimated a¥/;, we can choose as I the columns ofH™ are not linearly independent to the
other columns oH® | for example, theyth column ongM)
v=M -1 (21)  can be expressed as a linear combination of the other columns

o _ o of H™) | then (28) cannot stand fer= v, — 1. That is to say,
The_estlmauon of channel lengtly; is described in the next \yhen the columns ngM) are not linearly independent to the
section. other columns oH™), the conditions of the perfect processing

cannot be always satisfied for< v < D; + M — 1.
C. Conditions of Perfect Processing To prove the third condition, we compare the number of
Theorem 2:In the noise-free case, the perfect processingjle weights with the number of equations. It is seen from (28)
i.e., perfect equalization of the desired user and perfect suppri&at there arell; = Ele(Dp + M) equations, whereas
sion of undesired user signals, can be realized by STAP provide@ number of the independent equations is specified by

the following. column rankH*D}. The condition for (28) to have a unique
1) H) is full column rank. solution is that the number of the adjustable weights must
! (M) be greater than or equal to the number of the independent

2) The columns ofH;™’ are linearly independent to the

other columns oEL™, where equations, which goes to (23). |

It is noteworthy that the presence of common roots in the

M _ [H_SLM) ng)} ' (22) che_mne_ls (_)f the undgsired users does _not bring to STAP z_‘;my
v difficulties in performing perfect processing. Common roots in
the channels of the undesired signals imply that the number of
3) DOFs required to suppress these undesired signals is reduced.
That is to say, common roots in the channels of the undesired
MNJ > column fank{H(M)} : (23)  users do ease the STAP processing.
I, UE[O,...,Dl]
0 Insw—py) 0
pT — Ins(Di+1) 0 0 , veE[D1+1,...,M—1] (19)
v 0 0 Insv—1-v)
0 Ivsw-py | ve[M—=1,...,M+D; 1]

Ins(vaDy ) 0
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Corollary 1: If H® s full column rank, then B. Space-Time Signal Subspace and STAP
rank{H™)} = My, and the condition of perfect pro-

, As we discussed in Section #(v) is the(v + 1)th column
cessing becomes

of HgM), which means that(v) belongs to the signal subspace.
P Using the relationship

M>— D;. (29)
P Z Ry =8y s + Gy tGH (35)

we have
I1l. SUBSPACEANALYSIS OF STAP

* _ —1 _ —-1qH
In the previous section, the conditions of perfect processing Wise = R r(v) = 85787 r(v) (36)

of a STAP system are derived, which specify the lower bouRghich shows that the optimum weight vector is a linear combi-
of the number of taps in noise-free cases. Since such a boypgian, of only the eigenvectors that span the signal subspace. In
depends on the length of the channels, itis thus necessary togfar words, the optimum weight vector belongs to the signal
timate the channel length. In this section, we consider the e%tﬁ'bspace.

mation from the point of view of the space-time signal subspace\ys know that the residual error power of STAP is defined by
of the associated space-time correlation matrix and establish #tilg) as

relationship between the space-time signal subspace and STAP.

.. Ul%ﬂ\qu(U) = E|5 (”)|2 - WﬁhrISERwalhrISE- (37)
A. Subspace Decomposition

Under Assumptions A2—A4, the space-time correlation m&ubstituting (35) and (36) into (37), we have
trix defined by (13) can be rewritten as
Y () OFovse(®) = Els () — 7 (1)SS S e().  (38)

Ry = E[X(n)X"
X X ()X ()] The above equation clearly shows that only the components be-

r
_ ZH(JW)R HMH L Ry longing to the signal subspace contribute to the residual error
r v power, which implies that using the projection of the received

r=1 . . . .
(M) (MYH ) signal vector onto the signal subspace instead of the received
=H"'RsH + Ry (30) signal vector itself does not degrade the output performance.
where This observation result constitutes the basis of the space-time
signal subspace-based approach in the paper, which enables us
R,=FE [Sp(n)SIf’(n)] =Tyyp, (31) to reduce the complexity of STAP without reducing the steady-
RS _ Dlag{Rp,p _ 17 o ,P} _ IJWT (32) state performance.
and C. Detection of Signals’ Components in Practice
Ry = E[N(n)N(n)] = oL (33)

