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ABSTRACT

An effective complex multitask Bayesian compressive sens-

ing (CMT-BCS) algorithm is proposed to recover sparse

or group sparse complex signals. The existing multitask

Bayesian compressive sensing (MT-CS) algorithm is power-

ful in recovering multiple real-valued sparse solutions. How-

ever, a large class of sensing problems deal with complex

values. A simple approach, which decomposes a complex

value into independent real and imaginary components, does

not take into account the group sparsity of these two com-

ponents and thus yields poor recovery performance. In this

paper, we first introduce the CMT-BCS algorithm that jointly

treats the real and imaginary components, and then derive

a fast and accurate algorithm for the estimation of the prior

parameters by solving a surrogate convex function. The

proposed CMT-BCS algorithm achieves effective complex

sparse signal recovery and outperforms MT-CS and complex

group Lasso.

Index Terms— Compressive sensing, Bayesian infer-

ence, multitask learning, multiple measurement vector

1. INTRODUCTION

Sparse signal recovery and the associated compressive sens-

ing (CS) problems have attracted significant attention in re-

cent years [1]. CS techniques have the capability of recov-

ering signals from a small number of measurement samples

with a high probability, given that the signals are sparse or

can be sparsely represented in some domain. They have been

widely used in many applications, such as wireless sensing

[2], direction-of-arrival (DOA) estimation [3, 4], radar imag-

ing [5, 6, 7], space-time adaptive processing [8, 9], and time-

frequency analysis [10, 11, 12].

A typical real-valued CS model with a single measure-

ment vector (SMV) y ∈ RN is given by

y = Φw + ε, (1)
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where Φ ∈ RN×M , N � M , is a known dictionary ma-

trix, and ε ∈ RN is an unknown noise vector. The task is

to estimate the weight vector w ∈ RM . Any K columns of

Φ are assumed to be linearly independent so that the unique

representation property condition is satisfied to guarantee the

sparse signal recovery with a high probability [13]. In ad-

dition, to ensure a unique global solution, the dimension of

the measurement vector y should meet the condition N >
O(K logM/K), where K is defined as the sparsity, i.e., the

number of non-zero entries in w. By exploiting the fact that

w is sparse, one may estimate w accurately by solving the

ill-posed problem via an l1-regularized formulation,

min ‖w‖1 s.t. ‖y −Φw‖22 ≤ ε. (2)

The basic framework in (2) has been the starting point for

several recent CS algorithms, such as the orthogonal match-

ing pursuit (OMP) [14] and the least absolute shrinkage and

selection operator (Lasso) [15].

In many applications, a sequence of measurements in

{yl}l=1,L with L > 1 are taken from slow-varying sources

or similar scenes. It is referred to as a multiple measure-

ment vector (MMV) model. The mapping from {yl}l=1,L →
{wl}l=1,L can be reformulated as a multitask CS problem.

Numerous algorithms, such as the group OMP [16] and group

Lasso [17], have been developed to solve such MMV prob-

lems by extending from the SMV algorithm counterparts.

Bayesian based CS algorithms, which form a different CS

class, have recently received great attention because they

generally achieve much better reconstruction performance

over those obtained by the Lasso and OMP based approaches

[18]. The Bayesian CS [19] and its extended multitask CS

(MT-CS) [20] algorithms, which are based on the relevance

vector machine (RVM), constitute an important family in this

class to recover sparse signals in the SMV and MMV models,

respectively.

The above Bayesian algorithms have originally been de-

signed to recover real-valued sparse solutions as encountered

in image and video processing. However, a large class of

sensing data deals with complex-valued sparse weights and

observations. A simple approach to deal with such complex

problems is to decompose a complex value into independent

real and imaginary components [3]. However, such an ap-

proach does not utilize the fact that the real and imaginary



components are merely the projection of the same complex

value into two orthogonal axes and thus share the same spar-

sity pattern. As such, it unnecessarily expands the dimension

of sparsity entries and thus results in a degraded recovery per-

formance.

