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Abstract: A coprime array has a larger array aperture as well as increased degrees-of-freedom (DOFs), compared with a
uniform linear array with the same number of physical sensors. Therefore, in a practical wireless communication system, it is
capable to provide desirable performance with a low-computational complexity. In this study, the authors focus on the problem of
efficient direction-of-arrival (DOA) estimation, where a coprime array is incorporated with the idea of compressive sensing.
Specifically, the authors first generate a random compressive sensing kernel to compress the received signals of coprime array
to lower-dimensional measurements, which can be viewed as a sketch of the original received signals. The compressed
measurements are subsequently utilised to perform high-resolution DOA estimation, where the large array aperture of the
coprime array is maintained. Moreover, the authors also utilise the derived equivalent virtual array signal of the compressed
measurements for DOA estimation, where the superiority of coprime array in achieving a higher number of DOFs can be
retained. Theoretical analyses and simulation results verify the effectiveness of the proposed methods in terms of computational
complexity, resolution, and the number of DOFs.

1 Introduction
Direction-of-arrival (DOA) estimation plays an important role in
numerous kinds of wireless communication systems, such as ultra-
dense cellular networks, mobile relay systems and secure
communications [1–5]. Under the background of explosive
demands for higher data rates and better reliability, accurate DOA
estimation is desirable since it can provide fundamental
information to guarantee the performance in terms of transmission
speed, quality of service, bit error rate and so on. The uniform
linear array (ULA) is one of the most commonly used array
geometries in practical wireless communication systems. To obtain
a higher resolution, more physical sensors are required to deploy
since the resolution is directly determined by the array aperture.
Meanwhile, in an ultra-dense cellular network, it is very common
that the base station is required to cope with multiple users
simultaneously. However, the achievable number of degrees-of-
freedom (DOFs) of a ULA is limited by the number of physical
sensors. Expanding the array aperture of a ULA is at the cost of
increased hardware complexity and computational complexity.
Therefore, meeting the increasing resolution and DOF demands in
practical wireless communication systems while maintaining a
moderate system complexity becomes a challenging but promising
task.

Compared with the ULA, the sparse array provides a potential
solution to reduce the system complexity. Several typical sparse
array configurations have been proposed, such as minimum
redundancy array [6], minimum hole array [7], and nested array
[8]. Recently, a coprime array was proposed for systematical
design of sparse arrays. Compared with ULA, a coprime array can
provide a larger array aperture without the need of increasing the
number of physical sensors. More importantly, it has been proved
that the coprime array achieves O(MN) DOFs by using only M + 
N–1 physical sensors [9]. Considering these advantages, the
coprime array configuration is expected to be a good candidate for
deploying future wireless communication systems and has attracted
tremendous attentions in the past [10–15]. The exploitation of the
extended array aperture of a coprime array can be classified into
two different approaches. Methods in the first approach [11–13]
directly utilise the physical array aperture where the coprime

properties of the constituting sub-arrays are used to resolve
ambiguity due to the sparse sub-array configurations. In the second
approach [14–20], a virtual array is derived from the sparse
physical array based on the difference coarray concept. By
processing the derived equivalent virtual array signal, the DOF of
DOA estimation is significantly increased since more nominal
sensors in virtual domain can be utilised. Meanwhile, the basis
mismatch problem has motivated the recent research interests on
off-grid DOA estimation by using total variation norm [21],
nuclear norm [22], and joint sparsity reconstruction [23], where the
resolution performance of coprime array DOA estimation can be
further improved. However, DOA estimation on virtual ULA with
a large number of nominal sensors is of high-computational
complexity.