In this subsection, we investigate the channel length by de-
Equation (30) shows that the column spaceH#) is the tecting the dimension of the signal subspace. The problem of the

space-time signal subspace. By using eigendecomposition,?l‘fg'al detection based on certam.theorenc mfo_rmanon criteria
space-time correlation matrR x can be expressed as has been weII.ex'plored in array signal processing. The Akglke
information criterion (AIC) is one of the commonly used cri-

Ry = S%.8% + Gx,GH (34) teria that offers the estimated number of signals with the use of
all the eigenvalues [25]. Denotirigas an estimate of the number
whered; > Xy > -+ > Ay, > Aypp1 = - = Aunvg =02 of signals estimated from the correlation matfix, the AIC is
are the eigenvalues &, the columns o8 = [Sy,...,Sy,,]  given by
are the orthonormal eigenvectors associated with eigenvalues )
A1, A2, .., )‘1\417* the columns ofG = [Gl, e, GJWNJ_]WD] HAEQrJl )\ZMNT
are the orthonormal eigenvectors associated with eigenvalued!C (k) = —2(MNJ — k)N log = 3
)\J\4D+17 (RS )‘J\lNJy Es = dlag{)‘mL = 17 v 7MD}' and MNJ=k Zi:k—i—l ‘
Y = diag{\;,i =1+ Mp,...,MNJ}.Itis seen thal/, is +2k2MNJ - k) (39)

the rank ofR x in the absence of noise. In the cases wikgf¥) _ _

is of full column rank, themZ,, = My = E}le(M + D,), whereNt is the number of the s_amples used to estimate the
the columns ofS span the space-time signal subspace, af@ace-time correlation matrit x, i.e.,

the columns ofG span the space-time noise subspace. We
assume in the sequel th&*) is of full column rank and

that the space-time signal subspace can be estimated by the
eigendecomposition of the estimated space-time correlation
matrix. In the following, the space-time signal subspace Ehe estimation of the dimension of the signal subspﬁiﬁ@
abbreviated as the signal subspace, and the space-time nigigketermined as the value bfe {0,1,...,MNJ — 1} that
subspace is abbreviated as the noise subspace. minimizes the AIC. Based on the estimatek,, we obtain the

n 1 Ny .
Rx = I X(n)X"(n). (40)
t =1

n=
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lower bound for the required number of the taps of STAP aghereX < M, andT;;,:=1,...,.M,j=1,..., K arethe
M, = |Mp/NJ|, where|z| denotes the smallest integer nosubmatrices of". Each submatrix is of dimensiaNJ x NJ.

less thane. We define a new set of weights under the transformed scheme
It is noted that the estimation of the space-time correlatid,(z),¢ = 1,..., K by

matrix Rx and its subspaces does not require amyriori in-

formation of the signals and can be performed during the period Wi (2F) F(2F)

other than that of the training sequence being present. Moreover, . )
the subspace decomposition and detection can be performed by : =T x : ) (46)
the method of fast subspace decomposition [23] to improve the W (2") Fr(z")
computation speed.
In the above transform, wheR = M, the transform is full
IV. SIGNAL SUBSPACEBASED SUBBAND APPROACH rank, and the STAP filtering after the transform of (46) keeps the
same performance. On the other handy ikc M, the transform

) _ is rank reduced, and the performance of the STAP filter after the
The » transform of the weight vectors of the STAP filte,  transform may be inferior to that of the original STAP.

A. Polyphase Representation and Subband Approach

l=1,...,M is expressed as However, the reduced-rank transform can be performed
M1 without performance loss by using the signal subspace matrix

W) — 1 ' 41) 8 the transformat_|on matrl_x. As shown by the results of

(2) Z ? (41) Section IlI, the optimum weight vector of STAP belongs to

=0 the signal subspace, and only the components belonging to

As an implementation method of STAP filtering, by using théhe signal subspace contribute to the output signal power of

generalized polyphase representation [4], [2](~) can be STAP. Therefore, using the signal subspace matrix as the re-

expressed by the following polyphase representation: duced-rank transformation matrix loses no signal components.