In this paper, an effective complex multitask Bayesian

compressive sensing (CMT-BCS) algorithm is proposed to

recover complex signals in the MMV model, by exploiting

the fact that the real and imaginary components of a com-

plex value are likely to share the same sparsity pattern. We

first introduce the complex multitask model, and then derive a

fast and accurate algorithm for the estimation of the prior pa-

rameters based on the majorization-minimization principle to

achieve automatic feature determination. Simulation studies

are performed that verify that the proposed algorithm outper-

forms the MT-CS and complex group Lasso (CG-Lasso) for

complex sparse signal recovery.

Notations: We use lower-case (upper-case) bold charac-

ters to denote vectors (matrices). (.)T and (.)H , respectively,

denote the transpose and conjugate transpose of a matrix or

vector. diag(x) denotes a diagonal matrix that uses the ele-

ments of x as its diagonal elements. ‖·‖ denotes the Euclidean

l2 norm of a vector, whereas ‖ · ‖1 denotes the l1 norm. Pr(·)
denotes the probability density function (pdf), and N (x|a, b)
denotes that random variable x follows a Gaussian distribu-

tion with mean a and variance b. Re(x) and Im(x) denote the

real and imaginary parts of complex element x, respectively.

2. COMPLEX MULTITASK FRAMEWORK BASED
ON BAYESIAN REGRESSION FORMULATION

Assume L sets of complex CS measurements that are statis-

tically correlated as described below. By extending the real-

valued SVM model in (1) to a complex-value MMV model,

we represent the complex measurements yl as

yl = Φlwl + εl, l ∈ [1, · · · , L], (3)

where each complex measurement yl ∈ CNl employs its own

projection matrix Φl ∈ RNl×M . This generalizes the formu-

lation in (1), wherein a common Φ is employed across all the

L tasks. The weight vector wl that characterizes task l is as-

sumed to be drawn from a product of the following zero-mean

Gaussian distributions:

wlm ∼ N (wlm|0, αmI2), m ∈ [1, · · · ,M ], (4)

where wlm is a vector that includes the real-part coefficient

wlmR and imagery-part coefficient wlmI of the mth weight,

αm is the variance of Gaussian pdf, and I2 denotes the 2× 2
identity matrix. It is important to note that the parameter α =
{αm}m=1,M are shared by all the L groups. It is in this sense

that the L tasks are statistically correlated. The mth weight

vector tends to be zero with probability 1 across the L groups

when αm is set to zero [18, 20].

To deal with complex problems in the real-valued MT-CS

context, the real and imaginary components have been treated

as two separate variables in the literature [3]. As described

earlier, such an approach does not utilize the fact that, because

the real and imaginary components are merely the projection

of the same complex coefficients into two orthogonal axes,

their non-zero entries usually appear at the same positions.

In the proposed approach, on the other hand, the shared pa-

rameters αm are jointly estimated for both real and imagery

components. As a result, it clearly improves the sparsity of

the estimated weight vectors and yields improved sparse sig-

nal recovery.

To promote sparsity over the weight vector wl, a Gamma

prior is placed on α−1
m , i.e.,

α−1
m ∼ Gamma(α−1

m |a, b), (5)

where Gamma(x−1|a, b) = Γ(a)−1bax−(a−1)e−
b
x , and Γ(·)

denotes the Gamma function.

It has been demonstrated in [18] that an appropriate

choice of the parameters a and b encourages a sparse rep-

resentation for the coefficients in wl. We set a = b = 0 as

a default choice which avoids a subjective choice of a and b
and leads to simplifications of computation.

Without loss of generality, a Gaussian prior is placed on

the additive noise due to the existence of measurement noise,

εlm ∼ N (εlm|0, β0I2), where εlm is a vector including the

real-part and imaginary-part coefficients of the complex noise

and β0 is the noise variance. Similar to α, β−1
0 is placed

on the Gamma prior with parameters c and d. We also let

c = d = 0 as a default choice [18].

