2090

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 37, NO. 9, SEPTEMBER 2018 EMB N IEEE
—o—

b@v%’,m
Slgral Processing Soclely ®

P33

Image Reconstruction in Electrical Impedance
Tomography Based on Structure-Aware
Sparse Bayesian Learning

Shengheng Liu

, Member, IEEE, Jiabin Jia™, Member, IEEE, Yimin D. Zhang

, Senior Member, IEEE,

and Yunjie Yang, Member, IEEE

Abstract—Electrical impedance tomography (EIT) is
developed to investigate the internal conductivity changes
of an object through a series of boundary electrodes, and
has become increasingly attractive in a broad spectrum
of applications. However, the design of optimal tomogra-
phy image reconstruction algorithms has not achieved the
adequate level of progress and matureness. In this paper,
we propose an efficient and high-resolution EIT image
reconstruction method in the framework of sparse Bayesian
learning. Significant performance improvement is achieved
by imposing structure-aware priors on the learning process
to incorporate the prior knowledge that practical conduc-
tivity distribution maps exhibit clustered sparsity and intra-
cluster continuity. The proposed method not only achieves
high-resolution estimation and preserves the shape infor-
mation even in low signal-to-noise ratio scenarios but also
avoids the time-consuming parameter tuning process. The
effectiveness of the proposed algorithmis validated through
comparisons with state-of-the-art techniques using exten-
sive numerical simulation and phantom experiment results.

Index Terms—Inverse problem, electrical impedance
tomography (EIT), sparse Bayesian learning (SBL), image
reconstruction, maximum a posteriori (MAP) estimation.

I. INTRODUCTION

LECTRICAL impedance tomography (EIT) is a promis-

ing non-invasive imaging modality for continuous
real-time visualization of the dynamic electric conductivity
distribution of the interior of a body. To perform EIT, we apply
weak low-frequency alternating currents (the typical frequency
range is 1-100kHz and the magnitude is 1-5 mA) in multiple
manners and measure the corresponding peripheral voltages
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through an array of electrodes attached on the surface of
an object. Then, the cross-sectional image of the internal
spatial conductivity distribution is recovered from the resulting
boundary voltage measurements. Despite its relatively low
spatial resolution (~ 10% of the sensor diameter) that hinders
its general applicability, EIT has become a well-accepted
tomographic imaging technique because of its desirable prop-
erties of portability, low cost, no known hazards, and high
temporal resolution in comparison with other techniques avail-
able for probing internal dynamics. As a result, EIT finds
broad applications in a number of fields, such as industrial
process monitoring [2]-[4], geophysical exploration [5]-[7],
and biomedical diagnosis [8]-[10].

Mathematically, the reconstruction of conductivity maps in
EIT amounts to solving a nonlinear ill-posed inverse problem
from noisy data. Regularization techniques can be employed
to mitigate the instability of the solutions. One of the most
widely used families is the one-step Gauss—Newton (GN)
reconstruction approach [11], which allows the use of sophis-
ticated regularized models to describe the EIT inverse problem
through a heuristically determined prior [12], [13]. Landweber
iteration is a variation of the steepest gradient descent method
and is also widely used in EIT [14], [15]. The algebraic
reconstruction technique (ART) is a simple and effective image
reconstruction method for computerized tomography that can
be applied to EIT [16], [17]. Other important methods include
regularization via the total variation (TV) functional [18], [19],
which allows image reconstruction with edge preservation.

As EIT solutions generally manifest themselves as sparse
vectors, a number of sparse regularization approaches have
been proposed to stabilize the inversion. For example,
in [20]-[22], an {; penalty was incorporated into the reg-
ularization to promote sparsity. It is shown in [23] that,
by clustering relevant signal components together and tak-
ing the dependencies between them into account, a superior
performance is achieved through the exploitation of structure-
based approaches in various practical scenarios. On this basis,
sparse signal recovery algorithms have been developed in
the literature to exploit the cluster structure of the signals.
These methods generally require certain knowledge about the
signals, such as the size and distribution of the partition, and
the number of nonzero entries of the signal to be recovered.
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In many applications, however, such knowledge is unavail-
able. In [24], an adaptive group sparsity (AGS) constraint
is proposed to obtain enhanced image quality, where the
required a priori knowledge is first obtained through a coarse
image reconstruction, and images with a finer quality are then
obtained.

A natural mechanism to incorporate the structure knowl-
edge in solving the inverse problem is to employ Bayesian
approaches [25], [26], which are aimed to characterize the pos-
terior distribution, e.g., computing posterior moments or other
posterior expectations. Sampling via Markov chain Monte
Carlo (MCMC) [27] techniques is among the most commonly
used paradigms for Bayesian inversion. Although various
efforts have been made to accelerate the MCMC approach
by exploiting, for example, the gradient and Hessian infor-
mation of the posterior density [28], or multilevel sampling
strategies [29], generating sufficient MCMC samples is still
computationally costly [26]. Alternatively, we can use the fil-
tering and variational methods, which provide approximations
of the exact posterior by finding the best representative from
a class of simpler distributions. Readers are referred to [26]
and the references therein for an overview.

