
High-resolution time–frequency distributions for
manoeuvring target detection in over-the-horizon
radars

Y. Zhang, M.G. Amin and G.J. Frazer

Abstract: A novel high-resolution time–frequency representation method is proposed for source
detection and classification in over-the-horizon radar (OTHR) systems. A data-dependent kernel is
applied in the ambiguity domain to capture the target signal components, which are then resolved
using root-MUSIC based coherent spectrum estimation. This two-step procedure is particularly
effective for analysing a multicomponent signal with time-varying complex time–Doppler
signatures. By using the different time–Doppler signatures, important target manoeuvring
information, which is difficult to extract using other linear and bilinear time–frequency
representation methods, can be easily revealed using the proposed method.
1 Introduction

By exploiting the reflective and refractive nature of
high-frequency (HF) radiowave propagation through the
ionosphere, over-the-horizon radars (OTHRs) perform
wide-area surveillance at long range well beyond the limit
of the horizon of conventional line-of-sight (LOS) radars.
OTHR systems have become an important tool for wide-
area surveillance [1–5].

A significant problem in OTHR is robust high-resolution
Doppler processing of accelerating or decelerating targets.
This arises during aircraft and ship target manoeuvre and
during observations of rockets during the boost phase and in
mid-course flight. The complex Doppler signatures present
in these cases reveal important information about the target.

Most OTHR systems use classical Doppler processing,
where one Doppler spectrum is computed using one full
coherent integration time (CIT, typically 1–100 s in
OTHR). Some systems use overlapped Doppler processing
to provide a spectrogram analysis of time-varying Doppler.
Accelerating/decelerating targets smear in Doppler and
have reduced detectability and localisation. The smearing
reduces resolution and can obscure important multicompo-
nent Doppler features.

There are numerous time – frequency distributions
(TFDs) other than the spectrogram [6–8]. Many TFDs
provide superior localisation in time and Doppler frequency.
Previous applications of time–frequency signal represen-
tations to OTHR, however, have generally been disappoint-
ing. The fundamental challenge with OTHR is that the TFD
must retain its desirable resolution and concentration
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properties in the presence of clutter that is typically 40 dB
or more stronger than the target (although possibly localised
in a different region of time–Doppler).

The objective of this paper is to investigate and extend
recent developments in data-dependent TFDs to the
problem of robust high-resolution analysis of time-varying
OTHR target returns. Of particular interest is the problem of
multicomponent target signal detection and identification,
where important information concerning the manoeuvring
target can be revealed. Such information is significant for
the classification of manoeuvring targets.

2 Signal model

2.1 Signal model

Figure 1a illustrates a stylised OTHR system. For simplicity
of mathematical analysis, we adopt the flat ground model, as
shown in Fig. 1b.

The received signal, after pulse or sweep matched
filtering and beamforming at the receiver, is expressed as

yðtÞ ¼ xðtÞ þ uðtÞ þ nðtÞ ð1Þ
where u(t) is the clutter, and x(t) is the return signal from the
target, expressed as

xðtÞ ¼ Ae�j!cðdtþdrÞ=c ð2Þ
where A is a complex scalar representing the propagation
loss and phase, dt and dr are the respective one-way slant
range between the transmitter and the target and between the
target and the receiver, c denotes the speed of light and
!c ¼ 2�fc is the carrier radian frequency. In (1), n(t) is
internal and external noise, whose power is small in a
typical situation with strong target signal-to-noise ratio.
Therefore, the noise term is ignored in this paper.

In a typical OTHR scenario, as shown in Fig. 1a, in
addition to the path directly reflected from the ionosphere,
there is reflection at the ground near the target. Denote l1

and l2 as the propagation distance of the two paths,
respectively, and dt and dr as the respective one-way slant
range between the transmitter and the target and between the
target and the receiver, respectively. Then, dt takes the value
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of either l1 and l2 and so does dr. (Some OTHR systems are
bistatic in which case the transmitter and receiver are in
different locations. In this case, the range from the target to
the transmitter and that from the target to the receiver are
different. We have ignored this difference, however, as it
does not significantly affect our results.) The corresponding
path losses will be denoted as A1 and A2: Therefore, the
received signal consists of four combination paths which
result in the following three multipath components:

xðtÞ ¼ A1e�j!c2l1=c þ A2e�j!c2l2=c þ A3e�j!cðl1þl2Þ=c ð3Þ
We will refer to the path ðl1 : l1Þ as path I, path ðl2 : l2Þ as
path II, and the combination of path ðl1 : l2Þ and ðl2 : l1Þ as
path III.

