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A Novel Partial Relay Selection Method for
Amplify-and-Forward Relay Systems
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Abstract— Although partial relay selection (PRS) for amplify-
and-forward relay systems requires only the knowledge of
source-relay (S-R) channels, in general, it incurs a significant
performance loss. In cooperative systems with all single-antenna
nodes, irrespective of the number of relays, the diversity order
of PRS is limited to only one. This paper proposes a novel
relay selection method for improving the performance of PRS
scheme. In particular, as in the conventional PRS scheme, the
relay that gives the best first-hop signal-to-noise ratio (SNR) is
selected. However, this selection is made from only a subset of
relays, for which the corresponding S-R and relay-destination
(R-D) links are not in outage. An R-D link is considered to
be in outage if its SNR is below the predefined threshold
value of the end-to-end SNR plus some adjustable margin. The
additional overhead required for implementing the proposed
scheme is comparable to that of the conventional PRS method.
For conciseness and better exposition of the proposed method,
we limit our theoretical analysis to a system with two to three
relays. The exact expressions of the end-to-end outage probability
are derived and it is shown that full diversity order is achieved.
Simulation results verify theoretical analysis and show that the
proposed method significantly outperforms the conventional PRS
method. Moreover, the results demonstrate that, for properly
selected margin, the performance of the proposed method is
very close or comparable to the method with full channel state
information.

Index Terms— Partial relay selection, amplify-and-forward re-
lays, outage probability.

I. INTRODUCTION

Cooperative communication [1] is an emerging technique that
improves spatial diversity, coverage range and system through-
put in wireless networks. A key component of cooperative
communications is relaying in which a source takes help of
user terminals in its coverage area to relay the source signal
to the destination. Among different relay protocols [1], the
amplify-and-forward (AF) protocol is attractive due to its sim-
plicity. However, in systems with multiple relays, the feedback
requirements and the overall implementation cost increase.
Furthermore, the optimization of beamformers or space-time
codes applied over the set of relays requires strict time and
phase synchronization among them. In this context, relay
selection is considered as an efficient approach for reducing
signaling overhead and system design complexity while keep-
ing intact the diversity gain. In [2]-[5], several relay selection
schemes (known as opportunistic relaying (OR)) are proposed,
which mainly require the instantaneous signal-to-noise ratio
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(SNR) of both source-relay (S-R) and relay-destination (R-
D) links. Although [2] proposed distributed implementation of
relay selection, such approach requires perfect synchronization
among different nodes. This has motivated the authors of [6]
to propose a centralized relay selection scheme with only the
knowledge of the first-hop ( i.e., S-R) channels. This scheme,
known as partial relay selection (PRS), is attractive because
it does not require global channel state information (CSI)
at the central node and reduces the feedback requirements
for acquiring CSI and maintaining synchronization. In [6]-[7]
and [8], the performance of the PRS scheme is analyzed for
CSI-assisted and fixed-gain AF relaying systems, respectively.
However, in all these works ([6]-[8]), the PRS method incurs
significant performance loss compared to the scheme with full
CSI. In particular, irrespective of the number of relays, the
diversity order of the PRS scheme is limited to only one. In
our recent work [9], it is shown that the PRS scheme for multi-
antenna cooperative systems with beamforming also suffers
diversity loss for general antenna configurations.

This paper aims to improve the performance of conven-
tional PRS at a cost of minimal increase in system imple-
mentation complexity. In particular, we propose a novel relay
selection method which, as in the case of conventional PRS
scheme, selects the relay that gives the best first-hop SNR.
However, this selection is made from only a subset of relays,
for which the corresponding S-R and R-D channels are not
in outage condition. An S-R link is considered to be in
outage if the corresponding link SNR is below the threshold
value set for determining the outage event of the end-to-end
transmission, whereas, an R-D link is in outage if its SNR
is below the abovementioned threshold value plus some ad-
justable margin. A transmission protocol for implementing this
selection method is proposed and its complexity is compared
with the known PRS scheme. For the sake of clarity and
conciseness, the theoretical analysis is presented for a system
with two to three relays. We derive exact outage probability
expressions and show that the proposed scheme achieves full
diversity order. Note that, for making analysis concise, the
theoretical results are obtained further assuming that both the
S-R and R-D channels are identically distributed. However, it
will be evident from the derivations that the analysis can be
easily extended to the case with non-identically distributed
channels. Moreover, simulation results show that the new
scheme provides performance which is comparable to that of
the scheme having full CSI [7].