The past few years have witnessed extensive research and a
significant progress on Bayesian inversion in terms, e.g., of the
design of correlation priors and the use of hierarchical models.
To name a few, in [30], a Bayesian hierarchical model with
conditionally Gaussian priors was used to resolve piecewise
smooth structures in noisy and blurred images. In [31], a uni-
fied and efficient Bayesian method based on Krylov subspace
iterative techniques and preconditioners was further derived
to compute the approximated maximum a posteriori (MAP)
estimate of the image and the prior variance. The algorithm
proposed in [31] was later successfully applied to cerebral
source localization [32], where the variances are assumed
to be guided by a hyperprior with the form of generalized
Gamma family, so as to favor small values while permitting
rare large outliers which correspond to high source amplitudes.
Besov space priors [33] defined by a wavelet expansion
with random coefficients have attracted broad attention in the
medical imaging community due to their merits such as edge-
preserving, sparsity-promoting, and discretization invariant,
with imaging results similar to TV regularization [33]-[35].
In [36], the smoothness of unknown targets is modelled
by Whittle-Matérn fields, which are essentially stationary
Gaussian random fields specified by a correlation function
to control the anisotropic properties of the prior distribution.
A finite-dimensional approximation of the Whittle-Matérn pri-
ors is derived from sparse inverse covariance matrices by using
a stochastic partial differential equation. The problem consid-
ered in [37] is to reconstruct the conductivity consisting of
well-defined inclusion-type targets in an approximately homo-
geneous background. The proposed iterative algorithm is based
on the use of a nonlinear edge-preferring prior density and
the minimization of the corresponding Tikhonov functional
by efficiently solving an approximate sequence of linearized
problems with the help of prior-conditioning and least squares
with QR factorization (LSQR). In [38], the inverse problem
of magnetoencephalography (MEG), which is very similar

to EIT, is solved by postulating a hierarchical conditionally
Gaussian prior model, where an anatomical prior is introduced
to reflect the direction preference of each dipole based on
the a priori magnetic resonance imaging (MRI) information.
The hyperparameter vector consists of prior variances of
the dipole moments, which are assumed to follow a non-
conjugate gamma distribution with variable scaling and shape
parameters. By combining the iterative alternating sequential
algorithm with Krylov subspace iterative solver, satisfactory
sparsity control and convergence rate are both achieved.

The recently proposed sparse Bayesian learning (SBL)
framework [39]-[44], which is closely related to the term
automatic relevant determination (ARD) in the context of
neural network, can adaptively and flexibly explore and exploit
signal structures such as clustering or continuity without any
a priori information. In addition, SBL is more advantageous
than other families of aforementioned algorithms in the sense
that it is more robust in noisy environments, and offers better
performance when the columns of the dictionary matrix are
highly correlated and/or the image to be reconstructed is not
highly sparse [39]. In this paper, therefore, we introduce the
concept of structure-aware sparse Bayesian learning (SA-SBL)
to perform EIT imaging, and both the clustered sparsity and
intra-cluster correlation are utilized in the image reconstruction
to achieve improved reconstruction accuracy. Compared with
the state-of-the-art methods, the proposed approach is advan-
tageous because its structure-aware modeling capability pro-
motes clustered sparsity and eliminates irrelevant components.
In addition, the proposed method yields a better approximation
to the {p-norm sparsity measure and, as a result, achieves
enhanced EIT imaging with a higher spatial resolution and
improved robustness against Gaussian noise.

The paper is organized as follows. The forward and inverse
models are briefly described in Section II. In Section III,
we first propose the SA-SBL algorithm for EIT image recon-
struction. In Section IV, numerical and real data experiments
are designed to simulate the challenging medical application
scenarios, and the performance of the proposed algorithms is
compared with other state-of-the-art approaches. The paper is
concluded in Section V.

Notations: Lower-case (/upper-case) bold characters are
used to denote vectors (/matrices). (-) and || respectively
return the average of a given vector and the modulus of
a given complex number. V is the Nabla symbol. diag{A}
returns a column vector consisting of the main diagonal
entries, whereas and diag{A, 1} returns one corresponding to
the first-diagonal entries above the main diagonal. Iy denotes
an N x N identity matrix. tr(-) and (-)T respectively represent
the trace and transpose operation of a matrix. ||-|| p represents
the £,,-norm of a vector. E(-) returns the expected value of a
discrete random variable. p(-) denotes the probability density
function. N'(-) denotes Gaussian distribution. R is the set of
real numbers.