Based on the flat ground model approximation illustrated
in Fig. 1b, the slant ranges l1 and l2; respectively, can be
expressed in terms of the range distance R, the ionosphere
height H and the aircraft height h, as

l1 ¼ ðR2 þ ð2H � hÞ2Þ1=2; l2 ¼ ðR2 þ ð2H þ hÞ2Þ1=2 ð4Þ
To clearly reveal the relationship between the slant ranges
and the parameters, we take into account the fact that R �
H � h hold for a typical scenario. Then, the above
expressions can be approximated as

l1 � R þ 2H2 � 2Hh

R
; l2 � R þ 2H2 þ 2Hh

R
ð5Þ

2.2 Doppler characteristics

The flight of an aircraft, in general, consists of horizontal
and elevation movements. In this Section, we consider

Fig. 1 OTHR system and flat ground model

a OTHR system
b Flat ground approximation
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the Doppler frequency characteristics of the aircraft’s
movement in the two different dimensions.

As an aircraft flies, R, and possibly also h, become
functions of t. The height of the ionosphere H is also slowly
time-varying. However, we assume that H is a constant over
the processing time interval. From (5), we obtain

dl1ðtÞ
dt

� KðtÞvRðtÞ �
2H

RðtÞ vcðtÞ;

dl2ðtÞ
dt

� KðtÞvRðtÞ þ
2H

RðtÞ vcðtÞ ð6Þ

where KðtÞ ¼ ð1 � 2H2=R2ðtÞÞ; vRðtÞ ¼ dRðtÞ=dt is the
target velocity in the range direction toward the radar and
vcðtÞ ¼ dhðtÞ=dt is the ascending velocity of the target. The
Doppler frequencies of the three different paths are then
obtained as

fIðtÞ ¼
2fc

c

dl1ðtÞ
dt

� 2fc

c
KðtÞvRðtÞ �

4fcH

RðtÞc vcðtÞ

fIIðtÞ ¼
2fc

c

dl2ðtÞ
dt

� 2fc

c
KðtÞvRðtÞ þ

4fcH

RðtÞc vcðtÞ

fIIIðtÞ ¼
fc

c

dl1ðtÞ þ dl2ðtÞ
dt

� 2fc
c

KðtÞvRðtÞ ð7Þ

From the above discussion, it is evident that, while the
dominant Doppler component 2fcKðtÞvRðtÞ=c is shared by
all three paths and reveals the target velocity in the range
direction, the small Doppler difference between the paths is
a function of h(t) and, therefore, reveals other important
information on how the target moves in the elevation
direction.

In this paper, we consider an often encountered scenario
of a manoeuvring aircraft as an example. In this case, the
target makes a 1808 turn in T ¼ 30:72 s to change height and
direction. This time interval corresponds to six revisits
(blocks), and each block contains 256 samples (slow time
samples from the radar). The parameters used in the analysis
and simulations are listed in Table 1. All the multipath
signals are considered to fall within the same range cell.

The range is expressed as

RðtÞ ¼ Rð0Þ � vRðtÞT
�

sin
t�

T

� �
ð8Þ

and the height is expressed as

hðtÞ ¼ hð0Þ þ vcðtÞT
�

1 � cos
t�

T

� �h i
ð9Þ

The cross-range movement is not considered because it does
not significantly contribute to the Doppler frequency.
Substituting (8) and (9) into (5) yields the following

Table 1: Major parameters

Parameter Notation Value

Initial range R(0) 2000 km

Ionosphere height H 350 km

Aircraft initial height h(0) 10000 m

Maximum range speed vR 500 km/h

Maximum climbing speed vc 1500 m/min

Carrier frequency fc 20 MHz

Waveform repetition frequency fs 50 Hz

Samples per block N 256 samples
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Doppler frequency:

f ðtÞ ¼ fRðtÞ þ fhðtÞ ð10Þ

where fRðtÞ is the Doppler frequency caused by the change
of R(t) and is expressed as

fRðtÞ ¼
2fc

c
vRðtÞ ¼

2vfc

c
cos

t � t1

T
�

� �
ð11Þ

and fhðtÞ in (10) is the Doppler frequency caused by the
change of height h(t) and is expressed, for path I, as

fh;IðtÞ ¼
4vcðtÞfcH

RðtÞc sin
t � t1

T
�

� �
ð12Þ

It is easy to confirm that fh;IIðtÞ ¼ �fh;IðtÞ and fh;IIIðtÞ ¼ 0
for all t.

