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A novel technique for localization of narrowband near-field sources is presented. The technique utilizes the sensor-angle
distribution (SAD) that treats the source range and direction-of-arrival (DOA) information as sensor-dependent phase progression.
The SAD draws parallel to quadratic time-frequency distributions and, as such, is able to reveal the changes in the spatial frequency
over sensor positions. For a moderate source range, the SAD signature is of a polynomial shape, thus simplifying the parameter
estimation. Both uniform and sparse linear arrays are considered in this work. To exploit the sparsity and continuity of the SAD
signature in the joint space and spatial frequency domain, a modified Bayesian compressive sensing algorithm is exploited to
estimate the SAD signature. In this method, a spike-and-slab prior is used to statistically encourage sparsity of the SAD across
each segmented SAD region, and a patterned prior is imposed to enforce the continuous structure of the SAD.The results are then
mapped back to source range and DOA estimation for source localization. The effectiveness of the proposed technique is verified
using simulation results with uniform and sparse linear arrays where the array sensors are located on a grid but with consecutive
and missing positions.

1. Introduction

Localization of emitters is an important topic with many
applications in radar, sonar, and wireless communications.
The majority of research work in array signal processing has
been focused on far-field signals; that is, the source signals are
assumed to be located far from the receiver. Accordingly, the
propagationwaves assume a planarwavefront,making source
localization solely based on the direction-of-arrival (DOA) of
the sources. However, this characterization becomes invalid
when sources are located in the near-field region. In this case,
each source is characterized by bothDOAand range that vary
with sensor positions. To solve near-field source localization
problems, subspace-based techniques, for example, MUSIC,
were extended to a two-dimensional field [1]. However, this
entails a high computational load required for both DOA and
range searching.

To decouple these two variables of the DOA and range
for simplified computations, a more accurate quadratic

approximation of the wavefront, in lieu of the linear approx-
imation, can be made with respect to the sensor positions
[2]. Consequently, the phase delay is no longer linear with
the sensor positions but is decided by the DOA and range of
the sources jointly. A number ofmethods have been proposed
to jointly estimate the DOA and range information for near-
field source localization. For instance, algorithms based on
high-order statistics were proposed in [2–4]. The work in
[2] exploits the rotational invariance in certain cumulant-
domain signal subspace for range and bearing estimation.
The technique in [3] applies a symmetric uniform linear array
(ULA) and uses eigenvalues together with the corresponding
eigenvectors of two properly designedmatrices to jointly esti-
mate signal parameters. As such, it avoids any spectral peak
searching. Two orthogonally polarized sensors were utilized
in [4] to improve performance. These methods, however,
do not meet the desired performance and require certain
array properties, for example, a ULA with an interelement
spacing less than half a wavelength. In practical applications,
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such approaches are very costly due to receiver hardware and
computational complexity.

Sparse arrays [5–7] use fewer elements to achieve the
same array aperture of fully populated arrays. They have
similar mainbeam properties and, therefore, provide similar
performance in terms of angular accuracy, resolution, and
detection of targets close to interference directions, all being
achieved with reduced size, weight, power consumption, and
cost. An algorithm was proposed in [8] to cope with the
near-field source localization problem using sparse arrays.
However, it relies on the assumption that the sparse array
configuration must be symmetric. In addition, similar to
[2–4], the second-order Taylor approximation of the range
between the source signals and the sensors is assumed to
decouple the two variables. As a result, the performance is
compromised when the sources are placed close to the array.

In this paper, we propose an alternative approach using
sparse arrays by mapping the source range and DOA
information into sensor-dependent phase progression. The
sensor-angle distribution (SAD) is used to represent the
phase progression in the joint space and spatial frequency
domain with a signature that resembles those of instanta-
neously narrowband frequency-modulated (FM) signals in
the joint time-frequency domain [9, 10]. In this respect, the
signal processing algorithms introduced for quadratic time-
frequency analysis can be readily applied for the processing of
the SAD for near-field source localization. It is important to
note that, while the SADwas originally developed in the form
of spatial Wigner distribution [9, 10], which is effective only
for second-order (linear FM) spatial frequency signatures,
we consider it in the general form within Cohen’s class with
a proper time-frequency kernel for improved sensor-angle
relationship [11].The proposed technique permits the sensor-
dependent phase progression as a high-order polynomial
phase signal (PPS) to account for close sources, whereas
the coefficients are estimated from the SAD signature with
simple least squares fitting, which does not require parameter
searching.

Another important contribution of this paper is the
consideration of the source localization problem in a sparse
array configuration where the array sensors are located in
a uniform linear grid but with missing positions. As such,
conventional time-frequency analysis tools become infeasible
due to the undesirable artifacts caused from missing sen-
sor entries [12]. Instead, we use the emerging compressive
sensing (CS) [13] techniques to reconstruct the SAD in
the joint space and spatial frequency domain. The problem
is considered in the Bayesian compressive sensing (BCS)
framework that generally achieves desired performance and
enables flexible utilization of various signature structures
through the application of proper priors [14–17]. In particular,
we use the structure-aware BCS, which was developed for
effective reconstruction of sparse time-frequency distribu-
tions of FM signals, to exploit the sparsity and continuity of
the spatial frequency signatures in the SAD domain. In doing
so, the isolated or sporadic entries in the reconstructed SAD
caused by the presence of missing sensors and measurement
noise can be significantly suppressed, leading tomore reliable
SAD reconstruction and spatial frequency estimation. The

obtained results are then mapped back to the estimation
of source range and DOA information for effective source
localization. Compared to the approach proposed in [8]
using a sparse symmetric array, the proposed technique offers
higher flexibility and robustness to array design and improves
the source localization accuracy when the sources are close to
the array and thus the phase exhibits a high-order polynomial
phase relationship with the sensor positions.