Compressive sensing is one of the most exciting signal
processing techniques in the past decade, which enables accurate
signal recovery at sub-Nyquist sampling rates [24]. That is to say,
under the framework of compressive sensing, the required
hardware complexity and computational complexity can be
effectively decreased. Hence, compressive sensing has been found
useful in DOA estimation and many other applications [25–29]. In
this paper, we introduce compressive sensing to the coprime array
for efficient DOA estimation. Specifically, we first compress the
signals received by the coprime array to lower-dimensional
measurements through a random projection. The compressed
measurements can be viewed as a sketch of the original coprime
array received signals, whose information is not lost and the
advantage of coprime array is maintained. To achieve high-
resolution DOA estimation, the compressed measurements are
employed to obtain the Capon spatial spectrum, where the large
array aperture is maintained. Furthermore, the equivalent virtual
array signal of the compressed measurements is derived for
increased DOFs, where the DOA estimation is carried out under
the framework of sparse signal reconstruction. As a beneficial
result, the proposed DOA estimation methods using compressed
measurements maintain the advantages offered by the coprime
array, while the computational complexity is significantly reduced.
Simulation results demonstrate the effectiveness of the proposed
DOA estimation methods from the perspective of reduced
complexity, improved resolution, and increased DOFs.
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The main contribution of this paper is threefold: (i) We
compress the signal received at a coprime array to a lower-
dimensional sketch through a random projection, and incorporate
the compressed measurements to perform efficient DOA
estimation; (ii) We devise a high-resolution DOA estimation
method by using the compressed measurements, where the large
array aperture of coprime array is maintained. The proposed
method using coprime array outperforms the conventional methods
using ULA in terms of estimation resolution. More importantly, it
also works well when the number of snapshots is less than the
number of physical sensors; (iii) We derive the compressed
measurements to a virtual domain for sparse signal reconstruction,
where an efficient DOA estimation method is designed from the
perspective of increased DOFs.

The remainder of this paper is organised as follows. In Section
2, we describe the signal model of coprime array. In Section 3, we
elaborate the design of proposed DOA estimation methods.
Simulation results are presented and compared in Section 4.
Finally, we conclude this paper in Section 5.

Notations: we use lower-case and upper-case boldface
characters to represent the vectors and matrices throughout this
paper. The superscripts ⋅ T and ⋅ H, respectively, denote the
transpose and Hermitian transpose operators, and ⋅ ∗ denotes the
conjugate operator. The notation E ⋅  stands for the statistical
expectation operator, vec ⋅  denotes the vectorisation process that
stacks each column vector of a matrix one by one, and ⊗ denotes
the Kronecker product. ∥ ⋅ ∥0, ∥ ⋅ ∥1, and ∥ ⋅ ∥2 denote the ℓ0-
norm, ℓ1-norm, and ℓ2-norm, respectively. Finally, 0 denotes the
zero vector, and I denotes the identity matrix with proper
dimension.

2 Signal model of coprime array
We consider a pair of sparsely spaced ULAs as depicted in Fig. 1a.
Denote M and N to be a pair of mutually coprime integers. The
sparse ULA consisting of M elements has the sensors located at
0, Nλ/2, 2Nλ/2, …, (M − 1)Nλ/2 , and the other sparse ULA

consisting of N elements has the sensors located at
0, Mλ/2, 2Mλ/2, …, (N − 1)Mλ/2 . Here, λ is the signal

wavelength. The configuration of coprime array, shown in Fig. 1b,
can be obtained by combining the pair of sparse ULAs with the
first sensor of each sparse ULA overlapped. According to the
property of coprime integers, the sensors of each sparse ULA do
not overlap at other sensor positions. Therefore, the coprime array
consists a total of M + N–1 distinct physical sensors. 

Assuming D far-field uncorrelated narrowband signals from
distinct directions {θ1, θ2, …, θD}, the received signal vector of the
coprime array at time k can be modelled as

x(k) = ∑
d = 1

D
a(θd)sd(k) + n(k) = As(k) + n(k), (1)

where A = a(θ1), a(θ2), …, a(θD) ∈ ℂ(M + N − 1) × D is the array
steering matrix, s(k) = s1(k), s2(k), …, sD(k) T is the signal
waveform vector, and n(k) ∼ CN(0, σn

2I) is a complex-valued
Gaussian white noise vector independent of signals. Here, σn

2 is the
noise power. The dth column of array steering matrix A, i.e.

a(θd) = 1, e− j(2π /λ)u2sin(θd), …, e− j(2π /λ)uM + N − 1sin(θd) T, (2)

is the coprime array steering vector corresponding to θd, where ui is
the spacing between the first and the ith sensor of the coprime
array.

3 DOA estimation based on compressive sensing
coprime array signal
It can be seen from Fig. 1b that the coprime array consisting of M 
+ N–1 physical sensors has an array aperture of
max((M − 1)Nλ/2, (N − 1)Mλ/2). Since the resolution of DOA
estimation is directly determined by the array aperture, we adopt a
coprime array rather than a ULA for receiving the signals, and the
received signal vector x(k) in (1) is referred to as the coprime array
signal vector. Due to its sparse nature, the coprime array collects
the signal information in a wider range of space, and thus provides
a higher resolution for DOA estimation than a fully populated ULA
consisting of the same number of physical sensors. In addition, the
coprime array signal can also be incorporated to perform DOA
estimation with increased DOFs, where an equivalent virtual array
signal can be derived by calculating the difference coarray of the
coprime array [9].