The time–Doppler signatures are plotted in Fig. 2. The
dominant Doppler component is proportional to the target
velocity in the slant range direction, and the small Doppler
difference between the three paths is proportional to the
ascending velocity of the target. This difference provides
important information on how the target moves in the
elevation direction. The maximum one-side Doppler
difference corresponding to the maximum ascending speed
1500m=min ¼ 25m=s is about 1.17 Hz.

The frequency resolution in the underlying system is
Df ¼ fs=N ¼ 50=256 ¼ 0:195Hz: The detection of such a
small Doppler difference is possible through the application
of discrete Fourier transform (DFT) to the received signal,
provided that v(t) and, subsequently, 2fcvðtÞ=c are fixed over
the CIT of 256 samples. However, when vR is not a constant,
which occurs if the target is accelerating or decelerating,
ascending or descending, or, changing its direction,
2fcvðtÞ=c becomes time-varying and the conventional
DFT-based approach does not provide high Doppler
resolution even with a long CIT [9]. In this case, the
detection and estimation of the Doppler shift caused by a
change of h become difficult. The presence of strong clutter
adds more difficulties to the underlying problem.

Conventional methods based on spectrogram and other
TFDs smear the target’s Doppler signature and cannot
provide satisfactory resolution performance. The smearing
reduces resolution and is likely to obscure important
multicomponent time –Doppler signatures. To realise
high-resolution Doppler detection and estimation, we must
first proceed with clutter suppression followed by an
effective time–Doppler processing method. The combi-
nation of the two methods clearly reveals the interested
time–Doppler signatures.

Fig. 2 Time–Doppler frequency signatures
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3 Clutter suppression

We consider TFD methods to achieve high-resolution time–
Doppler localisation. In the underlying problem, TFDs are
referred to as time–Doppler distributions (TDDs). The most
commonly used TFD is the Wigner–Ville distribution
(WVD). The WVD of signal y(t) is defined as

Wyyðt; f Þ ¼
Z

yðt þ �=2Þy�ðt � �=2Þe�j!�d� ð13Þ

where the superscript ‘*’ denotes complex conjugate. All
integrals without limits imply integration from �1 to þ1:
Substituting (1) in (13), the WVD of y(t) can be written in
terms of

Wyyðt; f Þ ¼ Wxxðt; f Þ þ Wuuðt; f Þ þ Wxuðt; f Þ

þ Wuxðt; f Þ ð14Þ

where the first two terms are, respectively, the autoterms of
the target signal and the clutter, and the other two are their
cross-terms.

In a typical OTHR receiver, the clutter is much stronger
(typically 30–50 dB) than the target signal. Without
substantial suppression of the clutter, the TDD autoterm
of the target will be significantly obscured by the clutter
autoterm as well as the cross-terms between the clutter and
signal.

Clutter often has high correlation to that at its
neighbouring range cells and cross-range cells. Based on
this property, clutter mitigation methods using received
signals from other range and cross-range cells have been
proposed in, for example, [9, 10]. However, in this paper,
the received signal from other range and cross-range cells
are not used.

We point to the fact that the clutter is highly localised in
low frequencies and can be well modelled as an auto-
regressive (AR) process [11, 12]. Therefore, the clutter can
be substantially suppressed by using the AR pre-whitening
techniques. Denote P as the order of the AR model, the AR
polynomial parameters a(t), t ¼ 0; . . . ;P can be estimated
via the modified covariance method [13].

Filtering the received signal y(t) through a finite impulse
filter (FIR), constructed using the AR polynomial par-
ameters, results in the pre-whitened signal

zðtÞ ¼ yðtÞ � aðtÞ

¼ xðtÞ � aðtÞ þ uðtÞ � aðtÞD zxðtÞ þ zuðtÞ ð15Þ

where ‘*’ denotes the convolution operator.
In this paper, the target signal calculated in Section 2 is

overlaid to real OTHR clutter data. We assume that A1 ¼ A2

and A3 ¼ A1 þ A2 ¼ 2A1: The order of the AR model
should be chosen to maximise the signal-to-clutter ratio
(SCR). The order of the AR model is set to a unit value
ðP ¼ 1Þ: The spectrogram of block 3, which corresponds to
the 256 samples from 10.24 to 15.36 seconds, before and
after the AR pre-whitening is shown in Fig. 3. It is seen that,
while the clutter is substantially suppressed by more than
40 dB, the target signal is only partially affected when its
Doppler frequency is very close to that of the clutter.
Figures 4 and 5 show the WVDs of the y(t) and z(t) before
and after the pre-whitening. The WVDs are computed from
the interpolated data sequence to show the full Doppler-
frequency range. While it is often difficult to identify the
target in the WVD before pre-whitening (Fig. 4), the target
signature can now be somewhat identified in Fig. 5. Further
301



and key improvement in resolutions of the target signature
components can be achieved by using the techniques
highlighted in Section 4.