The rest of the paper is organized as follows. Section 2
introduces the signal model of near-field localization based
on a third-order approximation. The SAD and its sparse
reconstruction are described in Section 3, and the structure-
aware Bayesian compressive sensing technique applied for
sparse SAD reconstruction and spatial frequency estimation
is described in Section 4. Simulation results are provided
in Section 5 to numerically evaluate and compare the
performance. Such results reaffirm and demonstrate the
effectiveness of the proposed technique. Section 6 concludes
this paper.

Notations. We use lower-case (upper-case) bold characters to
denote vectors (matrices). In particular, I

𝑁
denotes the𝑁×𝑁

identity matrix. (⋅)∗ denotes complex conjugate, whereas (⋅)𝑇

and (⋅)𝐻, respectively, denote the transpose and conjugate
transpose of a matrix or vector. diag(x) represents a diagonal
matrix that uses the elements of x as its diagonal elements.
‖ ⋅ ‖
2

2
implies the Euclidean (𝑙

2
) norm of a vector. 𝑃

𝑟
(⋅)

expresses the probability density function (pdf) and 𝑝(𝑥 |

−) denotes the conditional pdf of random variable 𝑥, given
other parameters. Beta(𝑥, 𝑦) computes the beta function for
corresponding elements 𝑥 and 𝑦.CN(𝑥 | 𝑎, 𝑏) describes that
random variable 𝑥 follows a complex Gaussian distribution
with mean 𝑎 and variance 𝑏. Furthermore, 𝛿(𝑥) is the Dirac
delta function of 𝑥.

2. Signal Model

For the simplicity of presentation, the signal model is pre-
sented for the single-source case, but the proposed technique
can be straightforwardly extended to the multiple source
problems and simulation results are provided for two source
scenarios.

Consider a near-field narrowband source impinging on a
uniform or sparse linear array with 𝐾 = 2𝑄 + 1 elements, as
depicted in Figure 1, where𝑄 ∈ Z+. Note that we assume𝐾 to
be an odd integer without loss of generality, but the problem
can be similarly formulated for an even value of𝐾. Examples
of even values of 𝐾 are provided in Section 5. Let the index
of the reference element be 0, and the sensors are located at
𝑝
𝑘
𝑑, where 𝑝

𝑘
∈ Z for 𝑘 = −𝑄, . . . , 𝑄, and 𝑑 is the unit

interelement spacing. To avoid spatial ambiguity, 𝑑 is usually
taken as half-wavelength, denoted as 𝑑 = 𝜆/2. The source is
located with a range 𝑟 and azimuth angle 𝜃 with respect to a
reference sensor. Note that the array may be asymmetric; that
is, it is not necessary to assume 𝑝

−𝑘
= −𝑝
𝑘
, for 𝑘 = −𝑄, . . . , 𝑄.
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Figure 1: The geometry for near-field source localization.

In a near-field environment, the range between the source
and the sensors varies for each of the 𝐾 sensors. It is
straightforward to show that the range between the source
signal and sensor 𝑘 is given by

𝑟
𝑘
= √𝑟2 + 𝑝

2

𝑘
𝑑2 − 2𝑟𝑝

𝑘
𝑑 cos (𝜃). (1)

As such, the near-field steering vector is given by

a = [exp(
𝑗2𝜋𝑟
−𝑄

𝜆
) , . . . , exp(

𝑗2𝜋𝑟
𝑄

𝜆
)]

𝑇

. (2)

For source signal 𝑠(𝑡), the data received at the sensor array is
expressed as

x (𝑡) = a𝑠 (𝑡) + n (𝑡) , 𝑡 = 1, . . . , 𝑇, (3)

where n(𝑡) is the additive Gaussian noise vector and 𝑇 is the
number of observed time samples.

To understand the significance of the steering vector,
consider the special case of fully populated array that is
uniformly spaced with interelement spacing 𝑑; that is,𝑝

𝑘
= 𝑘.

Then, (1) can be expressed as

𝑟
𝑘
= √𝑟2 + 𝑘2𝑑2 − 2𝑘𝑑𝑟 cos (𝜃). (4)

Assume that 𝑟 is reasonably larger than 𝑄𝑑. Then, using
the Taylor series expansion, we can obtain the third-order
approximation, which is given by

𝑟
𝑘
≈ 𝑟 − 𝑘𝑑 cos (𝜃) + 𝑘

2
𝑑
2

2𝑟
sin2 (𝜃) + 𝑘

3
𝑑
3

2𝑟2
cos (𝜃) sin2 (𝜃) .