To summarize, such a transform based on the signal subspace
has threefold advantages.

1) A part of the computations is reduced because of the di-
mension reduction.
with 2) There is no performance loss.
3) The convergence rate is improved when LMS-type algo-
o rithms are used.
Wi(z) = Z 2 WLtk (43) These properties are very important to the practical implemen-
n=0 tations of STAP systems.
as its polyphase components, wheré; ., can be determined ~ Substituting (46) into (44), we have
by comparing (43) with (41). In (42) and (43)

M
W(z) =3 2 F W (") (42)
k=1

K-1

L>1 sparsity factor; K M
K number of the coefficients in each sparse subband Y(z)=> Y 2z OVFT(z")Tx(2)
filter (i.e., the order oW, (»%) is K — 1); j=1i=1
M > L transformation size, i.e., the length of the associ- K M
ated filterbank defined in the sequel. - Z F]T(ZL) Z Z—(i—l)Tfjf. x(z)
These parameters link with! by A = (K — 1)L + M. There- J=1 i=1
fore, by increasing the sparsity factbrand the transform size K
M, we can reducés, which is the order of the FIR filter at each _ F]T(z")G]T(z)g(z) (47)
subband. =
The STAP output can, therefore, be written as
M where
T —(k—1 T, L
Y(z) = Wi (a)x(z) = Yz~ FIWI G x(z)  (44) .
= G;i(z) = 2_27_(i_1)T* j=1 K
J\~) ~ ijo J=4...,8 (48)
wherex(z) andY (z) express the-transform ofk(n) andy(n), i=1

respectively.

In order to establish the relationship between STAP and ige a set of filters and are termed as the generalized space-time
subband approaches, we introduce the following full colunfiiterbank (GSTF), which is an extension of the conventional
rank transformation matrif: subband filterbank. Equation (47) shows that space-time

T T adaptive filtering can be equivalently realized via subband

1 1K processing by using space-time filterbanks. The different im-

T=1 -~ (45)  plementation schemes of (41), (42), (46), and (47) are plotted
Tayr - Tux in Fig. 2(a)—(d), respectively.
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X(n y) z-domaﬁn S_STAP output of signal subspace-based subband ap-

= :  vector signal
— : scalar signal

proach is given by

My

ZZ —(i— l)FT )SH ()

j=1l:¢=1
M, M
=D HED <Z z—@—l)sg) x(z).  (50)
j=1 i=1
In comparison with (47), we have
M )
Gj(z) =) = (7 Vsy (51)
=1
z) = Z Ca ST (52)
=0
x(n) and the equivalent number of the taps of each extended STAP
— > channel is(2 — 1) x L + M.
z! "§ & Equation (50) can be cast into
¥ §
N Y () =F ()%(2) (53)
=
I = where
{ -
o | EE y(n) Fy(z") <1 (2)
Py Fhy=| : |, ===
Fa, (1) M (z)
and
o x)(2) = GT(2)x(2).
6@ P R Here,x(z) is the input signal vector in the subband realization,
_’| p whereadF'(z) is the weight vector in the subband approach. In
2(2) Fy(@) the manner of temporal expression, (53) is expressed as
Z £ (n)x(n — IL) (54)
y(n
G
_.I K@ |->| K(Z) in which x(n) andf; are the inverse-transform ofx(z) and

F( ), respectively. From (49)—(54) and the definition6{n)

(d)
n (7), we have the following relation as
Fig. 2. Subband realization of STAP: (a) Space-time filter. (b) Polyphase

g\jl_;zgmentatlon of STAP. (c) Full colomn rank transformation. (d) Subband )_((n) — SHX(n). (55)