4 High-resolution time–Doppler processing

Even after substantial clutter suppression, the result in Fig. 5
does not reveal clear time–Doppler signatures. There are
numerous TFDs other than the spectrogram and the WVD
which provide superior localisation. Previous applications
of time–frequency signal representation techniques to the

Fig. 4 WVD of received signal y(t) before AR pre-whitening
(block 3)

Fig. 5 WVD of the received signal z(t) after AR pre-whitening
(block 3)

Fig. 3 Block-wise spectrogram of the received signal before and
after AR pre-whitening
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OTHR problem, however, have generally been disappoint-
ing because the problem is particularly difficult and
demanding.

To achieve chirp signal detection, discrimination and
classification, we propose time–Doppler estimation based
on adaptive kernel and high-resolution time–Doppler
localisation. Bilinear TDDs as well as their Fourier trans-
forms (i.e. ambiguity functions and local autocorrelation
functions) are considered.

4.1 Time–Doppler distributions and adaptive
kernel

In the following, we assume that each component of the
return signal from the target can be approximated as a chirp
over the period of one block, i.e.

xðtÞ ¼
X3

i¼1

Aie
jð�i tþ�xt2=2Þ ð16Þ

is considered for a time period. Such approximation permits
us to obtain important signal information, as discussed in
Section 2, from the received data signal.

To estimate the chirp rate of the signal, it is common to
examine the ambiguity function. The ambiguity function of
z(t) is defined as

Azð	; �Þ ¼
Z

t
zðt þ �=2Þz�ðt � �=2Þe j	tdt ð17Þ

where u and � are, respectively, the frequency-lag and time-
lag variables. Similar to the TDD, the ambiguity function
can be decomposed into two autoterms and two cross-terms.
One important property of the ambiguity function is that all
signal autoterms pass through the origin, whereas the cross-
terms are often away from the origin. For a multicomponent
parallel chirp signal, the ambiguity function shows linear
signatures depending on the signal chirp rate. Therefore,
unlike the time–Doppler domain, in which a two-dimen-
sional search is required, the chirp rate in the ambiguity
domain can be estimated by a one-dimensional search. The
reduction in computations make the ambiguity domain
attractive for chirp rate estimation.

The chirp rate can be estimated by searching for the peaks
of the following Q function [14]:

Qð
Þ ¼
Z

jAzðr cos 
; r sin 
Þjdr ð18Þ

In the case considered, peaks possibly appear at

x ¼ �1= tan�1ð�xÞ and 
u ¼ �1= tan�1ð�uÞ; were �x and
�u are the chirp rates of the signal and the principal
component of the residual clutter, respectively. The Q
function calculated for block 3 is shown in Fig. 6.

Based on the chirp rate estimation, an adaptive kernel can
be designed. We construct a kernel whose passband only
captures the target signal chirp rate. The clutter will be,
subsequently, mitigated in the ambiguity domain due to its
distinct orientation compared to the target signal. For an
estimated chirp rate 
̂
x; the following adaptive kernel is
constructed to encompass the autoterm ambiguity function
of the target signal, i.e.

�að	; �Þ ¼ e�d2ð	;�Þ=�2

ð19Þ
where s is the kernel width, and

d2ð	; �Þ ¼ 	2 þ �2 � ð	 sin 
̂
x þ � cos 
̂
xÞ2 ð20Þ
The adaptive kernel suppresses the clutter and noise, as well
as all cross-terms.
IEE Proc.-Radar Sonar Navig., Vol. 150, No. 4, August 2003



The adaptive chirp TDD is

Cxðt; !Þ ¼
1

2�

X
	

X
�

Axð	; �Þ�að	; �Þe�j	t�j�! ð21Þ

The above distribution has substantially suppressed clutter
and noise, as well as the cross-term TDDs between the
multicomponent signals. The adaptive TDD is shown in
Fig. 7 for the received signal at block 3.