The rest of the paper is organized as follows. The system
model and the proposed relay selection method are presented
in Section II. The outage probability expressions and the
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corresponding asymptotic performance are derived in Section
III. In Section IV, the performance of the proposed method is
compared with the conventional PRS and the method having
full CSI. Section V concludes the paper.
Notations: fα(x), Pr {·}, Pr {x1, x2}, Pr {[x1 ∪ x2]} and
Pr {x1|x2} denote probability density function (PDF) of a
continuous random variable α, the probability operator, the
probability of the intersection between x1 and x2, the prob-
ability of the union of x1 and x2, and the probability of x1
conditioned to x2, respectively.

II. SYSTEM MODEL AND PROPOSED RELAY SELECTION

We study a cooperative network that consists of a source,
a destination and R relay nodes, all equipped with single-
antennas. The relays operate in a half-duplex mode and employ
the AF protocol. All channels are assumed to be slowly
time varying, i.e., the channel coherence time is much larger
than the symbol/block duration. Let hs,j and hj,d denote
the complex channel coefficients between the source and the
jth relay (j = 1, · · · , R), and between the jth relay and
the destination, respectively. Each node (source and relay)
transmits with a given fixed power. Let PS be the source
power and PR,j the transmit power of the jth relay node. The
path attenuations for the S-R and R-D channels are denoted
by cs,j and cj,d, respectively. We assume Rayleigh fading
environment, i.e., hs,j and hj,d are assumed to be zero-mean
circularly symmetric complex Gaussian (ZMCSCG) random
variables with unit variance. The direct link between the source
and destination does not exist since we consider that the
destination is out of the coverage range of the source node.

A. Protocol description

In our proposed method, the source selects the relay node.
As in the conventional PRS method, this selection is based
on the instantaneous CSI of the S-R channels. However, the
selection is made from only a subset of relays, for which
the corresponding S-R and R-D links are not in outage. In
order to implement this selection, we consider that the data
transmission phase is followed by a training phase, in which
a) the destination node broadcasts a training signal, b) the
jth relay determines whether the SNR of its link with the
destination is above a certain threshold value plus some margin
(i.e., the link outage condition is checked), and c) only the
relays that are not in outage (with reference to the R-D
channels), as determined in the previous step, transmit training
signals to the source node. The source node understands that
the relays from which the source does not receive training
signals have their corresponding R-D links in outage, and
thus, such relay nodes are excluded from the selection process
to be executed at the source. Among the relay nodes having
their respective R-D links not in outage, the source further
removes the relays, for which the S-R links are in outage, i.e.,
the corresponding link SNRs fall below the threshold value.
Finally, the source selects one from the remaining relays that
gives the maximum S-R SNR. It is important to highlight that
the resulting end-to-end transmission from the source to the
destination can still be subject to outage. To illustrate this fact,
let us consider the case that the qth relay is selected, where

q ∈ {1, R}. The SNR at the destination corresponding to the
selected relay can be expressed as [11]

γq =
gqαs,qfqαq,d

gqαs,q + fqαq,d + 1
≤ min(gqαs,q, fqαq,d) (1)

where αs,q = |hs,q|2, αq,d = |hq,d|2, gq ,
PScs,q
σ2
q

and

fq ,
PR,qcq,d

σ2
d

denote the average SNRs of the qth S-R and
R-D links, respectively, and σ2

q and σ2
d are the corresponding

noise powers at the qth relay and destination nodes. Since hs,q
and hq,d are ZMCSCG random variables, αs,q and αq,d are
exponentially distributed. Even if the SNRs of the S-R and
R-D links corresponding to the qth relay are above a certain
threshold value γth and above γth plus some margin ε > 0,
i.e., αs,q ≥ γth