(5)

It is indicated that the near-field steering vector given in
(2) is a uniformly sampled FM signal with respect to 𝑘.
In this respect, the signal processing techniques devised for
nonstationary signal analysis and quadratic time-frequency
signal representations can be readily applied for near-field
source localization in the joint space and spatial frequency

domain. The corresponding spatial frequency is obtained
from the phase difference with respect to 𝑘, given as

𝑓 (𝑘) = −
1

2𝜆
(𝑟
𝑘+1

− 𝑟
𝑘−1
) = 𝑏
0
+ 𝑏
1
𝑘 + 𝑏
2
𝑘
2
, (6)

where

𝑏
0
=
𝑑

𝜆
cos (𝜃) − 𝑑

3

2𝑟2𝜆
cos (𝜃) sin2 (𝜃) ,

𝑏
1
= −

𝑑
2

𝑟𝜆
sin2 (𝜃) ,

𝑏
2
= −

3𝑑
3

2𝑟2𝜆
cos (𝜃) sin2 (𝜃) .

(7)

It is clear that the polynomial coefficients 𝑏
0
, 𝑏
1
, and

𝑏
2
are related to the range and the DOA. As such, these

parameters can be estimated once the sensor-dependent
spatial frequency is obtained. Note that, for a large range
(𝑟 ≫ 1), 𝑓(𝑘) behaves as a chirp when the second-order term
in (6) is ignored. Furthermore, when the source is located
in the far field, as 𝑟 approaches infinity, 𝑓(𝑘) approaches
a constant, implying a single spatial frequency associated
with a sensor-independent DOA. According to (7), from the
estimated values of 𝑏

0
, 𝑏
1
, and 𝑏

2
, the unknown range and

DOA can be, respectively, estimated as

𝜃 = arccos [𝜆
𝑑
(𝑏
0
−
𝑏
2

3
)] ,

𝑟 = −
𝑑
2

𝑏
1
𝜆
sin2 (𝜃) .

(8)

Specifically, when 𝑑 = 𝜆/2, the above expressions become

𝜃 = arccos [2(𝑏
0
−
𝑏
2

3
)] ,

𝑟 = −
𝑑

2𝑏
1

sin2 (𝜃) .
(9)

3. Sensor-Angle Distribution and
Sparse Reconstruction

Several methods are available for the estimation of linear
FM and PPS parameters (see, e.g., [18–20]). Such methods,
however, are effective only when the samples are uniformly
applied (i.e., the array is uniform linear in the underlying
problem). When the array is sparse, as considered in this
paper for more effective array aperture utilization, these
methods become difficult to apply. For illustrative purposes,
we consider a sparse linear array structure, consisting of
a set of uniform linear subarrays with different coprime
interelement spacings, as an example. The coprime array
structure was proposed in [21] for systematical sparse array
configuration, which generally achieves 𝑂(𝑁2/2) coarray
sensors with𝑁 physical sensors. Therefore, the aperture and
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the number of degrees-of-freedom (DOFs) can be improved
using correlation-aware techniques. Coprime arrays have
found broad applications inDOAestimation and interference
suppression [22–25].

For the spatial frequency estimation, we exploit the SAD
to describe the relationship between spatial frequency and
the sensor positions. The SAD draws parallel to the time-
frequency distribution. In essence, the SAD uses sensor
positions in lieu of time samples whereas the spatial fre-
quency replaces temporal frequency. With this analogy, SAD
becomes a tool to reveal the local behavior of the spatial
frequency along the space axiswith respect to the array sensor
positions. For sparse arrays, the SAD suffers from missing
artifacts due to missing samples. We use time-frequency
kernel and sparse reconstruction to achieve satisfactory
SAD reconstruction and spatial frequency estimation. In the
following, we describe the SAD definition in Section 3.1 and
discuss the effect of array sparsity in Section 3.2. The sparse
reconstruction of SAD from a sparse array is addressed in
Section 3.3, and the structure-aware Bayesian compressive
sensing that implements the sparse reconstruction is detailed
in Section 4.

3.1. Sensor-AngleDistribution. TheSADcorresponding to the
𝑖th sensor position and spatial frequency 𝜉 at time instant 𝑡 is
expressed as

𝐷 (𝑖, 𝜉; 𝑡) =

∞

∑

𝑙=−∞

∞

∑

V=−∞
𝜙 (V, 𝑙) 𝑥 (𝑖 + V + 𝑙; 𝑡)

⋅ 𝑥
∗
(𝑖 + V − 𝑙; 𝑡) 𝑒−𝑗4𝜋𝜉𝑙,

(10)

where 𝑥(𝑖; 𝑡) denotes the 𝑖th element of vector x(𝑡) and 𝜙(V, 𝑙)
is a kernel function that characterizes the distribution and is
a function of sensor position and sensor lag [26]. The above
equation defines Cohen’s class of power distribution over the
joint variables 𝑖 and 𝜉. In this respect, all the standard kernel
designs applied in the time-frequency analysis literature can
be employed with the SAD. The distribution in (10) can
be averaged over the 𝑇 samples to reduce the effect of
observation noise, yielding

𝐷 (𝑖, 𝜉) =
1

𝑇

𝑇

∑

𝑡=1

𝐷(𝑖, 𝜉; 𝑡) . (11)

Stacking 𝐷(𝑖, 𝜉) with respect to 𝑖 and 𝜉 forms an SAD matrix
D.

3.2. Data-Dependent Time-Frequency Kernel. Benefiting
from the analogy of SAD to time-frequency distributions,
we understand that the sparse placement of array sensors is
deemed to produce artifacts that clutter the SAD, making
the spatial frequency estimation difficult. Analysis of the
effects of missing samples on time-frequency distribution is
given in [12]. To mitigate effects of the induced artifacts and
improve time-frequency signature estimation, the first step is

to apply a time-frequency kernel [12, 17, 27]. Time-frequency
kernel allows mitigation of cross-terms between different
signal components as well as the effect of artifacts due to
missing samples (dual of missing sensors in the underlying
problem).

