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ABSTRACT
We propose a distributed unmanned aerial vehicle (UAV) network
performing collaborative radar sensing for multi-target localization
and motion parameter estimation. Two UAV network topologies are
considered for data propagation and information fusion. In the for-
mer, we form a sequential UAV node chain, whereas in the latter,
the UAV nodes are grouped into clusters and the information among
different clusters is propagated through the cluster master nodes.
Sparse reconstruction methods are used to fuse the target state in-
formation from previous nodes or clusters with the data measured
in the underlying nodes or clusters, depending on the adopted topol-
ogy, to achieve improved target state estimates. In order to minimize
the communication traffic in the UAV network, each node transmits
the estimated Doppler signatures or sparse target state estimates to
the next UAV node in the network or the cluster master node, in lieu
of the large volume of raw sampled data. Simulation results verify
the effectiveness of the proposed approaches and compare the per-
formance between the two UAV network topologies.

Index Terms— Collaborative UAV network, target localization,
motion parameter estimation, distributed radar network, passive
radar.

1. INTRODUCTION
Autonomous unmanned aerial vehicles (UAVs) play a critical role
in various civil, military, and homeland security applications, such
as disaster monitoring, border surveillance, and relay communica-
tions [1–7]. To execute missions that are time critical or span a large
geographical area, a single UAV is insufficient due to its limited en-
ergy and payload. In addition to the extended coverage, a multi-UAV
network also provides diversity gain by sensing an area of interest
from different aspect angles to increase the reliability of the esti-
mated target parameters. However, the transmission and fusion of
the high volume data between different UAVs pose great challenges
as the UAVs are equipped with restricted on-board processing capa-
bilities and have limited communication coverage and data transmis-
sion capacities.

The target state search space, representing the position and ve-
locity of the targets, is sparsely populated because the targets are
sparsely distributed within the surveillance area [8, 9]. This fact en-
ables sparsity-based approaches to be applied in the conventional
distributed stationary radars where the Doppler frequencies observed
at each radar receiver are forwarded to the global fusion center [10].
In the fusion center, the time-domain signal is reconstructed from the
Doppler frequencies through the inverse discrete Fourier transform
(IDFT), and the results corresponding to all receivers are fused using
compressive sensing (CS) techniques, such as the complex multi-
task Bayesian compressive sensing algorithm [11, 12]. However,
missing or noisy samples from various nodes may result in erroneous
target state estimation. In [13, 14], instantaneous target state esti-
mates are fed to a Gaussian mixture probability hypothesis density

filter (GMPHD) to filter out the false measurements and compensate
for missed detections to reduce the localization error. A feedback
scheme is further introduced in [15, 16] so that the group sparse re-
construction algorithm also benefits from the a priori knowledge.

When considering the underlying UAV network, however, such
centralized processing scheme becomes impractical because there
may not be a fusion center. Even a fusion center is utilized, the
UAVs have a limited communication range and thus not all of them
can directly report the observed data to the fusion center. In addition,
the overall communication traffic and latency would increase as the
network size scales.

In this paper, we consider real-time multi-target localization and
motion parameter estimation using a scalable collaborative UAV net-
work as a passive radar utilizing the sources of opportunity [17–24].
More specifically, we consider the following functionalities: Sens-
ing, transmission, information fusion, target localization, and mo-
tion parameter estimation. We exploit CS-based information fusion
at UAVs to fuse the information captured from neighbouring nodes
or neighbouring clusters with their own measurements to achieve
improved target localization and motion parameter estimation. Due
to the space limitation, our focus is on the CS-based network infor-
mation fusion for these purposes, whereas the tracking performance
incorporating the GMPHD filters will be considered separately.

Notations. A lower (upper) case bold letter denotes a vector
(matrix) and (·)T represents the transpose operator. In addition, ‖·‖1
and ‖·‖2 express the vector l1 and l2 norms, respectively.