gq
and αq,d ≥ γth+ε

fq
, respectively, γq in (1) can

still be smaller than γth. For example, consider that αs,q = γth
gq

and αq,d = γth+ε
fq

. In this case, (1) reduces to

γq = γth
γth + ε

2γth + ε+ 1
≤ γth (2)

where the equality holds for γth = 0, which means that (2)
shows that the outage can occur in the end-to-end transmission
from the source to the destination. On the other hand, it is clear
that such end-to-end transmission is certain to be in outage if
all of the two-hop links from the source to the destination
are found to be in outage. Although the latter case contributes
to the overall outage probability at the destination as well,
the source refrains from transmitting data since the outage
is certain to occur. As such, system power consumption is
reduced as no signal is transmitted. Finally, after the source
determines the best relay, the training phase ends and the
data transmission phase follows. The conventional two-phase
single-relay transmission is then employed for data transmis-
sion using the selected relay.

The index q is selected from a set A which is defined as

A =

{

j, s.t.
[

αs,j ≥
γth
gj

, bj = 1
]R

j=1

}

(3)

where bj is a binary variable which takes the value of 1 if the
R-D link corresponding to the jth relay is not in outage and
0, if the latter link is in outage. Mathematically, this can be
expressed as

bj =
{

1, if αj,d ≥ γth+ε
fj

,
0, otherwise,

(4)

where ε > 0 and needs to be properly selected for achieving
the best performance. The selection rule is then given by

q = argmax
j∈A

{αs,j} (5)

which requires only the knowledge of S-R channels at the
source since it implicitly has the knowledge of A due to
the fact that, as mentioned before in the protocol description,
only the relays having R-D links in non-outage condition send
training signals to the source node. We can also define the set
E which is the set of all j two-hop links, for which any of the
S-R and R-D links are in outage. This set can be described as

E =

{

j, s.t.
[(

αs,j <
γth
gj

)

∪ (bj = 0)
]R

j=1

}

. (6)
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Note that the two-hop links or the corresponding relays of
E are excluded from relay selection but the probability of
the occurrence of E contributes to the end-to-end outage
probability. We end this section with the following remark.
Remark 1: If no margin is used, i.e., ε = 0, the selection
method may result into the selection of the relay having its R-
D SNR very close to γth. This can lead to end-to-end outage
events which can be prominent when the average SNR and
number of relays increase, since, in these cases, the proba-
bility of more than one relay participating in relay selection
increases. On the other hand, by taking ε > 0, we may increase
the occurrence of E , although such probability decreases when
the average SNR increases. However, in general, ε should be
properly selected, for which, we pursue a numerical approach
(cf. Section IV) as the analytical method is under research.

B. Complexity comparison between PRS and proposed method

In a conventional PRS scheme [6], the relay that gives the
best first-hop SNR is selected. This means that the source
node needs the knowledge of all S-R channels if the selection
is performed at the source. It follows that an efficient way to
make S-R channels available at the source node is through
channel estimation in which the source estimates the S-R
channels using the training signals transmitted by the relay
nodes. This typically requires R training phases since the
source is a single-antenna node and, thus, the relays need to
transmit training signals sequentially. In our proposed method,
however, the source node requires to estimate the S-R channels
corresponding to only the relays that have their R-D links not
in outage condition. This means that our scheme requires, in
average,

∑R
j=1 Pr {(bj = 1)} training phases for the estima-

tion of S-R channels at the source. However, the proposed
method requires an additional training phase in which the
destination node transmits the training signal to the relay nodes
which estimate the SNRs of R-D links and determine whether
these links are in outage. As a result, the proposed method
requires 1+

∑R
j=1 Pr {(bj = 1)} phases for training, which is

comparable to the R training phases required in conventional
PRS scheme. The additional effort required by the relay nodes
for estimating the SNRs of R-D links in our case is equivalent
to the computation of the minimum-mean-square estimates of
the R-D channels [12].