Il. SIGNAL MODEL
A. Forward Model

In EIT, the computation of the voltage measurements from
the known currents and conductivity distribution is referred to
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as the forward problem. The EIT forward model is mathemat-
ically established from a low-frequency approximation of a
subset of the Maxwell’s electromagnetic equations with some
mixed Dirichlet/Neumann boundary conditions [45]. Consider
a bounded domain Q with piecewise smooth boundary Q.
Let o denote the real-valued conductivity distribution in Q.
Assume that the boundary electrodes are perfectly conductive.
Then, applying a current flux through these electrodes results
in the scalar interior electric potential u characterized as the
solution to

V.-(@Vu)=0 inQ, (1)

where we assume that the static excitation condition is
satisfied and no current sources/sinks exist within Q. The
complete electrode model (CEM) is the most accurate model
for EIT since it accounts for the effects of the electrodes
and the contact impedances between the electrolyte and the
electrodes [47]. Assume that a total of L electrodes are
attached to the boundary 6Q2, whose locations are denoted as
0Q; CoQ, 1 =1,2,..., L. Denote their contact impedances
as z;. Then, the boundary conditions of the CEM is expressed
as [45],

u+zoVu-€ =uv; on oQ, 2)
/ oVu-€ =1 on 0Q, 3)
&
. L
oVu-&=0 onoQ/( ] oo, ©))

where € is the outer normal vector on dQ, and I; denotes the
injected current at the /-th electrode.

B. Inverse Model

The inverse problem in EIT is to determine the conductivity
in the interior of a object based on the simultaneous measure-
ments of alternating currents and voltages at the boundary.
In this paper, linearized difference imaging is considered.
By solving the Laplacian elliptic partial differential equation
given in (1), we can readily relate the map of internal conduc-
tivity perturbation d0 € RV*! within the region of interest
to its corresponding boundary voltage variation dv € R !
(M < N) using the following linear approximation [46]

ov ~ Joo +n, 5)

where n is the measurement noise vector. In this paper,
we assume that the noise vector is additive and follows the
zero-mean Gaussian distribution with n ~ N (0, yoI). Note
that, in practice, EIT systems are susceptible to other types of
noise and modeling errors. Sources of such noise and errors
include multiplicative noise and bias due to amplifier gain
distortions and offsets, inter-channel measurement noise due to
cross-talk between measurement channels, linearization errors
when reference conductive distribution does not match the
reference voltages used to compute the Jacobian, and errors in
electrode position, domain shape/size and FEM discretization
level. However, given the space limitation, it is difficult to
examine different types of noise and errors in this work.
As a result, we follow the common practice in EIT image

reconstruction and assume the additive noise model in (5)
with Gaussian distributed entries (e.g., [11], [13]-[21]). Still,
the above-mentioned annoying noise and errors may co-exist
in the real-data experiments in Section IV-B. As shown later,
the proposed method performs better in such cases.

The sensitivity map J € R¥*V  also frequently referred to
as the Jacobian matrix, is determined by mesh, electrode posi-
tions, and current injection/measurement protocol. By integrat-
ing over the k-th (k = 1,2,..., N) simplex Q; from the
scalar product of the gradients of the potential fields u that
are induced by driving current pattern I; and measurement
pattern [, with the finite element method (FEM), J can be
readily computed as [46]

0
Vi) =S4 = = | Vuti) - Va0, ©
60’k Q
where d # m € {1,2,..., M} represents the sample index

of selected electrode pairs in the m-th measurement under the
d-th current pattern. For notational convenience, in the follow-
ing discussion, we simplify the notations do and dv as ¢ and
v, respectively. In this case, (5) is simplified as

v=Jo +n. @)

This is a typical example of inverse problems, where the task
is to reconstruct a signal from observations that are subject
to the forward model. Like many other inverse problems,
EIT image reconstruction is severely ill-posed and thus is
difficult to obtain stable and reliable solutions. Therefore, it is
often formulated as the following regularized optimization
problem

min d (v,Jo)+ AR(0), (8)

O‘ERNXI

o=

where d (v, Jo) is the data fidelity term that enforces o to
satisfy the observations v, and R(o) is a stable operator, or a
regularization term which restricts the solution to comply with
a predefined model over . The minimization in (8) represents
a tradeoff between fitting the data exactly and stabilizing
the solution of o, which is controlled by the regularization
parameter A. The major problem in this framework is that it
is difficult to determine a proper R(o) such that it represents
a most appropriate model for EIT image reconstruction and,
at the same time, its optimization procedure can be easily
implemented.

In this work, equation (8) is interpreted in a Bayes perspec-
tive such that finding the solution amounts to performing the
MAP estimation. In this case, d (v, Jo) takes the form of a log-
likelihood whereas R(o) takes the form of a parametric log-
prior log p(a; ®) over variable o. As such, the minimization
in (8) becomes [26], [27]

o0 = min logp(vio)+ Alog p(o; ©). 9)
g eRNx1

This allows for more adequately modeling the a priori knowl-
edge about the objective. Compared to the conventional regu-
larization approach based on functional analysis, the Bayesian
probabilistic approach provides a more attractive and rational
framework for the parameter recovery, as it allows for the
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quantification of the uncertainty in the recovery, while natu-
rally accommodating different types of data and rich models
of a priori information.