2. SYSTEM AND SIGNAL MODELS

2.1. System Geometry

Consider a collaborative UAV network consisting of N distributed
UAV nodes as illustrated in Fig. 1. The mission of the UAV network
is to localize multiple ground moving targets and estimate their mo-
tion parameters through the measurement and processing of the tar-
get Doppler frequencies observed at these UAVs. We assumeM sta-
tionary transmitters from sources of opportunity and their locations
in the three-dimensional space and the operating frequencies, respec-
tively denoted as pm,tx and fm, m = 1, · · · ,M , are known at each
UAV. The location and the instantaneous velocity of the nth UAV at
the time instant t are respectively denoted by pn,rx(t) and vn,rx(t),
n = 1, · · · , N , and are assumed known to the UAVs within its com-
munication coverage. We assume G point targets in the sensing area
of the UAV network where the gth target is located at pg,tar(t) mov-
ing with an instantaneous velocity vg,tar(t), g = 1, · · · , G. The
number of the targets as well as their respective positions and veloc-
ities are unknown to the UAVs.

2.2. Doppler Frequencies

Assuming proper processing of ground clutter suppression through
e.g., space-time adaptive processing [25, 26] or displacement phase



Fig. 1. Passive multi-static radar exploiting a collaborative multi-
UAV network.

center antenna [27], the Doppler frequencies associated with the mo-
tion of the targets and the UAV nodes can be measured at the UAVs.
The bistatic instantaneous Doppler frequency of the qth target mea-
sured at the nth UAV node corresponding to the signals transmitted
by the mth transmitter can be expressed as [8, 10]:

fm,n,g(t) =−
[

vg,tar(t)− vn,rx(t)

λm

]T[
pg,tar(t)− pn,rx(t)

‖pg,tar(t)− pn,rx(t)‖

]
−

vT
g,tar(t)

λm

[
pg,tar(t)− pm,tx
‖pg,tar(t)− pm,tx‖

]
,

(1)

where λm = c/fm is the wavelength of the signal transmitted by the
mth transmitter, and c is the velocity of propagation of radio waves
in the free space. In the sequel, we omit the notation (t) in fm,n,g(t)
as the Doppler frequencies are considered constant during the short
processing interval.

3. DOPPLER FREQUENCY ESTIMATION AT UAV NODES

For the waveform transmitted by the mth transmitter, reflected by
the gth target, and received at the nth UAV node, the noise-free re-
ceived slow-time signal can be expressed in the following discrete-
time baseband form:

ym,n,g(k) = αm,n,ge
j(2πfm,n,gkδ+φm,n,g), (2)

where k is the slow-time index and δ is the slow-time interval in
processing the continuous signals from the sources of opportunity in
the passive radar [28]. In addition, αm,n,g denotes the radar cross
section (RCS) including the propagation attenuation, and φm,n,g is
the random phase delay. The aggregated received signal at the nth
UAV node takes the following form:

yn(k) =

M∑
m=1

G∑
g=1

αm,n,ge
j(2πfm,n,gkδ+φm,n,g) + wn(k), (3)

where wn(k) is the additive white Gaussian noise. High-resolution
Doppler frequency estimation at each node is achieved by ex-
ploiting CS-based methods on the received data vector yn(k) =
[yn(k), yn(k − 1), · · · , yn(k −K + 1)]T, where K is the number
of slow-time samples used to estimate the Doppler frequencies. The
Doppler frequency estimation can be executed at an individual UAV
node by exploiting the LASSO [29] optimization as:

min
z(k)

1

2
‖yn(k)−Wz(k)‖2 + µ ‖z(k)‖1 , (4)

where W is the K ×L IDFT matrix, z(k) is an L× 1 sparse vector
representing the search space of the Doppler frequencies, and µ > 0
is the regularization parameter.

Fig. 2. Topological examples of the collaborative multi-UAV net-
work.

4. INFORMATION PROPAGATION AND FUSION OVER
UAV NETWORK

4.1. Information Propagation
While CS-based multi-static radar approaches were developed in a
global fusion manner, we extend the results to a distributed fash-
ion to perform information propagation and fusion in the underly-
ing collaborative multi-UAV network. As such, the UAV network
is modeled as a directed graph denoted by G = (U ,W), where
U = {u1, u2, · · · , un} and W ⊆ (V × V) are, respectively, the
set of UAV nodes and the set of edges which directionally connect
the UAV nodes together as a network. The directed edge denoted by
an ordered pair wi,j = (ui, uj) means a path through which node i
passes information to node j. The complete directed network is the
collection of all available directed edges of wi,j ∈ W .