3.1 Compressive sensing coprime array signal

As we know, the computational complexity is one of the main
concerns for algorithm implementation in practical wireless
communication systems. To further reduce the computational
complexity and develop an efficient DOA estimation method, we
incorporate compressive sensing to the coprime array signal for
DOA estimation while making maximum use of the superior
advantages provided by the coprime array. In particular, with the
idea of compressive sensing, a random compressive sensing kernel
Φ ∈ ℂQ × (M + N − 1) is applied to compress the coprime array signal
vector x(k) as

y(k) = Φx(k) = Φ As(k) + n(k) , (3)

where Q ≪ M + N − 1 determines the dimension of the
compressed measurement y(k), and the elements of Φ can be
generated from a random distribution, such as Gaussian or
Bernoulli distributions, if there is no available prior knowledge of
desired signal [30]. By using such a random projection, the (M + 
N–1)-dimensional coprime array signal vector x(k) is compressed
to a Q-dimensional compressed measurement vector y(k), which
can be regarded as a sketch of vector x(k). The compression
process enables us to perform DOA estimation from a lower-
dimensional compressed measurement y(k) in an efficient manner
since the essential information contained in x(k) is preserved.

The covariance matrix of compressed measurement y(k) can be
computed as

Ryy = E y(k)yH(k) = ΦRxxΦH, (4)

where

Rxx = E x(k)xH(k) = AΛAH + σn
2I

= ∑
d = 1

D
σd

2a(θd)aH(θd) + σn
2I

(5)

is the covariance matrix of the coprime array signal vector x(k).
Here, σd

2 is the power of dth source signal, and

Fig. 1  Coprime array geometry
(a) Pair of sparsely-spaced ULAs, (b) Configuration of coprime array
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Λ = E s(k)sH(k) = diag σ1
2, …, σD

2  is the diagonal matrix
consisting of each source signal power. It should be emphasised
that the additive Gaussian noise vector n(k) is included in the
coprime array signal vector x(k) prior to the compression process.
Therefore, the compressive sensing kernel Φ operates on the signal
component and the noise component simultaneously. If a non-
orthogonal compressive sensing kernel is applied, the noise
component σn

2ΦΦH in Ryy will be distorted (non-diagonal). To
avoid this problem, the compressive sensing kernel is chosen to be
a row orthogonal matrix, namely, ΦΦH = I. Since the exact Ryy is
unavailable in practice, it can be approximated by its sample
version

R^
yy = 1

K ∑
k = 1

K
y(k)yH(k) = ΦR^

xxΦH, (6)

where K is the number of snapshots, and

R^
xx = 1

K ∑
k = 1

K
x(k)xH(k) (7)

is the sample covariance matrix computed from the coprime array
signal vectors x(k), k = 1, 2, …, K . Based on the compressed
measurements y(k), k = 1, 2, …, K  along with their statistical
parameters, we propose two efficient DOA estimation methods
from the perspective of higher resolution and increased DOFs,
respectively. Since y(k) is a sketch of the coprime array signal
vector, the superior advantages of coprime array can be retained.

3.2 DOA estimation with high resolution

We first take advantage of the large array aperture offered by the
coprime array, and design a DOA estimation method with high-
resolution by using COmpressed Measurements (HR-COM). The
proposed HR-COM method can be implemented by computing the
Capon spatial spectrum of the compressed measurements as

p(θ) = 1
dH(θ)R^

yy
−1

d(θ)
, θ ∈ −90∘, 90∘ , (8)

where θ is the hypothetical direction on the predefined grid, and
d(θ) = Φa(θ) ∈ ℂQ is the corresponding compressed steering
vector. The DOAs can be estimated by searching for the peaks in
the spatial spectrum p(θ).

Benefiting from compressive sensing, the computational
complexity of the proposed HR-COM method using compressed
coprime array signals for Capon spatial spectrum calculation is
O(SQ2), where S ≫ M + N − 1 is the number of hypothetical
directions in the spatial spectrum. In contrast, the computational
complexity directly using coprime array signals for Capon spatial
spectrum calculation is O S(M + N)2 . Furthermore, if a fully
populated ULA is employed for achieving the same array aperture
of max(M(N − 1)λ/2, N(M − 1)λ/2) as the coprime array, its
computational complexity increases to O max (MN)3, S(MN)2 .