I1l. IMAGE RECONSTRUCTION BASED ON SA-SBL

In medical imaging applications, generally, the underlying
conductivity distribution change o can be viewed as a con-
catenation of several clusters due to its inherent clustering
structure. In practice, however, the actual clustering parti-
tion pattern is more likely to be unknown. In this context,
we consider a general case in which all the clusters overlap
each other with an equal size & and the nonzero entries are
arbitrarily distributed. It was proved in [39] that, since real
clustering partition can be learned during the SBL process by
revoking and merging the preset clusters, the reconstruction
performance is guaranteed to approach the result obtained
from the known clustering partition counterparts. To facilitate
the utilization of SA-SBL framework, we factorize o as

(10)

aé‘l’xé[\Ill,...,\Ilg][xlT,...,xg]T,

where ¢ = N — h + 1 is the total number of
clusters. In addition, for Vi = 1,2,...,g, X, =
[x,-,...,x,-+h_1]T e R"™ ! denotes the i-th preset cluster,
T
2 [T T T Nxh
and W; = O(i—l)xh’Ihxh’O(N—i—h+1)><h] € RT". The

underlying linear model in (7) can then be rewritten as

v=J¥x+n= &x +n, (11)

where @ £ [®,...,®,], and & = J¥; e RM*
We assume that the prior of the weights x follows a zero-
mean Gaussian distribution with

p(x; (i, BiYs_|) = N (0, Xo), (12)
where the stretched covariance matrix is expressed as
y1B1 0
o = ' € Rehxsh, (13)
0 7¢Byg

The structured sparsity in x is determined by y;, i =
1,...,g, in Xo. If y; = 0, the values of the entries in the
associated i-th cluster of x becomes zero. By considering
the fact that n ~ A (0, yoI), the a posteriori belief for the
weights x is subject to the following Gaussian distribution

p(x|v;0) =N (r,, Zx),

where © £ {yo, {yi,B; }‘ig:1 } denotes the hyperparameters with
mean vector

(14)

", = ):0<I>T(y01 + <1>>:0<1>T)_1v e RS (15)
and covariance matrix
T = (251 + %qﬁp)_l e R&hxsh
=30— %@ x, 'ox,, (16)

with X, £ yol + ®Xo®T.

The MAP probability estimate of x is obtained from the
posterior mean p,, prior to which, the hyperparameters ®
must be estimated first. The expectation-maximization (EM)
method is employed to maximize p (v; ®), which is equivalent
to minimizing — log p (v; ®). Thus we obtain the following
cost function

£(0) 2 ~21og [ p(vixi0)p (x: (B, ) dx

=log|Z,| +vZ, v (17)

The correlation structure matrix B; can be updated using
the gradient of the cost function with respect to B;. To avoid
the overfitting problem, we introduce B; as an intermediate
variable to compute B;, which is updated as,

pnew n 1 i i i T
By =By (24 (IL) , (18)
l
where ul = p, (( — Dh+1:ih), TL = . (@ — Dh+
1 : ih,(i —1)h+1:ih). The estimation of B; is then
obtained by constraining it to the following Toeplitz form,

B; = Toeplitz ([rio, rl-l, e, ri}“l])

rl-o rl-1 rl-h_1
= a2 o0 ) (19)
by a1 rio
i T T T
where
ri = sign(#;) - min {|7;|, 0.99}, (20)
diag(B;, 1
;= dlaz®i ) Q1)
diag(B;)

Note that the averaging of r; in the above computation
effectively prevents against overfitting.

An computationally efficient learning rule for the hyperpa-
rameter y; can be derived by minimizing the cost function via
the majorization-minimization approach [39], [48], which can
be expressed as

|vBi(@)'=,"v|,
\/tr (@)=, ®B))

where f € [0, 1] models the pattern coupling between the
hyperparameter y; of cluster B; and the hyperparameters
{yit,yi—} of its neighboring clusters, and subscripts i+
and i— respectively indicate the neighboring clusters of the
i-th cluster with larger and smaller indices. The mapping from
vector ¢ to the actual geometry and the neighboring clusters
are illustrated in Fig. 1. By introducing parameter f into
the learning process, the relevance of the neighboring clus-
ters, which are not adjacent to the underlying cluster within
vector @, is also exploited. Note that, while the update formu-
lae provide good numerical behavior in all the experiments,
there is no theoretical analysis on the stability of updating
rules of B; and y;. Nevertheless, as EIT has the merit of high
time resolution, we can discard the abnormal frames.

v =i + Byiv +Brio) - , (22)
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Fig. 1. lllustration of the structure in the conductivity distribution .

By treating x as a latent parameter, and setting the derivative
of the cost function over yg to 0, the learning rule for yq is
derived as

vo = % (||v —ou, |+ Zle r ():;(q>,-)T<1>,-)) . (23)

A pseudo-code implementation of the proposed algorithm
for EIT image reconstruction is provided in Algorithm 1.
To update the parameters through the EM approach, the com-
putational complexity of the proposed method is O(M?gh)
for each iteration. It is worth emphasizing that, the time-
consuming parameter tuning process is averted in the proposed
algorithm. The concept of pattern coupling was studied in [40],
where the recovery performance is shown to be insensitive to
the choice of f as long as f > 0. It was also proved that taking
different values of & will lead to negligible difference [39].
For simplicity, we set f = 0.25 and # = 4 throughout
this paper. The other two input parameters €min and Jmax are
related to the algorithm precision and are selected according
to the required performance and affordable computational
complexity. As such, none of them requires a time-consuming
parameter tuning process.