C.C Rat
B. Signal Subspace-Based Subband Approach onvergence Rate

_ _ _ In this subsection, the improvement of the convergence rate
Using the signal subspace matfhas the transformation ma- under (53) over the conventional STAP scheme is investigated.

trix T yields the signal subspace-based subband approachEmng the LMS algorithm, the weights of STAP in (10) are up-
derive the expression of the GST; (), we partitionS into  dated according to

submatrices as follows:

w,(n+1) =w,,(n) + pe’(n)x(n —m+1)
m=1,....M (56)
Siu - Sim,
S=[S1,82,. . Sal= | 1 (49) Where
Smi 0 Smm, e(n) = 51(n —v) —y(n) (57)

is the error signaly(n) is the STAP output defined in (10), and
whereS;;, ¢ = 1,...,M,andj = 1,..., M, are the subma- 1 is the common step size. The selection:ofill be discussed
trices of S, where each one is of dimensidn/ x NJ. In this in Section V. In the subband STAP, because the decorrelation is
analysis, we use two taps at each subband. Similar to (47), fe¥formed simultaneously in space and time by the space-time
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subband filtering, the LMS algorithm can be employed with thehereRx (L) = E[X(n)X(n — L)] andRx is defined in

different step size at each subband, i.e., (30). Under Assumptions A2 and A4
filn+1) = fi(n) + pde*(n)x(n —IL), 1=0,1 (58) Rx(L) = E[X(n) X" (n - L)]
r
wheree(n) has the same form as (57), whergés) is defined => HMR,(DHMH + Ry (L)
in (54), and the entries of the diagonal matdixrepresent the
different step sizes of the associated subbands. The reasonable = H(M)RS(L)H(M)H + Ry (L) (66)

choice of® is to select
in which
d=x1 (59)

. , . . R, (L) = E [Sp(n)S, (n — L)] = Iaryp, (L) (67)
vv_h|ch equalizes the signal power of dlfferenf[ subbands andthus (L) = Diag{R,(L).p = 1,..., P} (68)
highly reduces the spread of the nonzero eigenvalues of the aséI ' '
sociated correlation matrix. an " )

It is well known that the convergence rate of the LMS algo- R~ (L) = E[N(n)N"(n — L)] = 0*Iyym(NJL) (69)

rithm mainly depends on the eigenvalue spread of the associated
correlation matrix. Let whereJ,,,(L) expresses am x m matrix with its Lth down

diagonal line of entries of 1s and all the other entries of Os, i.e.,

£.(n) = [ET(n), £7 (n)]" 60
(n) [0(”)71(”)] (60) 0 ... 0 - 0
and . . .
Xa(n) = &' (n), %" (n — L)]* (61) S
Jn(L)=11 0 : - |- (70)
respectively, denote the weight vector and the signal vector after o . 0 ---
subband decomposition; then, the SSTAP output becomes 0 --- 1 0 0
y(n) = £ (n)xq(n) (62) Therefore, substituting (66) and (30) into (65), we obtain
and the weights are updated according to R.— A [STHM) 0 RS(O) Rs(L)
« 0 SHHM) | |RL(L) Rs(0)
fo(n+1) =f.(n) + pAe* (n)x.(n) o [HMHS 0 } LA {SH 0 }
= £u(n) = pAXA(n)xE (W)E3(n) | o HOWTS 0 s”
[ 2
+ uASE(n — v)xa(n (63) o’Iyony Rn(L) | |S 0O
i( Xa(n) X RL(L) o’Insa) |0 S (71)

whereA = I, ® ¢, and® expresses Kronecker product. From
the general convergence analysis of the LMS algorithm, the cgfom the basic thﬁory of the Ime:;trk?lgebrs anfd 5171) the rank of
vergence rate of the LMS algorithm based on (63) mainly de- e matrixR., is the maximum of the ranks of the two matrix

ends on the eigenvalue spread of the weighted correlation rﬁ%[ms in the right side of (71) The ranks of those two matrix
frix 9 P g terms areMy + PL and N,, = min{2My, NJ(M + L)},

