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ABSTRACT
We propose a novel automotive radar imaging technique to provide
high-resolution information in four dimensions, i.e., range, Doppler,
azimuth, and elevation, by exploiting a joint sparsity design in
frequency spectrum and array configurations. Random sparse step-
frequency waveform is proposed to synthesize a large effective
bandwidth and achieve high range resolution profiles. This concept
is extended to multi-input multi-output (MIMO) radar by applying
phase codes along the slow time to synthesize a two-dimensional
(2D) sparse array with a high number of virtual array elements
which enable high-resolution direction finding in both azimuth
and elevation. The 2D sparse array acts as a sub-Nyquist sampler
of the corresponding uniform rectangular array (URA), and the
corresponding URA response is recovered by completing a low-
rank block Hankel matrix. The proposed imaging radar provides
point clouds with a resolution comparable to light detection and
ranging (LiDAR) but with a much lower cost and is insensitive to
weather conditions.

Index Terms— Automotive radar, autonomous driving, random
sparse step-frequency waveform, sparse array, MIMO radar

I. INTRODUCTION
Next-generation automotive radar must provide high resolution

estimation in four dimensions, i.e., range, Doppler, and azimuth
and elevation angles, yet maintain a low cost for feasible mass
production. High-resolution imaging radar is being developed to
provide point clouds of the surrounding environment [1]–[4]. Via
use of deep neural networks, such as PointNet [5] and PointNet++
[6], point clouds generated by high-resolution imaging radar can
lead to adequate target identification. State-of-the-art automotive
radars exploit frequency-modulated continuous-waveform (FMCW)
signals at millimeter-wave frequencies [4], [7], [8] to enable high-
resolution target range and velocity estimation in all weather
conditions at a much lower cost than light detection and ranging
(LiDAR). To achieve a high range resolution, the transmit signals
are designed to occupy a large bandwidth. FMCW radars sweep the
frequency linearly over the entire large bandwidth, thereby making
the signal susceptible to interference from other automotive radars.

To meet the angular resolution requirement for autonomous
driving, the array is required to have a large aperture. However,
most of the current automotive radar transceivers designed for
advanced driver assistance systems (ADAS) functionality, such
as NXP Semiconductor MR3003 and Texas Instruments (TI)
AWR1243 [9], only support up to 3 transmit and 4 receive
antennas. Such radar units synthesize 12 virtual array elements
using the multiple-input multiple-output (MIMO) radar technology.

Because of the small array size, such radars are typically used
only for azimuth angle estimation. A cost-effective and scalable
solution to form a large array is to coherently cascade multiple
automotive radar transceivers. For example, up to 4 TI AWR1243
radar chips can be cascaded together to provide 12 transmit
and 16 receive antennas, thereby synthesizing 192 virtual array
elements [10]. Other cascade products are also reported [11], [12].
Such high number of virtual array elements provide much higher
processing capability and enable angle estimation in both azimuth
and elevation [3]. Such two-dimensional (2D) angular information
in both azimuth and elevation is crucial for autonomous driving. In
particular, the height information of targets is important to enable
drive-over and drive-under functions.

Conventional radars use uniform linear or rectangular array
configurations with half-wavelength interelement spacing. In this
case, the aperture is proportional to the number of array sensors. As
such, high-resolution target direction-of-arrival (DOA) estimation
requires a high number of antennas which are often infeasible for
automotive radars due to the strict cost constraints. A cost-effective
solution is to use sparse MIMO arrays [13]–[15]. Consider for
simplicity a MIMO radar exploiting a sparse linear array (SLA)
which is formed from a uniform linear array (ULA) with half-
wavelength interelement spacing by selecting a subset of ULA
antennas but maintaining the same aperture [13]. In this context,
the primary interest of sparse array design and processing lies in
selecting the surviving array elements and carrying out direction
finding with the virtual sparse array. Interpolation and extrapolation
techniques are widely adopted in automotive radars to fill the holes
in the synthesized SLA [3], [16].