Remarks: The proposed hierarchical Bayesian model allows
the estimation of prior parameters in an unsupervised manner,
i.e., the proposed algorithm does not require any information
regarding either the sparsity or the clustering prior. Rather,
improved performance is achieved by adaptively and flexibly
exploring and exploiting such signal structures.

IV. RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
SA-SBL based method through extensive numerical simula-
tions and phantom experiments. To demonstrate the superiority
of the proposed method, comparisons with existing state-of-
the-art approaches, such as ART [16], TV regularization [18],
€1 regularization [21], Nissinen’s Bayesian method [49], and
AGS constraint method [24], are provided. Note that since
modeling errors are not considered in this work, the term
“Nissinen’s Bayesian method” here refers to the conven-
tional MAP estimate without the approximation error method

Algorithm 1 EIT Image Reconstruction Based on SA-SBL
Algorithm

Input v, J, hy B, €mins Umax
Initialize : Set e =1,V =0, pu, = 0g1x1, Ty = Oggn,
Vi = lgxl’

N
o =0.01 x |1 > o — 92,
i=1

B; = Toeplitz([0.9°, ...,0.9"~1]).

Iterations:

1 while € > €yin and ¥ < Ipax do

Update p, using (15);

Update X, using (16);

Update y; using (22);

Update yo using (23);

Update B; using (18)—(21);

e = [ = o/ [

9 =9+ 1

9 end
Output

®X NS R W N

1o =V,

(see [49, Sec. 2.1] or [50, Sec. 2.2.3]). Note that in terms
of the spatial resolution of the reconstructed images, exist-
ing Bayesian inversion based methods do not show signifi-
cant improvement when compared to traditional determinis-
tic approaches. For instance, the reconstructed results using
Bayesian inversion with Whittle-Matérn priors are comparable
to the solution of the gradient-based smoothness methods [36].
It was also pointed out in [31] that, the TV and Perona-
Malik regularization schemes can both be seen as MAP
estimations of Bayesian hierarchical models proposed therein.
As discussed in [50] and will be presented later, Nissinen’s
Bayesian method demonstrates similar performance with the
Tikhonov regularization.

A. Synthetic Data Experiments

We present several synthetic data experiments in this sub-
section to demonstrate the effectiveness of the proposed algo-
rithm in comparison with other state-of-the-art approaches.
In the COMSOL Multiphysics® environment, we design a
16-electrode EIT sensor as shown in Fig. 2(a). The diameter
of the sensor is set as 95 mm. As the neighboring bipolar
pattern is adopted, the degrees of freedom of the measurement
is M =16 x (16 —3)/2 = 104 (dimension of the voltage data
vector).

Based on the sensor configuration, the sensitivity map J can
be computed. The scaled summation of each row of J is
plotted in Fig. 2(b). The sensitivity map is essentially the
superposition of all the sensitivity distributions correspond-
ing to each measurement, which is nonuniform as shown
in Fig. 2(b). The matrix J has the highest sensitivity in the pix-
els near the measurement surface, and becomes less sensitive
in the center area. In the linearized algorithm, the sensitivity
map directly affects the quality of the reconstructed image,
as the objects near the excitations will be greatly augmented.
This will be demonstrated in the following experiments. The
mutual coherence [51], E(J), of the matrix J is defined as the
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Fig. 2. Synthetic data experimental settings. (a) Schematic illustration
of the designed EIT sensor system in the COMSOL environment.
(b) Normalized sensitivity map of the EIT sensor configuration.

maximum absolute value of the inner product between any
two normalized columns j; and jg, i.e.,

ik

EJ) = max —_
1<ik=<N,i#k | 1jill2 k]2

(24)
The mutual coherence E(J) is an important measure in the
field of sparse representations that characterizes the spread of
the columns of matrix J. E(J) takes values within the range
of 0 < E < 1, with a lower value indicating a large spread
and a low coherence. For the data being simulated, the mutual
coherence of the sensitivity matrix is Z(J) = 0.9995, which
indicates a high coherence between the columns of matrix J.
Under this condition, the SBL algorithm in [39] has been
proved effective. The SA-SBL algorithm proposed in the paper
is devised through modifications of the SBL algorithm in [39]
and provides reliable image reconstruction even when the
sensitivity matrix J is highly coherent.

In this paper, we assume that the voltage data is corrupted
by a white Gaussian noise, and we define SNR as

IvII3

E (In3)

In this subsection, since we have the ground truth of the
conductivity distribution for the synthetic data, the correlation
coefficient and the relative reconstruction error can be defined
respectively as follows to quantitatively evaluate the recon-
struction accuracy [13]:

SNR £ 10log;, (25)

N
D> ei-6)(si—g)
Cor = — =1 , (26)
N N 5
> ©@i—6)7*> (si—3)
i=l1 i=1
and
Err — M, 27)
sz

where ¢ represents the true conductivity variation, and the
number of simplexes in the inverse FEM mesh is N = 3228
in our phantom test. Note that to make the simulation more
realistic and to avoid committing an inverse crime, we utilize
a forward mesh consisting of 6570 domain elements and
304 boundary elements. The adopted forward and inverse FEM
meshes are shown in Fig. 3. It can be observed from Fig. 3

(@ (b)

Fig. 3. Adopted forward and inverse FEM meshes. (a) Forward
mesh consisting of 6570 domain elements and 304 boundary elements.
(b) Inverse mesh consisting of 3228 elements.