Time-frequency kernels are generally represented as a
multiplying weight (mask) matrix in the ambiguity domain.
The ambiguity function corresponding to the underlying
SAD is definedwith respect to sensor position lag 𝑙 and spatial
frequency shift 𝑝 as

𝑄 (𝑝, 𝑙; 𝑡) =

∞

∑

𝑖=−∞

∞

∑

V=−∞
𝑥 (𝑖 + 𝑙; 𝑡) 𝑥

∗
(𝑖 − 𝑙; 𝑡) 𝑒

−𝑗4𝜋𝑝𝑖
. (12)

The averaged AF is then obtained by averaging over the 𝑇
time samples as

𝑄 (𝑝, 𝑙; 𝑡) =
1

𝑇

𝑇

∑

𝑡=1

𝑄 (𝑝, 𝑙; 𝑡) . (13)

The time-frequency kernels are based on the fact that
majority of autoterm distributions are located near the
origin in the ambiguity domain, whereas the cross-terms
and artifacts are distant from the time lag and frequency-
shift (sensor lag and spatial frequency shift in the underlying
problem) axes. This property has motivated researchers to
propose educed-interference distribution kernels with low-
pass filter characteristics to suppress cross-terms and pre-
serve autoterms. Such kernels can be signal-independent or
signal-dependent. In this paper, we use the adaptive optimal
kernel (AOK) and modify it to specifically deal with missing
positions.TheAOK is formulated as an optimization problem
in [28]:

max
C

∑

𝑟

∑

𝜙

𝑟
󵄨󵄨󵄨󵄨𝑄 (𝑟, 𝜙) 𝐶 (𝑟, 𝜙)

󵄨󵄨󵄨󵄨

2

subject to 𝐶 (𝑟, 𝜙) = 𝑒
−𝑟
2
/2𝜎
2
(𝜙)
,

1

2𝜋
∑𝜎
2
(𝜙) ≤ 𝛼,

(14)

where C denotes a matrix with all 𝐶(𝑟, 𝜙) entries. Note that
the ambiguity function 𝑄(𝑟, 𝜙) and the kernel 𝐶(𝑟, 𝜙) are
defined in the polar coordinates with the radius 𝑟 and angle
𝜙. The objective of the AOK is to maximize the energy in
the ambiguity domain in order to preserve the autoterms.
At the same time, the Gaussian constraint in 𝐶(𝑟, 𝜙) leads to
cross-term reduction. The choice of 𝜙 influences the tradeoff
between cross-term suppression and autoterm preservation.

3.3. Sparse Reconstruction of SAD from Sparse Array. As
addressed above, a key step to achieve improved SAD recon-
struction and spatial frequency estimation in the presence
of missing sensors is through sparse reconstruction. In
extending the techniques developed for sparse reconstruction
of time-frequency distribution in [12, 17, 27] to the underlying
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sparse SAD reconstruction, we define the following discrete
sensor autocorrelation function (SAF) for time instant 𝑡:

𝐴 (𝑖, 𝑙; 𝑡) =

∞

∑

V=−∞
𝜙 (V, 𝑙) 𝑥 (𝑖 + V + 𝑙; 𝑡) 𝑥∗ (𝑖 + V − 𝑙; 𝑡) . (15)

The averaged SAF

𝐴 (𝑖, 𝑙) =
1

𝑇

𝑇

∑

𝑡=1

𝐴 (𝑖, 𝑙; 𝑡) (16)

can be similarly defined using all available samples to reduce
the effect of additive noise. The SAF matrix A is formed that
contains 𝐴(𝑖, 𝑙) for all the entries of 𝑖 and 𝑙. As such, at each
sensor position, the columns of the averaged SAD matrix D
and that of the averaged SAF matrix A are related by a one-
dimensional (1D) Fourier transform along the lag dimension.
Denote a[𝑖] as a column vector that contains all the elements
in the 𝑖th column of A and d[𝑖] as a vector corresponding to
the 𝑖th column ofD. Then these two vectors are related by

a[𝑖] = Fd[𝑖], 𝑖 = 1, . . . , 𝐾, (17)

where F is the inverse Fourier transform matrix. Equation
(17) describes a linear model relating the sparse vector d[𝑖]

to the compressed observation vector a[𝑖] using the inverse
Fourier dictionary. As such, d[𝑖] can be obtained by solving
a sparse optimization problem, which is commonly used in
compressive sensing techniques. The positions of nonzero
entries in d[𝑖] indicate the estimations of spatial frequency.
Note that F can be designed as a wide matrix so as to achieve
a higher spatial frequency resolution in the estimated d[𝑖].

As demonstrated for time-frequency analysis, the 1D
relationship between the instantaneous autocorrelation func-
tion (IAF, the dual of SAF) and the time-frequency distri-
bution (the dual of SAD) is much more effective than the
conventional two-dimensional (2D) approach between the
ambiguity function and the time-frequency distribution [29,
30] and allows local time-frequency reconstruction for each
time instant (the dual of sensor positions). In particular, such
local reconstruction capability is fundamental to enable the
development of the structure-aware Bayesian compressive
sensing technique to be described in Section 4.