respectively. Therefore
R. = E [Ax.(n)xZ (n)] . (64)
rank{R } = max{Mr + PL,N,}. (72)
It is known that the zero eigenvalues of the associated corre-

lation matrix do not influence the convergence rate of the LMSrom the linear algebraic theory, (72) tells that the maRix
algorithm [22]. Therefore, the spread of the nonzero eigenvaluessmin{ My — PL,2My — N, } zero eigenvalues. ]
of R, is emphasized. In the following, we present two theorems It is noted that the presence of zero eigenvalues brings an infi-
to show the number of the nonzero eigenvalueR.gfand their nite number of optimum solutions in terms of the Wiener—Hopf

spread. equation (12), which, however, provide the same residual error
Theorem 3: The matrixR,, hasmin{Mr—PL,2Mr—N,} power.
zero eigenvalues, wher€,, = min{2Ms, NJ(M + L)}. Next, we present a theorem that determines the spread of the

Proof: In terms of (55) and (61)R., is expressed as nonzero eigenvalues of the subband STAP system under the as-
sumption of the noise-free environments.

R, = AE [xa(n)xY (n)] Theorem 4:In the absence of noise, the eigenvalue system
SHRyS SHRy(L)S of R,, is the same as that of the associated signal correlation
=A [SHR)I?(L)S SHRXS :| matrix

A% s [niiy SR8 s)e Ra=RED) o) 79
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Proof: In the absence of noise, (71) is represented as which means the spread is 2. It can be seen that in the presence
of noise, the spread of the nonzero eigenvalueB.gfwill in-

R. — {‘1’ 0} {SHH(M) 0 } crease. In the case of high input SNR, however, the increase of
“ 0 ¢ 0 S*HM) the spread of the nonzero eigenvalue®Rgfis not significant.

Rs(0) Rs(L)] [HODHS 0 (74) As we show in the sequel by numerical examples, the spread
RL(L) Rs(0) 0 HOAG |- of the nonzero eigenvaluesBf, is greatly reduced. Hence, the
] convergence rate of LMS algorithm performed by (63) under
Define SSTAP will be faster than that under the conventional STAP.
_ sl/2
Ay = X5 (75) V. SIMULATION RESULTS
and
Heet(M In this section, computer simulation results are presented to
U=S8"HM =, U. (76)

demonstrate the improvement of the convergence rate of the pro-
posed signal subspace-based subband approach of STAP over
{Rat of the conventional STAP.

A uniform circular array with three elements of identical om-
UUH = A IgHEOMDODHGA 1 nidirectional responses is employed. The interelement spacing
vvY 211/2SHSE SHSE_I/S 1 77 is v/3), where) is the wavelength of the radio frequency. The

s s s - oversampling factor is assumed to be= 2. The scenarios of
multiple users are considered. All the user signals are modulated
by QPSK with raised-cosine pulse shaping filtering, where the

By using the results of (30)—(34) in the noise-free case, it ]
straightforward to show thdf is unitary from

Therefore R, can be written as

® 0] [AU" 0 roll-off factor is assumed to be 1.0. We assume that six rays are
Ro = [0 @} [ 0 AuUH} being received at the array for each user with different elevation
- 1 v # and azimuthp. Without loss of generality, the propagation loss
X II:;(O) Rs(L)] | UA 0 of the first ray of each signal is assumed to be 1, and the relative
s(L) Rs(0) 0 UA : . .
- H time delay of this ray is assumed as O.
- [‘I’Au 0 } [H OH} The training sequence is assumed to be the ideal replica of the
_0 DA, 0 i U desired user signal. The taps of the STAP filter at each extended
y Rs(0) Rg(L)||U O] |A, O (78) channel is assumed to B¢ = 20.2000 random integers, which
RI(L) Rs(0) 0 U 0 A, are generated as the data source of each user. The input SNR of
, . the first ray (foré = 1) is 10 dB for each user signal, and the
According to (59) and (75) and the definition of noise power is defined as 0 dB.
BA, = 3712 (79) We use the output residual error power, i.e.,
Ly 2
let 2 1
) ESTAP(Z):L_tZ s1(n—v) anl x(n—m+1)
A PA, 0 - 25_1 2 0 n=1 m=1
Ao = [ 0 @A,u} - [ o ;Y 2} (80) and (83)
H
u. 2|8 Ol (81)
0 U 2
ESSTAP Z |31 n— U - f (l) (”)| (84)
In terms of (73), (79), (80), and (81), (78) is simplified as
R, = A U,RyU7ATL (82) toillustrate the output performances of STAP and SSTAP, re-