We consider two network graph topologies for information prop-
agation and data fusion as depicted in Fig. 2. In the first scenario,
we follow a chained network topology, as shown in Fig. 2(a), where
the Doppler information is forwarded to the subsequent node in the
UAV network, i.e.,W = {w1,2, w2,3, · · · wN−1,N}. Upon receiv-
ing the Doppler information from a certain number of neighboring
UAV nodes, a UAV node processes the data and generates a coarse
target state estimate and passes it to the next UAV node in the net-
work chain. In the second scenario as shown in Fig. 2(b), we utilize
the clustered network topology where each node in the cluster trans-
mits the Doppler estimates to the cluster master node. The cluster
master nodes follow the chain network topology to propagate the tar-
get state estimates from one cluster master node to the other. Denote
k(r) = 1(r), · · · , Q(r) as the kth node in the rth cluster, with Q(r)

denoting its cluster master node. Then, the directed edges in the first
cluster are denoted as W1 = {w1(1),Q(1) , · · · , w(Q−1)(1),Q(1)},
whereas the directed edges in the rth cluster for r ≥ 2 are given
asWr = {w1(r),Q(r) , · · · , w(Q−1)(r),Q(r) , wQ(r−1),Q(r)}.

The information fusion and target localization for these two
topologies are respectively considered in the following two subsec-
tions.

4.2. Information Fusion and Target Localization in the Chained
Network Topology
Denote Q̃ as the minimum number of UAV nodes required to ob-
tain the initial estimate of the sparse target scene. That is, when the
Doppler measurements are collected in a UAV from fewer than Q̃
UAV nodes, the estimated Doppler frequencies at each node will be
passed to the next UAV node in the network. On the other hand,
when the Doppler frequency measurements from Q̃ UAV nodes are
collected, the UAV will perform CS-based target position and veloc-
ity estimation. Subsequently, only the estimated target state, instead



of the estimated Doppler frequencies or sampled data, is passed to
the subsequent UAV node so that the data traffic does not increase
with the size of the UAV network. This strategy also enables dis-
tributed computing in an effective sequential manner.

In the sensing process, each node estimates the target Doppler
frequencies from the received time sequence yn(k) using Eq. (4).
Once the Q̃th UAV node receives the estimated Doppler frequencies
from the other Q̃ − 1 UAV nodes, it creates a hypothetical data for
each of the Q̃ nodes as follows:

ỹn(k) = [ỹn(k), ỹn(k − 1), · · · , ỹn(k −K + 1)]T, (5)

with

ỹn(k) =

M∑
m=1

G∑
g=1

ej2πf̂m,n,gkδ, (6)

where n = 1, 2, · · · , Q̃, f̂m,n,g denotes the estimated Doppler fre-
quencies, ỹn(k) is the hypothetical data corresponding to the time
sequence sampled at the nth UAV node, whereas ỹn(k) is the cor-
responding K × 1 data vector for the nth UAV node. The target
localization and motion parameter estimation can be performed by
employing the processed Doppler frequency data from the first Q̃
UAV nodes in the network through the following LASSO optimiza-
tion [10]:

ûQ̃(k) = arg min
u
Q̃
(k)

1

2

∥∥ȳQ̃(k)−ΨQ̃uQ̃(k)
∥∥
2

+ µ
∥∥uQ̃(k)

∥∥
1
,

(7)

where ȳQ̃(k) = [ỹT
1 (k), ỹT

2 (k), · · · , ỹT
Q̃−1

(k), ỹT
Q̃

(k)]T is the

KQ̃ × 1 vector developed by concatenating ỹn(k) for the Q̃ nodes
using Eq. (5). Moreover, ΨQ̃ is the KQ̃ × L dictionary matrix
whose columns correspond to the target locations and the respective
velocities. Each column of the dictionary matrix is constructed for a
specific target position and velocity using Eq. (5) by exploiting the
Doppler frequencies generated by Eq. (1) for that target velocity and
location. Moreover, uQ̃(k) is the L× 1 sparse vector corresponding
to the respective target positions and velocities. The target positions
and velocities can be defined in either a two-dimensional or three-
dimensional space, depending on the geometries and the knowledge
of the ground scene. In this paper, we consider a two-dimensional
space.