Fig. 4. Ground truth of the generated multiple small objects.

that, the inverse mesh consists of square simplices, while the
forward mesh consists of triangular simplices. We construct
the EIT forward model using the dense mesh, where the
electric field potential of each triangular simplex is derived
from the values of its corresponding vertices. On the other
hand, the conductivity of each square simplex is determined
by the conductivity at the center of the square simplex. Thus,
the inverse mesh used when solving the inverse problem is
totally different from the forward mesh used when generating
the measurement data.

First, an illustrative example is presented to evaluate the
performance of the proposed method when resolving multiple
small objects. As shown in Fig. 4, we design a phantom
consisting of three small titanium beta-21S squares with a
conductivity value of 7.407 x 10° S/m and a side length
of 10 mm, and the conductivity of the background saline
is 0.05 S/m. Other simulation settings include an excitation
frequency of 10 kHz and a peak-to-peak amplitude of 1.5 mA.
The iteration termination conditions for the iterative methods
are set t0 €min = 1 x 1075 and Umax = 200. The target
objective parameter in the €1 regularization is set as 0.1. The
iteration step of TV regularization is set as 0.01. For AGS

constraint method, the maximum diameter of the group is set

as 6 pixels, and the penalty vector is tuned to [ﬁ, ISW]'

All the above simulation settings remains unchanged unless
otherwise stated.

The reconstruction results are given in Table I, where the
plots in each row show the results for a different method,
whereas each column depicts the results corresponding to
different input SNR values. Concretely, in the first three rows
of Table I, the boundary between the two closer squares are
not clearly resolved. However, compared with the other two
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TABLE |
ILLUSTRATIVE EXAMPLES OF EIT IMAGE RECONSTRUCTION OF MULTIPLE SMALL OBJECTS

SNR
Noiseless 50 dB 40 dB
Methods
ART [16]
TV  regularization

[18]

Nissinen’s Bayesian
method [49]

01
[21]

regularization

AGS constraint
method [24]

Proposed SA-SBL
based approach

methods, Nissinens Bayesian method yields a slightly better
resolution. The methods whose results are provided in the last
three rows of Table I take the signal sparsity into consideration.
However, noticeable artifacts between the pair of close squares
can still be observed with the ¢ regularization approach, and
the performance degrades significantly when the input SNR
is low. Both the AGS constraint method and the proposed
SA-SBL based method clearly resolve all three objects, and
the results are insensitiveness to the input SNR. Nevertheless,
the proposed approach better preserves the edge and shape

of each object. For the listed iterative algorithms, convergence
respectively occurs at approximately 150, 30, 10, 70, 150, and
30 iterations, following the order of appearance in Table I. The
following statistical comparison results further demonstrate the
advantages of the proposed SA-SBL technique in terms of the
correlation coefficient and the relative reconstruction error.
We evaluate the statistical performance through
1,000 Monte Carlo trials with the input SNRs ranging
from 35 dB to 70 dB. In Fig. 5, the comparisons are made
with respect to different input SNR values for different
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Fig. 5.  Comparisons of Monte Carlo trial statistics among different
methods. (a) Correlation coefficient. (b) Relative reconstruction error.

approaches. In addition to the methods examined in Table I,
we also included the SBL approach exploited in our previous
work [1] for comparison. From Fig. 5 we can observe that
the AGS, SBL, and SA-SBL based approaches significantly
outperform all the others, as can be also seen from Table I.
It is worth emphasizing that, the mathematical model of the
Bayesian algorithm [49] can be derived equivalently to that of
the damped least-square algorithm [53], which is essentially
a generalized Tikhonov regularization approach. Hence,
as expected, they demonstrate similar performance in
reconstruction. Since the method in this paper is developed
on the basis of our previous work in [1], we place more
emphasis on the comparison between AGS and SA-SBL
based EIT image reconstruction. As the grouping in AGS
method is based on the estimated conductivity distribution
by the one-step Gaussian Newton solver with Laplacian
regularization, which is sensitive to noise, the performance
of AGS degrades when the input SNR is low. In addition,
the AGS method requires troublesome parameter tuning in
practice because different types of weights are assigned when
handling the conductivity distribution with different extents
of sparsity. Therefore, the proposed SA-SBL based method
is advantageous to the AGS constraint method from both
performance and implementation perspectives.

Fig. 6. Ring-shape conductivity image reconstruction test: (a) Ground
truth; (b) £1 regularization; (c) AGS constraint method; (d) Proposed
SA-SBL based approach.