spectively. In (83) and (84), we use another set of data of the
It is seen from (80) that\,, is a diagonal matrix with all the Same environment to examine the residual error power of the on-
diagonal elements greater than zero; therefarejs a special going updating weight vectors, whelrés the iteration number,
orthogonal matrix. Sinc# is unitary, it is clear thall,, is also andL. is the length of the data. We also take= 2000 here. In
a unitary matrix. Because the unitary or the orthogonal transféhe simulations, the LMS algorithm is employed for both of the
mation matrix-based similarity transformation does not chan§@AP and the SSTAP, and the initial states of the weight vectors
the eigenvalues, the eigenvalue systerRgfis the same as that are set to zero for all the cases. The maximum step size for LMS

of Rjs. m algorithm is generally given by [3]
From Theorem 4, we see that the spread of the nonzero eigen-
values ofR.,, is the same as that &t and is no longer depen- O<py< ——— . (85)
dent on the channels. By solving the characteristic equation of total input power
Rg, i.e., (defAI — Rg) = 0 (“det” denotes determinant), we
obtained that for the cases of< L < M, (selection ofL is Here, we choose
restricted by the requirement of polyphase representation), all 0.4 (86)

the nonzero eigenvalues Bfg only take value of either 1 or 2, "= total input power
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TABLE | 1800 ; ; ; ; ;
(a) PARAMETERS OF THE DESIRED USER + : : : : :
(b) PARAMETERS OF THEINTERFERENCEUSER#1. (C) PARAMETERS OF THE 1800 - AR co s R
INTERFERENCEUSER #2 . . : ! .
1400f+ -~ e e R ERRERRREE
No. | 8(deg.) | @(deg.) | T(sym.) € + : : ‘ : !
1 | -123 24.6 0 1.0 1200F- 4 oo D L P
2 -28.0 30.7 0.99 0.02-0.84i + : . STAP . .
3 -13.1 46.7 1,16 0.09+0.80i BH000F - e
4 -0.80 13.0 3.89 -0.75-0.26i E *
5 | -240 48.8 5.69 -0.54-0.44i B GOOL e
6 -26.0 259 741 -0.52-0.29i +
+
(@) e T
W
No. | O(deg.) | @(deg.) | T(sym) & 400f- - - - M
1 -8.6 33.6 0 1.0
2 217 46.8 0.65 0.78+0.061
3 | 212 1 771 1.09 0.65-0.331 . . : .
4 -27.2 67.0 6.43 -0.58-0.17i 00 20 20 50 £ s 9
5 | -109 | 768 6.69 | 0.06+0.54i descending number
6 -26.0 59.0 9.46 -0.39-0.34i 25 . . , y
(b) _
No. | O(deg,) | @(deg) | T(sym) € ook L SR ]
1 -6.6 120.6 0 1.0 i 5 E ‘ ggﬁgé :
2 -3.3 147.3 1.29 0.04+0.861 . : :
3 | 87 | 1252 | 174 | 026+0.79% : : o SSTARS |
4 9.4 151.9 5.73 0.70+0.29i Q1B U L .
5 -14.0 124.8 6.47 0.49+0.061 2| : : : :
6 -0.30 159.3 8.15 -0.37-0.25i g : ; : .
&0 ' : : :
(©) ® e SO L .
4 . . : : : T y . T
0

0 50 100 150 200 250
descending order number

Fig. 4. Eigenvalue distribution of the correlation matrices. (Top) STAP.
(Bottom) SSTAPs.