The processed location and velocity information contained in
uQ̃(k), estimated by the optimization in Eq. (7) using Q̃UAV nodes,
is forwarded to the next node in the wireless network for information
fusion. There are different ways to fuse data in the CS framework. In
this paper, we exploit the re-weighted l1 minimization approach [30]
that modifies the LASSO with weighting factors applied to the sparse
entries.

Consider the nth node with n > Q̃ − 1. Denoting ûn−1(k) as
the target state information received from the previous node in the
chain, the nth UAV node can fuse the information ûn−1(k) with
its own sampled Doppler frequency data yn(k) to achieve enhanced
location and velocity estimates as:

ûn(k) = arg min
un(k)

1

2
‖yn(k)−Ψnun(k)‖2 + µ ‖Φun(k)‖1 ,

(8)
where Ψn is the K × L dictionary matrix whose columns corre-
spond to the target locations and velocities, and Φ is the re-weighted
diagonal matrix whose ith diagonal entry is defined as:

[Φ]i,i = min

[
1

|ûin−1(k)|γ
, Ω

]
, (9)

where ûin−1(k) is the ith element of vector ûn−1(k), γ is the
weighting parameter, and Ω is a sufficiently large real value. At the
last node in the UAV network, the sparse vector uN (k) provides the
final estimates of target positions and velocities. At the last node in
the UAV network, the sparse vector ûN (k) obtained using Eq. (9)
provides the final estimates of target positions and velocities.

It is noted in Eq. (9) that, depending on several factors, such as
the slow-time sampling interval and the network size, the sampling
time of different UAV nodes can be different. As such, the target
state information passed between different nodes may need to be
aligned. Denote tn and tn−1 as the sampling instants at the nth and
the n − 1 nodes, we can align the target state information for target
g, g = 1, · · · , G, using the following expression:[

pg,tar(tn)
vg,tar(tn)

]
=

[
I2 (nt − nt−1)I2
02 I2

] [
pg,tar(tn−1)
vg,tar(tn−1)

]
,

(10)
where I2 and 02 represent the 2 × 2 identity and null matrices, re-
spectively. These target state parameters are mapped to vectors un
and un−1.

4.3. Target Localization in Clustered Network Topology

Denote R as the total number of clusters and there are Q(r) UAV
nodes in the rth cluster. Each UAV node estimates the Doppler
frequencies using the optimization in Eq. (4) and transmits the es-
timated Doppler frequency information to their respective cluster
master nodes.

Consider the UAV nodes n = 1, 2, · · · , Q(1) in the first clus-
ter, where the Q(1)th node is the cluster master node. Similar to
the chained network structure as described in Section 4.2, the cluster
master node creates theL×1 hypothetical data vector as correspond-
ing to the data received at each node under its jurisdiction using Eq.
(5). The information from all the Q(1) UAV nodes can then be fused
with the sampled data at the cluster master node to initiate the sens-
ing operation as:

û(1)(k)= arg min
u(1)(k)

1

2

∥∥∥ȳ(1)(k)−Ψ(1)u(1)(k)
∥∥∥
2
+ µ

∥∥∥u(1)(k)
∥∥∥
1
,

(11)

where ȳ(1)(k) = [ỹT
1 (k), ỹT

2 (k), · · · , ỹT
Q(1)(k)]T is the KQ(1)× 1

data vector, Ψ(1) is theKQ(1)×L dictionary matrix, and û(1)(k) is
the L×1 sparse vector corresponding to the positions and velocities
of the targets. The cluster master node passes the estimated û(1)(k)
to the master node of the second cluster (r = 2) in the network chain
of cluster master nodes.

Once the master node of the rth cluster, r = 2, · · · , R, receives
the estimated target state from the master node of the (r− 1)th clus-
ter, it can fuse the received information with the Doppler frequency
estimates from the Q(r) UAV nodes under its jurisdiction as:

û(r)(k) = arg min
u(r)(k)

1

2

∥∥∥ȳ(r)(k)−Ψ(r)u(r)(k)
∥∥∥
2

+ µ
∥∥∥Φ(r)u

(r)
(k)
∥∥∥
1
,

(12)

where matrix Φ(r) is similarly defined as:

[Φ(r)]i,i = min

[
1

|û(r−1),i(k)|γ
, Ω

]
, (13)

with û(r−1),i(k) denoting the ith element of û(r−1)(k). For the last
cluster master node in the network, û(R)(k) provides the estimated
location and velocity information of the targets.
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Fig. 3. The UAV network configuration.