In the following, we demonstrate the superiority of the
proposed method in terms of the image resolution. We consider
a more complicated scenario, which has not been discussed
in the existing literature. Extracellular impedance sensing is
a feasible technique in the biomedical field to detect mor-
phological changes, membrane permeability, and viability of
the cell spheroids. This technique avoids the use of labels,
does not interfere with normal cellular behavior in vitro, and
allows real-time monitoring of cell spheroids [54]. In the
initial stages of the transfection or protein/organelle extraction
procedures, certain nonionic surfactants, such as Triton X-
100 in a proper concentration level, is widely adopted to
permeabilize the living cell membrane [55]. As the cell
membranes generally show electrically insulating effect at low
frequencies, and the impedance of sensor electrodes is fairly
sensitive to any changes in the permeability and morphology
of membranes and the adherent layers, a remarkable decrease
in the conductivity of the outer layers of the cell spheroids
will be induced as the result of the utilization of nonionic
surfactants [54].

To evaluate the performance of the proposed approach in
this challenging scenario, a phantom with a ring shape conduc-
tivity distribution is designed in the COMSOL Multiphysics®
environment. The ground truth of the synthetic phantom is
illustrated in Fig. 6(a). The radii of the inner and outer circles
are 10 mm and 25 mm, respectively, and the conductivity
values of the inner and outer regions are 0.1 S/m and 0.8 S/m,
respectively. For AGS constraint method, the maximum diam-
eter of the group is set as 8 pixels, and the penalty vector is
tuned to [ﬁ, ﬁ]. Since it has been shown in Table I and
Fig. 5 that AGS and the proposed SA-SBL based methods
significantly outperform the other approaches, we only pro-
vide the results for these two methods together with another
commonly used sparsity-based methods, i.e., {1 regularization
method. The result shown in Fig. 6(b) fails to faithfully render
the structure: the reconstructed conductivity distribution is
overly sparse and inaccurate. By contrast, the ring-shaped
structure is recovered with a high fidelity by using the AGS
and SA-SBL based methods, as depicted in Figs. 6(c) and (d).
Between these two methods, the results reconstructed from
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the proposed SA-SBL based method clearly exhibit a better
accuracy.

B. Real Data Experiments

The performance of the proposed SA-SBL based EIT
reconstruction algorithm is further validated through real data
experiments in this section. The real data experiments are
designed to visualize the complex flow motions inside a
certain boundary, which provides a feasible solution for the
monitoring of the cerebral blood flow (CBF) and diagnosis of
encephalopathy such as cerebral hemorrhagic stroke. CBF is
an important parameter indicating cerebrovascular pathology
and neural activities of the human brain. Existing techniques
such as computed tomography (CT) and MRI provide global
brain imaging but only show stationary snapshots rather than
continuous monitoring. Positron emission tomography (PET)
produces three-dimensional brain functional images with a
temporal resolution around 30—40 seconds and involves the
use of radioactive material. A fast, portable and cost-effective
diagnostic imaging modality to monitor the CBF is highly
desirable. Since the electrical conductivity of blood is three
to four times higher than the electrical conductivity of the
brain tissue [56], brain impedance is sensitive to variations
of the CBF. Based on this fact, EIT has been utilized in the
neuroimaging field. For instance, strong evidences for EIT
detection of the cerebral hemodynamic response to the neural
stimulus has been demonstrated in [8], [57], and [58].

It is worth pointing out that studies in image reconstruction
are still at an early stage currently and applications in practical
biomedical scenarios are far more complicated than labora-
tory environment with simplified models and assumptions.
Particularly, when imaging a real human head using scalp
electrodes, the poorly conducting skull and other extracerebral
layers limit the injected current to flowing into the brain
compartment [59], [60], and a large proportion of the current
is shunted through the scalp [9], [61]. Therefore, the sen-
sitivity of EIT to small intracranial conductivity changes is
substantially reduced, making the image reconstruction sus-
ceptible to noise and, thus, the inverse problem becomes even
more ill-posed [61]. This phenomenon is termed as blurring
effect [60]. In addition, the obtainable signal amplitude is
limited as the injected current is constrained by medical
safety regulations [62]. The situation is compounded by the
mismodeling effect [62], since errors in the shape/size of the
electrodes/boundary, in the electrode positions, and in the skin-
to-electrode contact impedance can produce artifacts in the
reconstructed images [63]. In this paper, we are dealing with
one of the most important limitations of the EIT modality,
i.e., the partial volume effect [60] induced by the low spatial
resolution. This has long been a major factor that hinders the
practical application of EIT. As such, other aforementioned
potential difficulties encountered in practical applications are
beyond the scope of this paper and will be addressed in our
future work. The objective of this section is to demonstrate the
improved spatial resolution by SA-SBL and explore its feasi-
bility in practical medical imaging by conducting experiments
in a cylindrical vessel.

Fig. 7. Experimental EIT measurement system.