In this paper, we propose a high-fidelity automotive MIMO radar
sensing technique that exploits a sparse two-dimensional (2-D)
MIMO array and provides four-dimensional (4D) point clouds at a
much lower cost than LiDAR and with higher robustness to weather
conditions. Each transmit antenna transmits the same random sparse
step-frequency waveform (RSSFW) to synthesize a large effective
bandwidth for high-resolution range estimation, while keeping a
low sampling rate. In addition, sparse spectrum utilization makes
it robust to multiuser interference from other automotive radars.
The waveform orthogonality between MIMO transmit antennas
is achieved through Doppler division multiplexing (DDM). At
the receiver, targets are first distinguished in the joint range-
Doppler domain, and the large virtual sparse array with hundreds
of elements synthesized from the 2D MIMO radar is used to
provide high-resolution image in both azimuth and elevation. We
further use matrix completion techniques [17]–[21] to complete the
corresponding virtual uniform rectangular arrays (URAs), and carry



out high-resolution direction finding.

II. SPARSE STEP-FREQUENCY AUTOMOTIVE RADAR

In this section, we address the problem of high-resolution target
range estimation using RSSFW signals with a small number
of carrier frequencies. A transmit antenna transmits a sequence
of N pulses whose carrier frequencies fn ∈ [fc, fc +B],
n = 1, 2, · · · , N , are randomly chosen from the set M =
{fn = fc + hn∆f, hn ∈ {1, 2, · · · , P}} with P = bB/∆fc
equally spaced subcarriers, where ∆f is the frequency step size
and b·c denotes the floor function. The unambiguous scope of
high range resolution profiles (HRRP) and range resolution are
respectively given by Ru = c/(2∆f) and ∆R = c/(2P∆f) =
Ru/P . The duration of each pulse is Tp. After a burst of N
pulses are transmitted, the radar is switched to a receive mode.
The total time duration of a burst cycle consisting of both transmit
and receive modes is T . The maximum unambiguous range is
Rmax = cT/2. One CPI consists of M burst cycles. The n-th
transmit pulse during the m-th burst cycle is expressed as

s (m,n, t) =
1√
Tp

rect

(
t− nTp −mT

Tp

)
ej2π(t−nTp−mT)fn ,

(1)

where t is the fast time, and

rect

(
t− τ
Tp

)
=

{
1, τ ≤ t ≤ τ + TP ,
0, otherwise.

(2)

Each pulse has unit energy, i.e.,
∫ Tp

0
|s(n,m, t)|2dt = 1.

Consider K point targets in the far field, where the k-th target
has range rk, radial velocity vk, and complex reflection coefficient
βk. The received signal of the n-th pulse at the m-th slow time
corresponding to the k-th target is

ỹk (m,n, t) = βks (m,n, t− 2rk (t)/c) , (3)

where rk (t) = rk (0) + vkt and c is the speed of light. After
demodulation, the n-th echo is sampled at the rate of 1/Tp at fast
time ts (m,n) = mT + nTp with n = 1, 2, · · · , N , giving one
sample per frequency step, expressed as

yk (m,n) = βke
−j 4π

c
fn[rk(0)+(mT+nTp)vk]. (4)

The sampled received signal for the n-th pulse is the superposition
of the echoes from all K targets, i.e.,

y (m,n) =

K∑
k=1

yk (m,n)

=

K∑
k=1

βke
−j 4π

c
fn[rk(0)+(mT+nTp)vk]

=

K∑
k=1

γke
−j 4π

c
(fcmTvk+hn∆frk(0))

× e−j
4π
c (hn∆fnTpvk+hn∆fmTvk+fcnTpvk), (5)

where γk = βke
−j 4π

c
fcrk(0).

We make the following assumptions:
A1) The unambiguous scope of high range resolution profiles,

defined as c/(2∆f), is larger than the scope of a range bin
cTp/2. This yields that ∆f < 1/Tp.