residual error power ( dB )

0 ..........................................................
1% 200 400 600 800 1000 1200 1400 1600 1800 2000 B
number of iterations T m2b e Mag e
o
g
Fig.3. Simulation results for Case 1. SSTAP1, SSTAP2, and SSTAP3 use 2_§ i/ RRRREARE \ERRRRRRARN
520, and 1020 samples to estimate the signal subspace;: $TAP2.0124 x g
1073, v = 12; SSTAR: 1 = 0.0008618, v = 16; SSTAR: ¢ = 0.0020, eb N
v = 13; SSTAR: p = 0.0024, v = 12.

For STAP, the total input power of all the taps is equal to tt :
trace ofRx, whereas for SSTAP, the total input power of al _, v

the taps equals the traceﬁtl. 0 200 400 600 ::,:berl,gq:em:i:g: 1400 1600 1800 2000

In order to evaluate the effect of the accuracy of the esti-

mated signal subspace on the output performan(_:e Of SSTAR: 5. Comparison of the residual error power under the different delays for
three numbers of the samples are used for the estimation of ttage 1 SSTAR p« = 0.0020, andv = 0,11,13,15, 27.
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signal subspace, namely, = 220, 520, and 1020, respectively. TABLE I

Therefore, we have three different estimated signal subspace, _(2) PARAMETERS OF THEDESIRED USER (b) PARAMETERS OF THE
INTERFERENCEUSER#1. (C) RRAMETERS OF THEINTERFERENCEUSER#2.

For comparison of the performance, an equivalent number of (d) PARAMETERS OF THEINTERFERENCEUSER#3
weights is considered. In addition, at each subband, two taps are
taken, and. is selected to mee¥/ = (2 — 1) x L + M,. No. | f(deg) | @(deg) | T(sym.) &

In the followi imulati ¢ din t 1 -10.3 226 0 1.0

n the following, simulations are performed in two cases. 2 288 TR 103 0.66.0.401
Case 1 considers a three-user scenario, whereas Case 2 inves- 3 5.1 3.4 1.33 -0.06+0.73i
tigates a four-user scenario. 4 -3.7 223 1.84 0.60+0.30i

: . ; : 5 -0.9 1.1 3.04 -0.46-0.19i
Case 1:Three users are present. One is the desired user, 6 | 266 305 341 0.24.0.411

and the other two are interference users. The parameters for
those three users are randomly generated and are listed in @
Table I(a)-(c), respectively. The length of the desired user No. | 8(deg.) | @(deg) | T(sym.) 4
channels is approximately 8, and the longest channel length -5.6 37.6 0 1.0

- ; - ; 4.0 38.8 1.33 -0.82+0.07i
of interference users is approximately 10. Before the weight

1
2
. o 3 -29.1 34.4 1.44 0.37-0.38i
adaptation of SSTAP, subspace decomposition is performed by 4 6.1 40.5 354 0.09-0 47
5
6

eigendecomposition, and subsequently, AIC criterion is used to 8.4 75.8 6.29 0.05+0.441
estimate the dimension of the signal subspace. The delay of the -1.7 49.8 6.38 | -0.17+0.251
training sequence is chosen based on (21), i.e., (b)

No. | 6(deg) | @©(deg) | T(sym.) €
1 -4.6 130.6 0 1.0

2 -11.4 137.7 221 0.94+0.00i
3 -9.0 157.5 2.96 -0.04-0.55i
4 -13.1 135.3 3.75 0.32+0.40i
5

6

_dimension of the estimated signal subspac?
"~ number of the extended array channels ™

(87)