5. SIMULATION RESULTS

We consider a collaborative UAV network consisting of 10 UAVs
as shown in Fig. 3. All the UAVs are moving with the same con-
stant speed of [12, 0, 0] m/s at the height of 200 m. One illumi-
nator located at the origin is considered which emits Digital Video
Broadcasting-Terrestrial (DVB-T) signals with a carrier frequency of
950 MHz. There are two ground targets which are initially located at
[30, 70, 0] m and [50, 150, 0] m, respectively, and move with the re-
spective velocities of [−7,−5, 0] m/s and [−3, 3, 0] m/s. We assume
a unit noise power, and the input signal magnitude corresponding to
both targets is about 0.2, yielding an input signal-to-noise (SNR) of
−14 dB. By taking advantages of the previous target states, the sim-
ulation focuses on a small search area with a size of 200 m × 200 m
and velocity space between −10 m/s to 10 m/s in each direction. 10
samples are used in each dimension, yielding a grid size of 10, 000
entries. In addition, we assume γ = 1 and Ω = 10, 000.

In the chained network topology, we assume the minimum num-
ber of nodes to perform the initial target state estimation to be Q̃ =
5. Each of the first four nodes estimates the Doppler frequencies us-
ing Eq. (4), and the two dominant Doppler frequency estimates are
transmitted to the next UAV node. The 5th node reconstructs the
sampled data using Eq. (5) and exploits the optimization in Eq. (7)
to estimate the target locations and velocities. The location and mo-
tion parameter estimates are then transferred in a serial fashion to the
next nodes until we reach the final node.

The estimated target state of the chained network topology is
shown in Fig. 4. Fig. 4(a) depicts the results obtained in the 5th UAV
node, whereas Fig. 4(b) through Fig. 4(f) show the respective results
obtained at the 6th UAV through the 10th UAV. We notice that the
two true peaks cannot be determined in Fig. 4(a), since the second
highest peak does not associate with one of the two targets. However,
with the estimated target state passing through the UAV nodes in
the chained network topology, false peaks become less significant
as successive information fusion taking place in the UAV network.
However, the target magnitude of the second target is much lower
than the true value.

For the clustered network topology, we assume that the UAV
nodes 1 to 5 and 6 to 10 belong to the first and second clusters, re-
spectively. UAV nodes 5 and 10 act as the cluster master nodes. Fig.
5(a) presents the estimated target state from the first cluster and the
result is the same as in Fig. 4(a). In the second cluster, the master
node 10 fuses the results from first cluster with the Doppler estimates
gathered from the UAV nodes in the second cluster. Fig. 5(b) rep-
resents the results achieved after the information fusion from both
clusters based on Eq. (12). It shows accurate target state estimation
with much closer target magnitudes.

From 100 independent Monte Carlo trials, the root mean square
error (RMSE) of the estimated target locations using the chained
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Fig. 4. Estimated target state for the chained network topology: (a)
from the data observed at the first 5 nodes; (b)–(e) based on the fused
data at the 6th node through the 10th node, respectively.
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Fig. 5. Estimated sparse vector representing the target motion pa-
rameters for the clustered network topology: (a) estimated from the
first cluster; (b) fused results for the first and second clusters.

network topology is 9.33 m and the RMSE of the estimated velocity
is 0.97 m/s. For the clustered network topology, the obtained RMSE
of the estimated target locations is 0.42 m and that of the estimated
target velocity is 0.03 m/s. Overall, target state information fusion
in the clustered network topology provides better performance as
compared to the chained network topology.

6. CONCLUSIONS

In this paper, we proposed a multi-target motion parameter estima-
tion method for collaborative UAV networks. In order to reduce the
communication burden of transmitting a high volume of raw mea-
surement data, the UAV nodes process the received signals and only
transmit the estimated Doppler signatures to the UAV nodes in the
sequence of the network chain. Two network topologies are consid-
ered to fuse the information captured from the UAV nodes to extract
the improved target state estimates. Simulation results illustrate the
effectiveness of the proposed approaches and compare the two types
of UAV network topologies.
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