A2) The range migration is negligible during one CPI, i.e.,
vkMT < cTp/2.

A3) Considering a typical vehicle speed, it is reasonable to assume
ξm,n = 2(2n∆fTp +m∆fT + 2fcTp) vk/c � 1/P for
m = 0, · · · ,M − 1 and n = 0, · · · , P − 1.

A4) The Doppler shift is considered constant in one burst cycle T
because of the short duration of the burst pulses.

Range estimation can be achieved by applying inverse discrete
Fourier transform (IDFT) to the fast-time samples. The range
resolution is determined by the frequency bandwidth. Traditional
step-frequency radar systems require N = P pulses to achieve a
range resolution of Ru/P . For the proposed sparse step-frequency
approach, we use N < P pulses and still achieve the same range
resolution of Ru/P . For each range bin l, the velocity estimation
is obtained by applying discrete Fourier transform (DFT) to the
obtained range spectra. P -point IDFT for range estimation and M -
point DFT for Doppler estimation provide 10log10 (PM) dB SNR
enhancement [4]. This SNR enhancement acts as a processing gain
which significantly benefits the subsequent angle estimation.

We extend the RSSFW radar to a MIMO setting through DDM
[4] by applying phase codes along the slow time so that the Doppler
DFT of the interference can be distributed into the entire Doppler
spectrum and treat it as pseudo noise with a low power spectrum.

III. TWO-DIMENSIONAL SPARSE ARRAYS DESIGN

Depending on the performance and cost requirements, auto-
motive radar can use one or multiple transceivers to synthesize an
SLA for direction finding. The utilization of sparse arrays reduces
not only the hardware cost but also mutual coupling effects. The
array response at a particular time instance consisting of data
obtained at all the MtMr virtual receivers and corresponding to
the same range-Doppler bin is defined as an array snapshot. To
mitigate the sidelobes introduced by the sparse arrays, we utilize the
matrix completion technology to interpolate/extrapolate the holes
in the sparse arrays. Matrix completion effectively improves the
SNR of array response as the array holes are fully recovered.

The success of applying matrix completion in sparse arrays relies
on the following two facts:

F1) The number of targets in the same range-Doppler bin that need
angle estimation is small and sparsely present since the targets
are first separated in the joint range-Doppler domain.

F2) The SNR in the array snapshot is high because of the
processing gain in both range and Doppler domains. The high
SNR help reduce the matrix completion error and improve the
accuracy of angle estimation.

To enable drive-over and drive-under functions, the elevation
angles of targets must be precisely measured with high-resolution
angle discrimination capability. Fig. 1 shows a MIMO radar with
12 transmit antennas and 16 receive antennas that are obtained by
cascading 4 automotive radar transceivers consisting of 3 transmit
antennas and 4 receive antennas. The transmit and receive antennas
are randomly deployed on a half-wavelength grid in an area of
[0, 100] (λ/2) × [0, 120] (λ/2) to synthesize a MIMO 2D virtual
sparse array of 196 elements. The 2D physical array corresponds
to a form factor of about 20 × 24 cm when the carrier frequency
is fc = 77 GHz. The dimension of the rendered 2D virtual
sparse array is Dy ×Dx = 183(λ/2) × 194(λ/2), which can be
viewed as a spatial sub-Nyquist sampling of a URA of the same



dimension with half-wavelength spacing in both horizontal and
vertical directions. The azimuth and elevation angular resolutions
are expressed as ∆θAZ = 2arcsin

(
1.4λ
πDx

)
≈ 0.53◦ and ∆θEL =

2arcsin
(

1.4λ
πDy

)
≈ 0.56◦, respectively [22]. The angular resolution

of imaging radar in this example is comparable to the Velodyne
LiDAR HDL-32E whose horizontal and vertical resolutions are
0.16◦ and 1.33◦, respectively [23].
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Fig. 1. A MIMO radar with 12 transmit antennas and 16 receive
antennas, and the corresponding virtual array.