4. Structure-Aware Bayesian
Compressive Sensing

4.1. Continuous StructureModeling with Spike-and-Slab Prior.
A number of approaches, such as the OMP and LASSO
[31, 32], can be effectively applied for the reconstruction of
sparse SAD signatures. To exploit the continuous structure of
the SAD signature, however, the BCS-based approaches are
consideredmost effective due to their flexibility of employing

proper priors for this purpose. We use the structure-aware
BCS technique [17] to improve estimation performance.

To encourage sparsity of the SAD signatures, we place a
spike-and-slab prior to each element of d[𝑖] [33]; that is, for its
𝑙th element,

𝑝 (𝑑
[𝑖]

𝑙
| 𝜋
[𝑖]

𝑙
, 𝛽
[𝑖]

0
) = (1 − 𝜋

[𝑖]

𝑙
) 𝛿 (𝑑

[𝑖]

𝑙
)

+ 𝜋
[𝑖]

𝑙
CN (𝑑

[𝑖]

𝑙
| 0, [𝛽

[𝑖]

𝑙
]
−1

) ,

(18)

where 𝜋[𝑖]
𝑙

is the prior probability of a nonzero element and
𝛽
[𝑖]

𝑙
is the precision (reciprocal of variance) of the complex

Gaussian distribution, for the 𝑙th sensor position.
To facilitate an analytical inference, which involves the

delta function, the product of following two latent variables
is introduced to follow the pdf in (18):

𝑑
[𝑖]

𝑙
= 𝑧
[𝑖]

𝑙
𝜂
[𝑖]

𝑙
, (19)

where

𝜂
[𝑖]

𝑙
∼ CN (𝜂

[𝑖]

𝑙
| 0, [𝛽

[𝑖]

𝑙
]
−1

) ,

𝑧
[𝑖]

𝑙
∼ (𝜋
[𝑖]

𝑙
)
𝑧
[𝑖]

𝑙

(1 − 𝜋
[𝑖]

𝑙
)
1−𝑧
[𝑖]

𝑙

(20)

is a binary variable following the Bernoulli distribution [17].
In addition, a Gaussian prior is placed on the additive noise
as 𝜖[𝑖]
𝑙
∼ CN(𝜖

[𝑖]

𝑙
| 0, 𝛼
−1
), where the precision 𝛼 is assumed

to be independent of 𝑖 and 𝑙. To acquire a trackable posterior
distribution, we place Gamma priors, which are conjugate to
the Gaussian distribution, on both 𝛽[𝑖]

𝑙
and 𝛼.

To encourage continuity in the joint space and spatial fre-
quency domain, we utilize data in the neighborhood sensor
positions between 𝑖 − 1 and 𝑖 + 1, when the SAD signature
in sensor position 𝑖 is estimated. As shown in Figure 2,
we categorize the relationship into three different patterns,
termed as Pattern 1 (“strong rejection”), Pattern 2 (“weak
rejection”), and Pattern 3 (“strong acceptance”), respectively.
Define 𝑧̃

1
, . . . , 𝑧̃

6
as illustrated in Figure 2. Based on the idea

of continuity, we define two variables, 𝜅[𝑖]
𝑙

= ∑
6

𝑛=1
𝑧̃
𝑛
and

𝜒
[𝑖]

𝑙
= ∑
3

𝑛=1
𝑧̃
𝑛
𝑧̃
7−𝑛

, which, respectively, represent the number
of nonzero neighboring entries and the number of nonzero
diagonal pairs. It should be noted that the vertical pixel pairs
are excluded for being impractical in the underlying problem.

Pattern 1 includes two cases of 𝜅[𝑖]
𝑙

= 0 or 𝜒[𝑖]
𝑙

= 3. In
the former case, all neighbors are zero values, and thus the
𝑙th entry would be zero valued with a high probability. In
the latter cases, all the neighbors are nonzero values. In both
cases, 𝑒

0
< 𝑓
0
is assumed in prior Beta(𝑒

0
,𝑓
0
) to encourage a

small value of 𝜋[𝑖]
𝑙
so as to reject this entry.

Pattern 2 illustrates those cases of 𝜅[𝑖]
𝑙
> 0 or 𝜒[𝑖]

𝑙
̸= 1.

Figure 2(b) shows one of the examples with a single nonzero
neighboring entry. In this case, the probability that the 𝑙th
entry takes zero values is fair, and 𝑒

1
= 𝑓
1
is used in the prior

Beta(𝑒
1
,𝑓
1
) to exert noninformative prior on 𝜋[𝑖]

𝑙
.
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Figure 2:Three patterns for 2D image.White squares denote entries
with zeros amplitudes, blue shaded squares denote the entry with
nonzero amplitudes, and red shaded squares denote the entry under
test. (a) Pattern 1: strong rejection; (b) Pattern 2: examples for weak
rejection with 𝜅

[𝑖]

𝑙
= 1 case; (c) Pattern 3: examples for strong

acceptance with 𝜒[𝑖]
𝑙
= 1 case.