The experimental setup comprises a cylindrical vessel with
an inner diameter of 287 mm. A circular section of the
vessel (71 mm from the bottom) is fitted with 16 flush-
mounted stainless-steel plate electrodes, each with a contact
area of 6 cm?. These electrodes are wired to an ITS® v5r
model EIT system for real-time three dimensional industrial
process tomographic imaging. The background substance is
saline tap-water with a height of 132 mm during the exper-
iments. Fig. 7 shows the experimental setting of the system.
The system supports up to 32 electrodes with a working
frequency 10 kHz, and it can deliver up to 650 frames per sec-
ond (fps) per plane. In the experiment, the current excitation
frequency is selected as 10 kHz, and the amplitude of the
injected current is 15.17 mA. The adjacent sensing strategy
is adopted, and the amplitude data of the boundary voltage
is acquired for image reconstruction. The room temperature
in the laboratory was 24.8 C. During the entire experiment
process of the experiments, videos are recorded, and the
snapshots of these videos are utilized as references to draw
comparisons. A piston syringe is used to inject the colored
solution into the cylindrical vessel. For both experiments with
AGS constraint method, the maximum diameter of the group
is set in the range 6 to 11 pixels, and the penalty vector
is tuned in the range |57, 13;] to [7a7 19z)- In the first
real-data experiment, the target objective parameter in the
€1 regularization is changed to 0.01.

The first real data experiment is designed to simulate the
spurting arterial CBF. By referring to the empirical medical
data in [56], we set the conductivities of the red jet ink and the
background solution to 0.8 S/m and 0.25 S/m respectively to
simulate cerebral blood flow and the rest of brain tissues. For
the convenience of the observation and injection, the needle
is bent to a right angle and dipped into the water, and the
syringe is pressed against the vessel wall. In the first real
data experiment, the frame collection rate is set to 125 fps.
The 1705-th, 1885-th, 2225-th frames of the collected voltage
data are selected to reconstruct the conductivity images of
three major stages using different approaches. The results are
tabulated in Table II. Note that, the conductivity ratio of the
background solution versus the saline ink is low, and the
diffusion of the saline ink will lead to a significant reduction
in the conductivity. As such, visually visible light-colored ink
region can become undetectable if diluted to a certain low
concentration. As expected, the best revivification is achieved
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TABLE Il
IMAGE RECONSTRUCTION RESULTS OF REAL COLLECTED DATA

SNR
Frame 1051
Methods

Frame 1451

Frame 2231

Ground truth

Nissinen’s Bayesian
method

£1 regularization

AGS constraint
method
Proposed  SA-SBL

based approach

0.04
0.038
0.03
0.025
0.02
0.015
0.01
0.005

with the proposed SA-SBL method as shown in the last
row of Table II, where the reconstructed high conductivity
region most closely resembles the ground truth presented
in the first row. In comparison, the reconstructed images
with the Nissinen’s Bayesian and ¢; regularization methods,
respectively depicted in the second and third rows, are either
excessively smooth or sparse. In addition, Nissinen’s Bayesian
method clearly produces more artifacts in the background
regions when imaging low contrast objects. The results of the
AGS constraint method is shown in the fourth row, where
the spatial resolution approaches the proposed SA-SBL. Both
the proposed SA-SBL and the AGS constraint methods recov-
ered the image of the needle. However, the AGS constraint
method exhibits clear losses in the shape/edge information, and
yields very conspicuous artifacts, thus reaffirming the proposed
SA-SBL to be the preferred choice.

In the second real data experiment, more complicated flow
motions, i.e., the swirl and diffusion are considered. The
saline solution of blue jet ink is dripped into the cylindrical
vessel from above the top edge of the vessel wall. We set
the conductivities of the background solution and the blue
solution to 0.014 S/m and 4.21 S/m, respectively. Before
the blue solution is dripped, we stir the background tap-
water clockwise in advance to ensure that the blue solution
drops swirl immediately after they touch the water surface.
The frame collection rate is changed to 156 fps. We select
one frame from every 50 frames between the 573-rd and
the 2223-rd frame. The successive video snapshots and the
reconstructed conductivity distribution by using the AGS and
SA-SBL methods for the selected frames are shown in
Table III. The first two rows are ground truths, the third
and fourth rows are the reconstructed results using the
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TABLE IlI
SUCCESSIVE RECONSTRUCTED CONDUCTIVITY DISTRIBUTION FRAMES AND GROUND TRUTH
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AGS method, and the last two rows are the results of the
proposed SA-SBL method. It is observed that the rotation as
well as the diffusion motions are recovered with both methods.
However, compared with the results obtained by the SA-SBL
method, we observe more artifacts and more discontinuities in
the recovered ink region by the AGS method. Note that, as the
sensitivity map is very sensitive and nonuniform in the near-
boundary region of the sensor, which can be seen in Fig. 2(b),
in addition to which, both methods are not based on smooth
penalty, the reconstructed images close to the vessel wall
are likely to suffer from distortion. Nevertheless, as can be
observed in Table III, the proposed SA-SBL based method
yields higher robustness against such unfavorable factors. It is
worth mentioning that, while the contrast between the objects
and the background in the synthetic data experiments is high,
the results obtained in real data experiments provide a different
perspective for imaging objects with a low contrast.

V. CONCLUSION

The objective of this paper is to develop a novel algo-
rithm to obtained enhanced EIT image reconstruction by
exploiting the structured sparsity in the conductivity distribu-
tion. We redesign the existing SBL algorithm by taking into
account the pattern coupling between adjacent columns that
are not directly neighbored in the target vector. Compared with
the existing state-of-the-art algorithms, the proposed method
achieves a higher spatial resolution. In addition, since the EIT
imaging problem is formulated in a full Bayesian framework,
cumbersome parameter tuning process is avoided.
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