Consider a general case of an M1 × M2 URA with half-
wavelength spacing, shown in Fig. 2, where the URA is located
on the x-y plane. Assume the k-th point target with azimuth angle
θk and elevation angle φk. Let χk denote the angle between the
k-th target and the x axis, and ϕk denote the angle between
the k-th target and the y axis. Then, it holds that cos (χk) =
sin (φk) cos (θk) , cos (ϕk) = sin (φk) sin (θk) . Therefore, the
azimuth angle θk and elevation angle φk can be uniquely estimated
from χk and ϕk as

θk = arctan

(
cos (ϕk)

cos (χk)

)
, (6)

φk = arcsin
(√

cos2 (χk) + cos2 (ϕk)
)
. (7)

The (m1,m2)-th element of the URA array on the x-y plane
response with respect to the K targets with angle χk to the x-axis
and angle ϕk to the y-axis, k = 1, ...,K, can be written as

xm1,m2 =
K∑
k=1

βke
jπ((m1−1) sin(χk)+(m2−1) sin(ϕk)) (8)

x

y

z

k

k

k k

-th targetk

Fig. 2. Geometry of URA.

for 1 ≤ m1 ≤ M1 and 1 ≤ m2 ≤ M2. Let M =
[xm1,m2 ]0≤m1≤M1,0≤m2≤M2

be the data matrix with entries as
the URA array response defined in (8).

We can construct an N1× (M1 −N1 + 1) block Hankel matrix
as

YE =


Y0 Y1 · · · YM1−N1

Y1 Y2 · · · YM1−N1+1

...
...

. . .
...

YN1−1 YN1 · · · YM1−1

 , (9)

where

Ym =


xm,0 xm,1 · · · xm,M2−L
xm,1 xm,2 · · · xm,M2−L+1

...
...

. . .
...

xm,L−1 xm,L · · · xm,M2−1

 (10)

is an L×(M2 − L+ 1) Hankel matrix whose elements are defined
in (8). It can be verified that the rank of matrix YE is K if N1 ≥ K
and L ≥ K [24].

By designing the locations of the transmit and receive antennas,
we aim to synthesize a sparse 2D array, which can be viewed as
spatial subsampling of the block Hankel matrix YE corresponding
to a URA. Under certain conditions, the missing elements can be
fully recovered by solving a relaxed nuclear norm optimization
problem conditioned on the array response of sparse arrays, i.e.,

min ‖XE‖∗ s.t. PΩ (X) = PΩ (M) (11)

where || · ||∗ denotes the nuclear norm of a matrix, PΩ (M)
is the sampling operator with Ω denoting the observation set
consisting of the location of 2D sparse virtual array elements,
and XE is the block Hankel matrix constructed from matrix X
following equations (9) and (10). In the noisy observation scenario,
M is replaced by Mo =

[
xom1,m2

]
0≤m1≤M1,0≤m2≤M2

with
xom1,m2

= xm1,m2 +nm1,m2 , where xom1,m2
denotes the observed

signal and E = [nm1,m2 ]0≤m1≤M1,0≤m2≤M2
is the noise term.

We assume the noise is bounded, i.e., ‖PΩ (E)‖F ≤ δ. The block
Hankel matrix completion problem of the noisy signal is formulated
as

min ‖XE‖∗ s.t. ‖PΩ (X−Mo)‖F ≤ δ. (12)

Once the block Hankel matrix is completed, higher-resolution
direction finding can be achieved with subspace based methods,
such as MUSIC [25] and ESPRIT [26], and compressive sensing
based methods [27]–[30].