Assuming that the parameters α and β0 are known (their

estimation is discussed in the next section), the posterior den-

sity function for wl = [wl1R, · · · , wlMR, wl1I , · · · , wlMI ]
T

can be evaluated analytically based on the Bayes’ rule as,

Pr(wl|yl,Φ,α, β0) = N (wl|μl,Σl),

where

μl = β−1
0 ΣlΨ

T
l yl, (6)

Σl =
[
β−1
0 ΨT

l Ψl +A−1
]−1

, (7)

Ψl =

[
Re(Φl) −Im(Φl)
Im(Φl) Re(Φl)

]
, (8)

A = diag(α1, · · · , αM , αM+1, · · · , α2M ), (9)

αl = αl+M , l ∈ [1, · · · ,M ], (10)

with yl = [Re(yl), Im(yl)]
T . Comparing to the complex

MMV model used in [3], which handles complex-value prob-

lem by dividing a complex weight into independent real and

imaginary components, the proposed approach reduces the

sparsity by a factor of two by imposing a reasonable restric-

tion on shared parameter α in the proposed algorithm.



3. BAYESIAN PARAMETER ESTIMATION

With known α and β0, the mean and covariance of each scat-

tering coefficients can be derived from (6) and (7). The asso-

ciated learning problem, in the context of the RVM, thus be-

comes the search for the parameters α and β0. The empirical

Bayesian estimate for α and β0 is determined by maximizing

the marginal likelihood, or equivalently, its logarithm

{α, β0} = arg max
α,β0

L(α, β0), (11)

where

L(α, β0) =

L∑
l=1

log Pr(wl|α, β0)

= −1

2

L∑
l=1

[
2Nl log(2π) + log |Cl|+ yT

l C
−1
l yl

]
,

(12)

and Cl = β0I+ΨlAΨT
l ∈ R2Nl×2Nl , Nl � M . A type-II

maximum likelihood (ML) approximation [21] employs the

point estimates for β0 and α to maximize (12), which can

be implemented via the expectation maximization (EM) algo-

rithm to yield

α(new)
m =

1

L

L∑
l=1

{μ2
l,m + μ2

l,M+m

+Σl,mm +Σl,(M+m)(M+m)}, (13)

β
(new)
0 =

∑L
l=1

{
Tr[ΣlΨlΨ

T
l ] + ‖yl −Ψlμl‖22

}
2ML

. (14)

Note that α(new) and β
(new)
0 are functions of {μl}l=1,L and

{Σl}l=1,L, while {μl}l=1,L and {Σl}l=1,L are functions of

α and β0. This suggests an iterative algorithm, which iter-

ates (6), (7) and (13), (14), until a convergence criterion is

satisfied.

While benefitting from the general convergence proper-

ties of the EM algorithm, we observe this updated rule of α
to be very slow on large scale problems. When evaluating

(7) one must invert matrices of size 2M × 2M , which is an

O(M3) operations for each of the L groups of data. It mo-

tivates the development of fast algorithms. Consider the fact

that the marginal likelihood is not a convex function with re-

spect to α, an approximate expression of α was developed

in [20]. In this paper, we derive a fast and accurate learning

rule of α by solving a surrogate convex function based on

the majorization-minimization method [22, 23], in which the

supporting hyperplane of the second term log |Cl| in (12) is

used. Let α∗ be a given point in the α-space. Then,

L(α)
�
= log |β0I+ΨlAΨT

l |

≤ log |C∗
l |+

M∑
m=1

Tr[(C∗
l )

−1ΨT
lmΨlm

+ (C∗
l )

−1ΨT
l,m+MΨl,m+M ](αm − α∗

m)
�
= L̃(α),

(15)

where C∗
l = β0I +ΨlA

∗ΨT
l , A

∗ = diag(α∗
1, · · · , α∗

M , α∗
1,

· · · , α∗
M ), and Ψlm, Ψl,m+M , being the mth and (m+M)th

columns in Ψl. Denote the corresponding real and imaginary

atoms of the mth weight vector wlm = [wlmR,wlmI ]
T , re-

spectively. The function L̃(α) in (15) is convex over α, and

when α = α∗, we have L(α∗) = L̃(α∗) [23]. Further, for

any αmin which minimizes L̃(α), we have the following rela-

tionship: L(αmin) ≤ L̃(αmin) ≤ L̃(α∗) [23]. Further, based

on the identity property we have a surrogate function for the

third term in (12),

yT
l

[
β0I+ΨlAΨT

l

]−1

yl ≡min
wl

β−1
0 ‖yl −Ψlwl‖22

+wT
l A

−1wl. (16)

Substituting (15) and (16) into (12), we can define a new func-

tion as

G(α, {wl}l=1,L)
�
=

L∑
l=1

β−1
0 ‖yl −Ψlwl‖22 +wT

l A
−1wl

+ log |C∗
l |+

M∑
m=1

Tr[(C∗
l )

−1ΨT
lmΨlm

+ (C∗
l )

−1ΨT
l,m+MΨl,m+M ](αm − α∗

m).