3.3 DOA estimation with increased DOFs

Increased number of DOFs is another important advantage of a
coprime array, which can be realised by obtaining the equivalent
virtual array signal in the derived virtual domain. Toward this end,
we propose a DOA estimation method with increased DOFs by
utilising the COmpressed measurements (ID-COM). The main idea
of the proposed ID-COM method is to derive the correlation
statistic of compressed measurements y(k), k = 1, 2, …, K  to the
virtual domain for sparse signal reconstruction. Specifically, the
sample covariance matrix of compressed measurements R^

yy can be
vectorised as

z = vec R^
yy

= Φ∗ ⊗ Φ vec R^
xx

= Φ∗ ⊗ Φ Ar
~ + σn

2i ,

(9)

where A
~ = a~(θ1), a~(θ1), …, a~(θD) ∈ ℂ(M + N − 1)2 × D with

a~(θd) = a∗(θd) ⊗ a(θd), r = σ1
2, σ2

2, …, σD
2 T, and i = vec I . The

virtual array steering matrix A
~
 corresponds to the difference

coarray of coprime array with more nominal sensors, where the
increased DOF performance is guaranteed. From (9) and the
equality

Φ∗ ⊗ Φ a∗(θd) ⊗ a(θd) = Φ∗a∗(θd) ⊗ Φa(θd), (10)

z can be further expressed as

z = D⌣r + σn
2 i⌣ (11)

where D⌣ = d⌣(θ1), d⌣(θ2), …, d⌣(θD) ∈ ℂQ2 × D is the compressed
virtual array steering matrix with d⌣(θd) = Φ∗a∗(θd) ⊗ Φa(θd), and
i⌣ = Φ∗ ⊗ Φ i. Therefore, the vector z behaves like an equivalent
virtual array signal, whose corresponding array geometry is defined
by the compressed virtual array steering matrix D⌣.

After the compressed measurements have been derived to the
virtual domain, we incorporated the sparsity-based framework [19]
to achieve increased DOFs, where DOA estimation can be realised
through sparse signal reconstruction. In particular, the optimisation
problem of the proposed ID-COM method can be formulated by
minimising the deviation between the derived equivalent virtual
array signal z in (11) and its sparse version as

min
r̄

∥ r̄ ∥0 subject to ∥ z − D⌣̄ r̄ − σn
2 i⌣ ∥2 < ϵ, (12)

where D⌣ = d⌣(θ̄1), d⌣(θ̄2), …, d⌣(θ̄D̄) ∈ CQ2 × D̄ is the sparse version of
the compressed virtual array steering matrix with D̄ ≫ D, and
r̄ = σ̄1

2, σ̄2
2, …, σ̄D̄

2 T consists of the power of D̄ sources, which are
the collection of hypothetical directions over a predefined grid
θ̄1, θ̄2, …, θ̄D̄ . Here, ϵ is a user-parameter to determine the

reconstruction uncertainty bound.
The non-convex optimisation problem brought by the ℓ0-norm

can be solved by convex relaxation, such as least absolute
shrinkage and selection operator [31]. In detail, the non-convex ℓ0-
norm can be replaced by the convex ℓ1-norm. In so doing, the
original non-convex optimisation problem (12) can be reformulated
as a basis pursuit denoising problem [32]

min
r̄, σn

2

1
2∥ z − D⌣ r̄ − σn

2 i⌣ ∥2 + ξ∥ r̄ ∥1, (13)

where ξ is a regularisation parameter to balance the sparsity of the
reconstructed spatial spectrum and the error of the ordinary least-
squares cost function. The optimisation problem (13) is convex,
and can be efficiently solved using the interior-point method
software, such as CVX [33]. The DOA estimations can be obtained
by searching for the peaks of the reconstructed sparse spatial
spectrum.

The computational complexity of the proposed ID-COM
method is O D̄Q2 . Compared with the sparsity-based method in
[19] whose computational complexity is O D̄(M + N − 1)2 , the
proposed ID-COM method enjoys the computational efficiency due
to the utilisation of compressive sensing on coprime array signal.
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4 Numerical simulation results
In this section, we assess the performance of the proposed DOA
estimation methods via numerical simulations and compare their
performance with the state-of-the-art methods in the literature.