IV. NUMERICAL RESULTS
In one burst cycle, N = 300 pulses are transmitted. The start

carrier frequency is fc = 77 GHz, and the effective bandwidth is set
to B = 200 MHz, corresponding to range resolution of ∆R = 0.75
m. The pulse duration is Tp = 25 ns and the step frequency is
∆f = 0.5 MHz. The maximum unambiguous detectable range is
Ru = 300 m. The burst cycle repetition interval is T = 25 µs. The
maximum unambiguous detectable velocity is vmax = λ/(4T ) =
38.96 m/s. To measure the target velocity, M = 300 burst cycles
are carried out with a dwell time of MT = 7.5 ms, rendering a
velocity resolution of ∆v = λ/(2MT ) = 0.26 m/s. To achieve
waveform orthogonality among transmit antennas, a Chu sequence
[31] of length M = 307 was generated and then truncated into
length M = 300 for phase coding in slow time. The SNR of the
demodulated echo signals at receiver is set to 10 dB.

IV-A. Range-Doppler Spectrum under RSSFW
We consider two targets with equal radar cross section at the

same range of R = 100 m and with the same velocity of v =
−10 m/s. They have different angles represented by (χ1, ϕ1) =
(−20◦, 5◦) , (χ2, ϕ2) = (20◦, 10◦), respectively. To demonstrate
waveform orthogonality of RSSFW through DDM, we consider
a simple two transmit antenna scenario. Fig. 3 shows the range-
Doppler spectrum of the two targets with low sidelobe levels after
applying range weighting. There is a flat Doppler ridge which is
the residual from the other transmit antennas after demodulation in
slow time.

Fig. 3. Range and Doppler spectrum for two targets with equal
power located at range of 100 m with velocity of −10 m/s.

IV-B. Two-Dimensional Sparse Array Completion
Now we consider the same two-target scene but use the 2D

physical array shown in Fig. 1 for joint high-resolution azimuth
and elevation angle estimation. The dimension of the 2D sparse
array shown in Fig. 1 is Dy×Dx = 183(λ/2)×194(λ/2), which
requires 35, 502 elements if a URA of the same dimension is used.
The virtual sparse array corresponds to only 0.54% of the total
elements of the URA.

The input SNR of the array response after range-Doppler
processing is set to 20 dB. We construct a block Hankel matrix
YE of dimension 9, 009× 8, 928 using one array snapshot. Only
0.78% of the Hankel matrix entries are non-zero. The block Hankel
matrix is completed via the singular value thresholding (SVT)

Fig. 4. The spectrum of two targets with azimuth and elevation
angles of (χ1, ϕ1) = (−20◦, 5◦) , (χ2, ϕ2) = (20◦, 10◦) under the
sparse array. The targets’ angles are marked with crosses. There are
high sidelobes due to a large number of holes in the sparse array.

Fig. 5. The spectrum of two targets with azimuth and elevation
angles of (χ1, ϕ1) = (−20◦, 5◦) , (χ2, ϕ2) = (20◦, 10◦) under
the completed full URA. The sidelobes are effectively mitigated.

algorithm [32] to obtain all entries of the corresponding full URA.
In this simulation setting, matrix completion contributes around
10 log 10 (35, 502/196) ≈ 22.5 dB SNR gain for array processing.

Figs. 4 and 5 plot the azimuth-elevation spectra of the two targets
under the 2D sparse array and the completed full URA, respectively.
It is found that both sparse array and completed URA generate two
peaks corresponding to the correct target azimuth and elevation
angles. However, the high sidelobes of the sparse array over the
entire azimuth and elevation FOVs are effectively mitigated in the
completed URA.

V. CONCLUSIONS

In this paper, we developed an 4D automotive MIMO radar
imaging system exploiting a joint thinned frequency spectrum and
sparse arrays to synthesize a large effective bandwidth for high-
resolution range-Doppler profiles, as well as 2D sparse arrays
with hundreds of virtual elements for angle estimation in both
azimuth and elevation. The missing elements in the sparse arrays
are effectively interpolated using matrix completion, rendering low-
sidelobe angle estimation.
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