Pattern 3 depicts those cases with 𝜒[𝑖]
𝑙

= 1. Figure 2(c)
shows two examples of such cases. We confidently believe
that the 𝑙th entry would take a nonzero value with a high
probability when nonzero neighboring entries have such
continuous and symmetric structure in the 2D space and
spatial frequency domain. In this case, 𝑒

2
> 𝑓
2
in the prior

Beta(𝑒
2
,𝑓
2
) is assumed to encourage a large value of 𝜋[𝑖]

𝑙
to

accept this entry.
Note that the above patterns encourage instantaneously

narrowband spatial frequency signatures and closely follow
those developed for time-frequency signature reconstruction
of FM signals [17]. These patterns are, however, different
from those used to encourage merely spatial connectivity as
described in [34, 35].

4.2. Bayesian Inference. The Bayesian inference of the pro-
posed algorithm is carried out by the Gibbs sampler [33].
The paired Gibbs sampler iteratively samples the following
conditional pdf:

𝑝 (𝑧
[𝑖]

𝑙
, 𝜂
[𝑖]

𝑙
| 𝜂
[𝑖]

\𝑙
, z[𝑖]
\𝑙
, a[𝑖]) = 𝑝 (𝜂[𝑖]

𝑙
| 𝑧
[𝑖]

𝑙
, 𝜂
[𝑖]

\𝑙
, z[𝑖]
\𝑙
, a[𝑖])

× 𝑝 (𝑧
[𝑖]

𝑙
| 𝜂
[𝑖]

\𝑙
, z[𝑖]
\𝑙
, a[𝑖]) ,

(21)

where 𝜂[𝑖]
\𝑙
and z[𝑡]
\𝑙
, respectively, denote 𝜂[𝑖]

𝑙
except the variable

𝜂
[𝑖]

𝑙
and z[𝑖] except the variable 𝑧[𝑖]

𝑙
.

The probability 𝑝(𝑧[𝑖]
𝑙

= 1 | 𝜂
[𝑖]

\𝑙
, z[𝑖]
\𝑙
, a[𝑖]) is acquired

analytically as

𝑝 (𝑧
[𝑖]

𝑙
= 1 | 𝜂

[𝑖]

\𝑙
, z[𝑖]
\𝑙
, a[𝑖]) =

𝛽
[𝑖]

𝑙

1 − 𝛽
[𝑖]

𝑙

CN (0, [𝛽
[𝑖]

𝑙
]
−1

)

CN (𝑢
[𝑖]

𝑙
, 𝜎
[𝑖]

𝑙
)

, (22)

where 𝑢[𝑖]
𝑙
is derived as

𝑢
[𝑖]

𝑙
= [𝜎
[𝑖]

𝑙
]
−1

𝛼F𝐻
𝑙
a[𝑖]
\𝑙
, (23)

with 𝜎[𝑖]
𝑙
= (𝛼F𝐻

𝑙
F
𝑙
+ 𝛽
[𝑖]

𝑙
)
−1, a[𝑖]
\𝑙
= a[𝑖] − ∑

𝑘 ̸=𝑙
F
𝑙
𝑧
[𝑖]

𝑘
𝜂
[𝑖]

𝑘
, and F

𝑙

represents the 𝑙th column of the inverse Fourier transform
matrix F. The conditional distribution of 𝑝(𝜂[𝑖]

𝑙
| 𝑧
[𝑖]

𝑙
=

1, 𝜂
[𝑖]

\𝑙
, z[𝑖]
\𝑙
, a[𝑖]) is expressed as

𝑝 (𝜂
[𝑖]

𝑙
| 𝑧
[𝑖]

𝑙
= 1, 𝜂

[𝑖]

\𝑙
, z[𝑖]
\𝑙
, a[𝑖]) = CN (𝜂

[𝑖]

𝑙
| 𝑢
[𝑖]

𝑙
, 𝜎
[𝑖]

𝑙
) . (24)

For 𝑧[𝑖]
𝑙

= 0, the value of 𝜂[𝑖]
𝑙

does not affect the result of
𝑑
[𝑖]

𝑙
. Thus, we can draw the value of variable 𝜂[𝑖]

𝑙
from its

prior. We adopt the procedure in [17] to update the mixing
weight 𝜋[𝑖]

𝑙
, signal precision 𝛽[𝑖]

𝑙
, and noise precision 𝛼, in

order to obtain 𝑧[𝑖]
𝑙
and 𝜂[𝑖]
𝑙
.Then, the sparse vectord[𝑖], whose

positions of nonzero entries indicate the estimated nonzero
spatial frequencies 𝑓(𝑖) in f[𝑖], can be obtained using (19).

Based on (6), the following linear model can be obtained:

f = Bb, (25)

where b = [𝑏
0
, 𝑏
1
, 𝑏
2
]
𝑇, f = [𝑓(1), 𝑓(2), . . . , 𝑓(𝐾)󸀠]𝑇, and

B =(

(

1 1 1
2

1 2 2
2

.

.

.
.
.
.

.

.

.

1 𝐾 𝐾
2

)

)

. (26)

As such, once the sparse spatial frequencies along the
array axis are estimated, the polynomial phase coefficients in
b can be obtained using least squares fitting as

b̂ = (B𝑇B)
−1

B𝑇f . (27)

Then, the range and DOA can be estimated based on (8) or
(9).

5. Simulation Results

Simulation examples are presented to demonstrate the effec-
tiveness of the proposed technique. For each sensor, the
maximum number of iterations in the Gibbs sampling is 200,
and the sampler with the maximum marginal likelihood in
the last 20 samples is chosen to estimate d[𝑖] for 𝑖 = −𝑄, . . . , 𝑄.
For all examples, the carrier frequency is considered to be
15MHz, yielding a wavelength of 𝜆 = 20m. As such, the unit
interelement spacing is set to 𝑑 = 𝜆/2 = 10m. The source
signals are assumed to be quadrature phase-shift keying
(QPSK) modulated. In all simulations, we use a 32-element
ULA as well as its subset described as a linear sparse array
with missing sensors. For the latter, as shown in Figure 3,
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Figure 3: The sparse array configuration.