We first evaluate the high-resolution performance of the
proposed HR-COM method. The pair of coprime integers is
selected as M = 18 and N = 19. That is to say, the coprime array
consists of M + N–1 = 36 physical sensors with an array aperture of
324λ/2. The number of measurements is set to be Q = 8, and the
elements of 8 × 36 dimensional row orthogonal compressive
sensing kernel Φ are drawn from an independent and identically
distributed random Gaussian distribution CN 0, 1/(M + N − 1) .
The hypothetical direction θ is within −90∘, 90∘  with the uniform
sampling interval δ = 0.1∘.

The proposed HR-COM method described in (8) is compared
with the Capon spatial spectra calculated from coprime array
signals, ULA signals and compressed ULA signals [34]. For
notational simplicity, their corresponding legends in the simulation
figures are represented as Sketched CoPrime array (CPA), ULA,
and sketched ULA, respectively. For fair comparison, the ULA
also consists of 36 physical sensors, which has an array aperture of
35λ/2. Meanwhile, the same random compressive sensing matrix
Φ ∈ ℂ8 × 36 is applied for both the compressed coprime array signal
and the compressed ULA signal. Hence, they have the same
measurement size of 8 × 1, compared with the measurement size of
36 × 1 for both the coprime array signal and the ULA signal.

In Fig. 2, we assume that there are two closely-spaced
independent sources impinging on the coprime array from the
directions 0∘ and 0.5∘, and compare the Capon spatial spectra of the
tested methods with respect to different snapshots. The signal-to-
noise ratio (SNR) in each sensor is equal to 20 dB. In Fig. 2a, we
set the number of snapshots K = 50, which is larger than the
number of sensors. It is clear that the Capon spatial spectrum
obtained from the CPA and sketched CPA can separate the two
sources (0∘ and 0.5∘). In contrast, benefiting from the large array
aperture of the coprime array, the two sources are well separated by
both the proposed HR-COM method using compressed coprime
array signals and the Capon spatial spectrum using coprime array
signals. In Fig. 2b, we consider the case with a very limited number
of snapshots K = 20, which is less than the number of sensors.
Because the sample covariance matrix R^

xx ∈ ℂ36 × 36 is rank
deficient in this case with insufficient number of snapshots, the
Capon spatial spectra using ULA signals or coprime array signals
fail to separate the two sources irrespective of the array geometry.
Limited by the array aperture, the Capon spatial spectrum using
compressed ULA signals can neither separate the two sources.
However, the proposed HR-COM method using compressed
coprime array signals can still effectively identify the two sources
because the compressed sample covariance matrix R^

yy ∈ ℂ8 × 8

calculated from 20 snapshots is full rank. Hence, the proposed HR-
COM method can effectively identify the closely-spaced sources

even when the number of snapshots K is less than the number of
physical sensors M + N–1. Meanwhile, its computational
complexity is much lower than those using the coprime array
signals directly. This advantage is very useful for the practical
applications when few number of snapshots are available, and the
proposed HR-COM method is effective as long as the number of
snapshots K is larger than the number of measurements Q, which
contributes a full-rank condition for R^

yy. 
In Fig. 3, we compare the estimation bias of each DOA

estimation method in terms of the angular separation with the
condition that SNR = 20 dB and K = 50. For each scenario, 1,000
Monte–Carlo runs are performed. The two sources are assumed to
have DOAs θ1 and θ1 + Δθ, respectively, where Δθ is the angular
separation. It can be seen from Fig. 3 that the resolution of the
proposed HR-COM method using compressed coprime array
signals reaches the same 0.2∘ accuracy as the method that uses
coprime array signals directly, while the resolutions of the methods
using ULA signals and compressed ULA signals are 0.7∘ and 1.1∘,
respectively. Therefore, the proposed HR-COM method
outperforms the method using ULA signals in terms of the
resolution of the estimated DOA. In addition, the proposed HR-
COM method has a lower computational complexity than those
using coprime array signals directly, while the high resolution
offered by the coprime array can be effectively maintained. 