(17)

It is important to note that G(α, {wl}l=1,L) is convex in

both {wl}l=1,L and α. It can be easily shown that the so-

lution α of L̃(α) in (12) is the solution (α, {wl}l=1,L) of

G(α, {wl}l=1,L) in (15). Thus, G(α, {wl}l=1,L) is our final

cost function. Setting the derivative of G with respect to αm

to zero, we obtain

α(new)
m =

√√√√√
∑L

l=1(w
T
lmwlm +wT

l,m+Mwl,m+M )∑L
l=1 Tr

[
(C∗

l )
−1(ΨT

lmΨlm +ΨT
l,m+MΨl,m+M )

] .
(18)

Due to this learning rule for α, the proposed fast algorithm

requires far fewer iterations than the one in the EM algorithm

(13). We acquire the accurate α expression by solving a sur-

rogate convex function.

4. EXPERIMENTS

In the following experiments, the normalized mean squarse

error (NMSE) ‖ŵ − wgen‖22/‖wgen‖22 is used as the perfor-

mance index, where ŵ is the estimate of the true signal wgen.



We consider that an exact reconstruction is achieved when

NMSE < 10−5.

4.1. Recovery profiles comparison

In the first experiment, we consider L=2 signals of length

M = 256, each containing 20 unit-norm complex spikes with

random locations. All spikes are assumed to have random real

and imaginary components of ±1/
√
2. The projection matrix

Φl is created from an independent and identically distributed

complex Gaussian distribution. Complex zero-mean Gaus-

sian noise with standard deviation of η = 0.005 is added to

data yl. In the experiment, we adopt Nl = 45 for l = [1, 2].
In Fig. 1, the left half shows the real component, whereas

the right half shows the imaginary component. Only the first

signal is shown due to space limitation. The recovered re-

sults are compared among the proposed CMT-BCS, unpaired

MT-BCS (which represents the result of MT-BCS when the

real and imaginary components are treated separately and

the parameters α are estimated based on the majorization-

minimization method), MT-CS (which represents the result

of the algorithm in [20], where the real and imaginary compo-

nents are treated separately and the parameters α are provided

by the approximate expression in [20]), complex group Lasso

(in which the real and imaginary components are treated

jointly). The proposed CMT-BCS algorithm exactly recon-

structs the original complex-value signals. However, both the

unpaired MT-BCS and MT-CS algorithms show poor recov-

ery results, because they ignored the identical sparsity pattern

between the real and imaginary components. It is also evident

that the proposed algorithm outperforms the CG-Lasso even

though they both treat the real and imaginary components

jointly because the Bayesian sparse learning based on RVM

provides a tighter approximation to l0-norm sparsity measure

than the l1-norm used in Lasso [20].

4.2. Recovery performance versus data length

To study how the data length of the observed data affects the

recovery performance, in the second experiment we use the

same parameters as those in the first experiment except the

vector length. In the following, the experiment in each dimen-

sion was repeated for 100 trials. The average NMSE perfor-

mance is compared in Fig. 2. It is evident that the CMT-BCS

algorithm is able to exactly recover the signal when the data

length is higher than 40, whereas the requisite lengths are 56

and 60, respectively, for the unpaired MT-BCS and MT-CS.

For the CG-Lasso algorithm, the recovery errors has a floor

of around 10−2. It is evident that the proposed algorithm out-

performs the other algorithms compared herein.

5. CONCLUSION

Motivated by the applications that deal with complex data,

as commonly encountered in radio frequency sensing prob-

lems, we proposed a complex Bayesian compressive sensing

algorithm to effectively recover sparse weights described by

the multiple measurement vector model. An accurate expres-

sion of the prior parameters is derived by solving a surrogate

convex function. We have shown that the proposed algorithm

outperforms existing methods, including the simple extension

of the original multitask Bayesian compressive sensing algo-

rithm to complex problems and the complex group Lasso.
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