Sensor position (×d)
−15 −10 −5

N
or

m
al

iz
ed

 sp
at

ia
l f

re
qu

en
cy

0 5 10 15

0.1

0.2

0.3

0.4

0

(a) WVD

0 5 10
0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 sp
at

ia
l f

re
qu

en
cy

True
2nd-order approx.
3rd-order approx.

Est. with OMP
Est. with BCS

Sensor position (×d)
−10 −5

(b) Sparse reconstruction

Figure 4: Near-field source location estimation using the ULA (𝑟
1
= 1000m, 𝜃

1
= 30
∘).

we consider a sparse array configuration consisting of three
uniform linear subarrays with coprime interelement spacings
of𝑀
1
= 5,𝑀

2
= 6, and𝑀

3
= 7. The subarray sensors are,

respectively, located at [−15 : 5 : 15]𝑑, [−16 : 6 : 15]𝑑, and
[−15 : 7 : 15]𝑑. Compared to the fully populated 32-sensor
ULA, the sparse array consists only of 16 sensors, resulting in
50% of sensor reduction.The positions of themissing sensors
are indicated by × in Figure 3. It should be noted that this
configuration is not symmetric and, as such, the approach
proposed in [8] becomes inapplicable.

We evaluate the source localization performance through
Monte Carlo simulations. The average root mean square

error (RMSE) of the estimated source location is used as the
performance metrics, expressed as

RMSE = √ 1

𝑀

𝑀

∑

𝑚=1

[(Δ
(𝑚)

𝑥 )
2

+ (Δ
(𝑚)

𝑦 )
2

], (28)

where

Δ
(𝑚)

𝑥
= 𝑟
(𝑚) cos (𝜃(𝑚)) − 𝑟 cos (𝜃) ,

Δ
(𝑚)

𝑦
= 𝑟
(𝑚) sin (𝜃(𝑚)) − 𝑟 sin (𝜃) ,

(29)



8 International Journal of Antennas and Propagation

N
or

m
al

iz
ed

 sp
at

ia
l f

re
qu

en
cy

0 5 10 15
0

0.1

0.2

0.3

0.4

Sensor position (×d)
−15 −10 −5

(a) WVD

0 5 10
0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 sp
at

ia
l f

re
qu

en
cy

True
2nd-order approx.
3rd-order approx.

Est. with OMP
Est. with BCS

Sensor position (×d)
−10 −5

(b) Sparse reconstruction

N
or

m
al

iz
ed

 sp
at

ia
l f

re
qu

en
cy

0 5 10 15
0

0.1

0.2

0.3

0.4

Sensor position (×d)
−15 −10 −5

(c) AOK distribution

0 5 10
0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 sp
at

ia
l f

re
qu

en
cy

True
2nd-order approx.
3rd-order approx.

Est. with OMP
Est. with BCS

Sensor position (×d)
−10 −5

(d) Sparse reconstruction

Figure 5: Near-field source location estimation using the sparse array (𝑟
1
= 1000m, 𝜃

1
= 30
∘).

and 𝜃(𝑚) and 𝑟(𝑚) are the estimates of 𝜃 and 𝑟, respectively,
for the 𝑚th Monte Carlo trial, 𝑚 = 1, . . . ,𝑀. 𝑀 = 100

independent trials are used in all simulations.
In the sequel, three examples are examined. The first

and second examples consider the localization of a single
near-field source but with different ranges, whereas the third
example considers a two-source scenario.

5.1. Example I: Single Source with a Moderate Range. The
first example considers the localization of a single near-field
source with a range of 1000m andDOA of 30∘ with respect to
the reference sensor. The corresponding source coordinate is
[866.03, 500]m. In this case, the spatial frequency is approxi-
mately linear to the sensor position.The input signal-to-noise
ratio (SNR) is 0 dB and 100 time samples are observed. In
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Figure 7: Near-field source location estimation using the ULA (𝑟
1
= 350m, 𝜃

1
= 30
∘).

order to obtain a smooth figure, we oversample the spatial
frequency on amultiple of 128. Figure 4 shows the SAD results
for a ULA from both Wigner-Ville distribution (WVD) and
sparse reconstruction, and the corresponding results for the
sparse array are illustrated in Figure 5.

Figure 4(a) shows the WVD of the SAD. Because there
is no missing sensor, the signature can be estimated using

a number of conventional methods as well as sparse recon-
struction techniques, with respect to the SAF. The corre-
sponding results obtained from the OMP and the structure-
aware BCS are depicted in Figure 4(b). It is apparent that
the signature is well approximated as a chirp and there is
little difference noticed between the quadratic and third-
order approximations. As such, in this case, the use of
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Figure 8: Near-field source location estimation using the sparse array (𝑟
1
= 350m, 𝜃

1
= 30
∘).

third-order approximation with the proposed BCS tech-
nique achieves similar performance. The PPS coefficients
estimated from the proposed method are, respectively, b =

[0.4321, −0.0013, −3 × 10
−6
]
𝑇, and the yielding source posi-

tion estimate is [844.81, 492.07]m, which corresponds to a
22.6m error to the true source position.