Furthermore, we also evaluate the average root mean square
error (RMSE) performance of each DOA estimation method
obtained from 1,000 Monte–Carlo runs. The two incident sources
are spaced 0.5∘ apart, namely, θr and θr + 0.5∘, where θr is randomly
selected from Gaussian distribution N(0∘, 1). Here, θr changes from
run to run however it remains fixed from snapshot to snapshot. The
SNR is set to be 10 dB when we vary the number of snapshots,

Fig. 2  Capon spatial spectra of each DOA estimation method
(a) Number of snapshots K = 50, (b) Number of snapshots K = 20

 

Fig. 3  Estimation bias of each DOA estimation method versus angular
separation
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whereas the number of snapshots is selected to be K = 50 when we
vary the SNR. We can observe from Fig. 4a that the proposed
method using compressed coprime array signals outperforms the
method using compressed ULA signals [34] as well as the method
using ULA signals when the SNR is larger than 0 dB. Although the
method directly using coprime array signals yield lesser RMSE
results, it requires a much higher computational complexity than
the proposed method due to the computation of a high-dimensional
covariance matrix. More importantly, the method using coprime
array signals is not capable to perform DOA estimation when K < 
M + N due to the rank-deficient problem. Nevertheless, the
proposed algorithm using compressed coprime array signals is still
effective even K = 10 according to the results illustrated in Fig. 4b,
where the superiority of the proposed method is demonstrated. 

We then evaluate the proposed ID-COM method depicted in
(13) from the perspective of increased DOFs. Ten physical sensors
are utilised to deploy the coprime array with coprime integers M = 
5 and N = 6. Assuming that there are 16 incident sources with the
directions uniformly distributed in −60∘, 60∘ . The other
parameters are the same as those used in the first simulation.
Considering that the existing methods using ULA fail to identify
all of the incident sources due to DOF limitation, here we compare
the proposed ID-COM method with the methods using coprime
array, including the coprime (multiple signal classification)
MUSIC method [15], the covariance matrix sparse reconstruction
method [18], and the sparsity-based method [19]. The

regularisation parameter ξ is selected as 0.25 for the optimisation
problem (13).

The normalised spectra of each method are depicted in Fig. 5
with SNR = 10 dB and K = 500, where the red dashed lines denote
the exact directions of incident sources. We can observe that the
coprime MUSIC method and the covariance matrix sparse
reconstruction method fail to identify all of the 16 sources. The
reason lies in that both methods contain a spatial smoothing step,
which requires a contiguous virtual array; hence, the maximum
achievable number of DOFs is 10. By contrast, the sparsity-based
DOA estimation method utilises all of the nominal sensors in the
virtual array for sparse signal reconstruction. Since the derived
virtual array achieves more nominal sensors than physical sensors,
the spatial spectrum shown in Fig. 5c is capable to identify all of
the 16 sources as expected. When it comes to the proposed ID-
COM method, as shown in Fig. 5d, all the 16 sources can also be
accurately identified by using the compressed coprime array signal
y(k) of size 8 × 1. Therefore, the compressed coprime array signal
is capable to reserve the information of the original coprime array
signal. Since the proposed method presents a similar spatial
spectrum characteristic with the sparsity-based method in [19], the
proposed ID-COM method enjoys a higher computational
efficiency while maintains the advantage of DOFs offered by the
coprime array. 

Fig. 4  RMSE performance of each DOA estimation method
(a) RMSE versus SNR with the number of snapshots K = 50, (b) RMSE versus number of snapshots with SNR = 10 dB

 

Fig. 5  Normalised spectra of each DOA estimation method using coprime array
(a) Coprime MUSIC method [15], (b) Covariance matrix sparse reconstruction method [18], (c) Sparsity-based method [19], (d) Proposed ID-COM method
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5 Conclusion
In this paper, we focused on the newly emerged coprime array
geometry for wireless communication systems and proposed two
DOA estimation methods to effectively exploit the compressive
sensing coprime array signal, namely, HR-COM method and ID-
COM method. With a compressive sensing kernel, the coprime
array signal is compressed to a lower-dimensional sketch through
random projection, which leads to a reduced computational
complexity without losing the original performance advantages for
DOA estimation. To achieve high-resolution DOA estimation
performance offered by the large array aperture of the coprime
array, the proposed HR-COM method was designed to directly
incorporate the compressed measurements. On the other hand, we
also utilise the derived virtual signal of the compressed
measurements for sparse signal reconstruction, and the ID-COM
method was formulated to utilise the increased number of DOFs
offered by the virtual array. Simulations results demonstrated the
effectiveness of the proposed DOA estimation methods on
computational complexity, resolution, and the number of DOFs.
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