4.2 High-resolution time–Doppler
localisation

In [14], chirp MUSIC was introduced for the estimation of
the Doppler frequencies at each time index t. The estimated
autocorrelation function R̂Rxðt; �Þ is used to construct a data
matrix for MUSIC spectrum estimation. However, the
resulting matrix is, in general, not positive definite. There-
fore, in [14], the filtered ambiguity function is transformed
to the time–frequency domain, and only the positive part of
the TFD is considered for the construction of the
autocorrelation function. This method, although showing
good time–Doppler localisation in high signal-to-noise
ratio (SNR) situations, is computationally inefficient
because spectrum estimation is implemented for each time
index. In addition, the estimated time–Doppler signature is
not always consistent with the true values, particularly in
low SNR scenarios. Therefore, it is not a candidate for
application in the underlying OTHR applications.

In this paper, we obtain the autocorrelation directly from
the filtered ambiguity function as

Fig. 6 Calculated Q function (block 3)

Fig. 7 Adaptive time–Doppler distribution of the pre-whitened
received signal (block 3)
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R̂Rxðt; �Þ ¼
1

2�

Z
Axð	; �Þ�að	; �Þe�j	td	 ð22Þ

Because signal components with single chirp rate are
involved, the autocorelation function Rx;iðt; �Þ of each chirp
component has the form

Rx;iðt; �Þ ¼ A2
i e jð�iþ�xtÞ� ð23Þ

which is dependent on t. Such dependence can be removed
by using the estimated value, �̂�x ¼ �1= tanð
̂
xÞ: From
Rx;iðt; �Þ; the time-independent autocorrelation function is
estimated as

~RRxð�Þ ¼
Z

R̂Rxðt; �Þe�j�̂�xt�dt ð24Þ

The coherent integration yields coherent MUSIC subspace
estimation of �i for improved performance. The vector
~RRxð�Þ is considered as raw data sequence, rather than as
covariance elements adopted in [14], to ensure the positive
definiteness of the covariance matrix for spectrum esti-
mation. In our simulations, the root-MUSIC algorithm is
used for computational convenience. Only one root-MUSIC
operation is required for each block. The chirp signatures at
different times are then constructed using the estimated
chirp rate and �i:

In Fig. 8, the coherent time-varying root-MUSIC
spectrum is shown for block 3. Despite the low SCR, the
time–Doppler signatures, along with the Doppler frequency
difference information, are estimated clearly and consist-
ently. Simulation results for all other blocks also confirmed
successful Doppler signature estimation.

4.3 TDD magnitude compression and more
simulation results

The existence of strong time–Doppler values at some
discrete points, however, may sometimes create undesired
time–Doppler signatures. Because the desired TDDs
typically show much more consistent signature over all
samples with its true chirp rate, we propose the use of the
following magnitude compression of Cxðt; !Þ :

C0
xðt; !Þ ¼ jCxðt; !Þj
sign½Cxðt; !Þ
 ð25Þ

where 0 < 
 < 1: Our experience suggests that g should
take value between 0.1 and 0.5. C0

xðt; !Þ is used instead to
estimate the autocorrelation function R̂Rxðt; �Þ in (26).

When the TDD magnitude compression is performed, the
local autocorrelation function Rxðt; �Þ should be obtained
from

Fig. 8 Estimated time–Doppler signature via chirp root-MUSIC
algorithm (block 3)
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R̂Rxðt; �Þ ¼
1

4�

X
!

C0
xðt; !Þe j�! ð26Þ

In Fig. 9, the time–Doppler signatures obtained from the
proposed method are shown for the entire turning process of
the aircraft. In the computations, the results are calculated
from six blocks, each of 256 samples. 
 ¼ 0:2 is used for
each block. The theoretical values of the Doppler signatures
are overlaid in the plot. It is evident that the proposed
method provides stable and consistent estimation of the
Doppler signatures over different situations.

To show the importance of applying magnitude com-
pression, we plotted in Fig. 10 the time–Doppler signatures

Fig. 9 Estimated time–Doppler signature of all blocks with
magnitude compression

‘þ’ marks show the theoretical Doppler frequencies for the three paths

Fig. 10 Estimated time–Doppler signature of all blocks without
magnitude compression

‘þ’ marks show the theoretical Doppler frequencies for the three paths
304
obtained without the magnitude compression. It is seen that,
while most time–Doppler signatures are correctly esti-
mated, one component in block 4 is not. The reason is
simply that, in the process of clutter suppression, signal
component with close spectrum to the clutter may lose part
of its signal power.

5 Conclusions

In this paper, a novel method has been proposed for high-
resolution time–Doppler signature localisation applied to
over-the-horizon radar systems. By combining AR
pre-whitening for effective clutter suppression, time–
frequency based signal discrimination and coherent high-
resolution spectrum analysis, the proposed method provides
a robust estimation of time-varying Doppler signature in
low signal-to-clutter ratio (SCR) scenarios.
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