-13 133.5 597 0.42+0.27i

According to the estimated dimension of the signal subspace, 53 1586 o5 03440201

the full column rank matrix composed of the eigenvectors of the

signal subspace is defined, from which SSTAP is performed. ©

The estimated dimension of the signal subspace based on the No. | 8(deg) | ¢ (dez) | T(sym) B
AIC is approximately 84, and thereforgf, = 84/NJ = 14. 1 9.6 108.6 0 1.0
From the parameters listed in Table I, ?Ehe actual column rank of g -% 19093~17 (21(1)2 g-ggfdgf;i
the associated"") is calculated a§~,_, (D), + M) ~ 84. T Ges T 013 557 10,0940 58
Therefore, the estimation of the dimension of the signal sub- 5 148 102.9 3.63 0.28+0.43i
space truly describes the actual length of the channels. 6 -14.4 102.2 4.75 0.47+0.14i

Fig. 3 shows the residual error power versus the number of it- (d)
erations. In this figure, SSTARIenotes the first type of SSTAP
in which the signal subspace is estimated by using 200 data sam-
ples, i.e..N, = 220. Similarly, SSTAR is for NV, = 520, and Other hand, when we take valuewt 0 orv = Dy + M —1 =
SSTAR; is for Ny = 1020. In Fig. 4, the eigenvalue distribu—27' the output performance greatly degrades.
tions of the correlation matrices of the STAP and the SSTAP’s Case 2:Four users are present. The parameters for the four
are plotted, which clearly shows that the eigenvalue spreadusiers are listed in Table li(a)—(d), respectively, and the length
the associated correlation matrix of SSTAP under the signal s@i-the four user channels are assumed to be shorter than that
space-based subband approach is highly reduced. in Case 1. The length of the desired user channels is about 4,
From Figs. 3 and 4, it is evident that 1) all the three types wihereas the longest channel length of interference users is about
SSTAP have smaller eigenvalue spread and provide faster cénThe detected dimension of the signal subspace based on AIC
vergence rate than that of the conventional STAP, respectivdfyapproximately 96, and subsequently; is estimated as 16.
and 2) larger number of the samples used for the estimation'dte result is very close to the actual dimensioyof_, (D, +
the signal subspace yields smaller eigenvalue spread and fadfer= 99, as is calculated from Table II.
convergence rate, which is due to the fact that the larger theFig. 6 plots the residual error power versus the number of it-
number of the samples to be used, the more accurate the estitions. Similar to Case 1, the delay in the training sequence
mated signal subspace obtained will be. In practice, the numigichosen as that mentioned in (87). This figure again shows
N, should be determined by considering how fast the envirotihat SSTAP outperforms the conventional STAP over the con-
ment is varying, as well as the computational burden the systeargence rate. In Fig. 6, we see that even when the number of
can support. users is larger than that of the array elements, the extended chan-
In order to show the efficiency of the selection of the delagels achieved from oversampling provide some extra degrees of
v as mentioned in (87), the residual error power performanciesedom and enable the STAP and the SSTAP systems output
are shown in Fig. 5 for five different under the assumption reasonable residual error power performance.
of SSTAR, wherev = 13 is that selected according to (87). Itis noted thatin practice, the length of the training sequence
The figure clearly shows that SSTAP under the selection ofdepends on the number of iterations required for convergence.
according to (87) nearly output the best performance. On tliee smaller the number of iterations required for the steady
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Fig.6. Simulation results for Case 2. SSTAP1, SSTAP2, and SSTAP3 use 2201 5]
520, and 1020 samples to estimate the signal subspace; $TAPL.9970 x
103, v = 15; SSTAR: pr = 0.000984 53, v = 17; SSTAR: 1 = 0.0017,

v = 15; SSTAR: u = 0.0019, v = 15. [16]

state, the shorter the training sequence. From Figs. 3 and 6, 660!
symbols of the training sequence are required for the conver-

gence of the two cases of SSTAP.
(18]

VI. CONCLUSION [19]

In this paper, we have investigated the conditions of STAP
systems to realize perfect processing in noise-free situations and

have proposed the space-time signal subspace-based subb&

approach to STAP, which is based on the polyphase represen-
tation. Because of the decorrelation by the space-time signé#i1]
subspace-based subband filtering, the subband approach [95
STAP greatly improves the convergence rate without reducing
the residual error power performance. Simulation results have
been presented, which well confirmed the theoretical results. [23]
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