The corresponding 16-element sparse array scenario is
presented in Figure 5, in which the conventional method
developed in [8] is not effective. In addition, the SAD is
contaminated with artifacts that may obscure the true feature
estimation due to missing sensors, as shown in Figure 5(a).
There are erroneous spatial frequency estimates for sparse



International Journal of Antennas and Propagation 11

10
3

10
2

10
1

0 5 10 15

RM
SE

 (m
)

32-ULA with WVD
32-ULA with AOK
Sparse array with AOK

−10 −5

SNR (dB)

Figure 9: RMSE versus SNR (𝑟
1
= 350m, 𝜃

1
= 30
∘).

reconstruction depicted in Figure 5(b). For the SAD tech-
nique, themodifiedAOK can be applied to suppress the effect
of missing sensors. The results are shown in Figures 5(c) and
5(d). It is evident that a desired performance is achieved.

Figure 6 compares the RMSE performance as a function
of the input SNR obtained from 100 independent trials. It is
evident that the source localization performance is improved
as the input SNR increases. The WVD in the ULA case
presents the best performance since the WVD is known to
be optimal in the analysis of linear FM signals [36, 37].
However, the performance of WVD degrades when the
spatial frequency is nonlinear to the sensors positions or
when some sensors are missing. The sparse array with the
proposed method yields a similar performance but suffers
from a gap of performance degradation. Such performance
degradation partly stems from the signal power loss with the
fewer number of sensors.

5.2. Example II: Single-Source with a Close Range. In this
example, the source is located at a range of 350m and
DOA of 30∘ with respect to the reference sensor. The cor-
responding coordinate is [303.1, 175]m. As a consequence,
the signature behaves as a PPS with respect to the sensor
positions.TheWVD and the estimated results obtained from
the ULA and sparse array are shown in Figures 7 and 8,
respectively. As indicated in Figure 7, the estimated spatial
frequency is approximated as a third-order PPS with respect
to the sensor positions. In this case, the WVD exhibits
some cross-terms. The third-order PPS model yields more
accurate results as compared to the quadratic approximation
in this case to reflect the closer source range to the array.
Under the third-order PPS approximation, the coefficient

b = [0.4277, −0.004, −0.0001]𝑇 is obtained, resulting in the
source position [286.14, 173.16]m, a 17.06m shift from the
true source position. For the sparse array, the effect of artifacts
is again confirmed in Figures 8(a) and 8(b). This effect is
significantly suppressed after the AOK is applied, as shown
in Figures 8(c) and 8(d).

In Figure 9, we compare the RMSE performance of the
second example. It is shown that the AOK-based results
achieve better performance because of the effective cross-
term and artifact suppression. In addition, there appears a
floor in the obtained RMSE performance due to the spatial
frequency resolution and bias. For the sparse array, a similar
performance is attained to that of the ULA when the input
SNR is higher than 0 dB and outperforms the WVD-based
ULA results.

5.3. Example III: Two-Source Scenario. Finally, we consider
a two-source case in Figure 10. The first source is located at
𝑟 = 300m and 𝜃 = 30

∘ with respect to the reference sensor,
whereas the second source is located at 𝑟 = 1000m and 𝜃 =
60
∘. For the 32-element ULA, as shown in Figure 10(a), the

SAD in this case is contaminated by the cross-terms between
the two sources, making the spatial frequency estimation
difficult. Such cross-term effect can be substantially reduced
by exploiting the AOK, as shown in Figure 10(b). The sparse
reconstruction results of OMP obtained from the AOK
are depicted in Figure 10(c), where the spatial frequencies
are not correctly identified towards both edges. Improved
results are obtained from the proposed technique exploiting
the structure-aware BCS, as depicted in Figure 10(d), due
to the enforced spatial frequency continuity in the sparse
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Figure 10: Near-field source location estimation using the ULA (𝑟
1
= 300m, 𝜃

1
= 30
∘ and 𝑟

2
= 1000m, 𝜃

2
= 60
∘).

SAD reconstruction. The latter evidently shows better per-
formance for the multiple near-field source case. When the
16-element spare array is used, as shown in Figure 11(a),
the SAD suffers from both cross-terms and artifacts due
to missing sensor positions, yielding highly obscured SAD
signatures. Both cross-terms and artifacts are significantly
reduced when the AOK is used, as depicted in Figure 11(b).
When it is combined with the proposed structure-aware
BCS for sparse spatial frequency reconstruction, improved
spatial frequency estimation, as shown in Figure 11(d), is
achieved. For comparison, theOMP fails to identify one of the
sources in the reconstructed spatial frequencies, as depicted
in Figure 11(c).

6. Conclusion

In this paper, we proposed a simple near-field source local-
ization technique using uniform and sparse linear arrays. We
used the sensor-angle distribution to characterize the sensor-
dependent phase progression as a function of the source
range and its direction. Sparse reconstruction techniques
were used to estimate the sensor-dependent spatial frequency
signature for source localization. Since the degree of the
polynomial phase signal viewed across sensors is unknown
and depends on emitter proximity to the array, parameterized
dictionary cannot be used. The effectiveness of the proposed
technique was verified using simulation results.
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Figure 11: Near-field source location estimation using the sparse array (𝑟
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∘ and 𝑟
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