III. OUTAGE PROBABILITY ANALYSIS

The outage probability at the destination is defined as the
probability that the received SNR falls below a threshold value.
However, the received SNR is conditional to the selected relay,
which in turn depends on the state of A. Let O denote the
outage event at the destination. Using total probability law
[13], the outage probability can be expressed as

Po,R =
2R−1∑

l=1

[

Pr {O|Al}Pr {Al} , Pr {O,Al}
]

(7)

where 2R − 1 is the total number of possible states for A and
Al denotes the corresponding lth state. For a system with an
arbitrary R and having non-identically distributed channels,
it is tedious to analyze Po,R, since, all events Al should be

analyzed, where the statistics associated with each Al can be
different. This motivates us to focus our analysis to R ≤ 3.
The presented analytical approach, however, can be extended
for R > 3. For R = 3, the possible states of A can be ordered
as A1 = {1, 2, 3}, A2 = {1, 2}, A3 = {1, 3}, A4 = {2, 3},
A5 = {1}, A6 = {2} and A7 = {3}. Again with total
probability law, Pr {O,Al} can be expressed as

Pr {O,Al}=
LAl∑

k=1

Pr
{

[O,Al]
∣
∣
∣
∣
αs,Al(k) ≥ max

j 6=Al(k),j∈Al

αs,j

}

×Pr
{

αs,Al(k) ≥ max
j 6=Al(k),j∈Al

αs,j

}

(8)

where LAl is the cardinality of Al and Al(k) is the kth
element of Al. In order to reduce the number of terms required
for computation in (8) and (7), we further consider that all S-R
and R-D channels are identically distributed, i.e., we assume
that gj = g, fj = f , for all j = 1, · · · , R. In this case, we get
the same values of Pr {O,Al} for l ∈ [5, 6, 7], for l ∈ [2, 3, 4],
and each term of the summation in (8) is equal for l = 1. Thus,
using (7) and (8), and without loss of generality (w.l.o.g.)
taking O = [γ1 ≤ γth], the end-to-end outage probability
for R = 3 can be expressed as

Po,3=3Pr {γ1 ≤ γth|B1}Pr {B1}+ 2× 3Pr {γ1 ≤ γth|B2}
×Pr {B2}+ 3Pr {γ1 ≤ γth|B3}Pr {B3}+ Pr {E} (9)

where the sets B1, B2, B3 are disjoint, and are defined as

B1=
{

αs,1 ≥ max(αs,2, αs,3), [αs,j ]
3
j=1 ≥

γth
g

, [bj = 1]3j=1

}

B2=
{

αs,1 ≥ αs,2, [αs,j ]
2
j=1 ≥

γth
g

, [bj = 1]2j=1 ,
[

αs,3 <
γth
g

∪ b3 = 0
]}

B3=
{

αs,1 ≥
γth
g

, b1 = 1,
[

αs,2 <
γth
g

∪ b2 = 0
]

,
[

αs,3 <
γth
g

∪ b3 = 0
]}

. (10)

We define t1 , Pr {γ1 ≤ γth|B1}Pr {B1}. Since γ1 is inde-
pendent of b2 and b3, we can write t1 as

t1=Pr
{

γ1 ≤ γth

∣
∣
∣
∣

{

αs,1 ≥ max(αs,2, αs,3), b1 = 1,

{αs,j}
3
j=1 ≥

γth
g

}}

Pr {B1}

=Pr
{

γ1 ≤ γth

∣
∣
∣
∣

{

αs,1 ≥ max(αs,2, αs,3), b1 = 1,

{αs,j}
3
j=1 ≥

γth
g

}}

Pr
{

αs,1 ≥ max(αs,2, αs,3), b1 = 1,

{αs,j}
3
j=1 ≥

γth
g

}

Pr {b2 = 1}Pr {b3 = 1}

=Pr
{

γ1 ≤ γth, αs,1 ≥ max(αs,2, αs,3), b1 = 1,

{αs,j}
3
j=1 ≥

γth
g

}

Pr {b2 = 1}Pr {b3 = 1} (11)
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where the second step is due to the fact that [b2 = 1, b3 = 1]

and
[

αs,1 ≥ max(αs,2, αs,3), b1 = 1,
{

αs,j ≥ γth
g

}3

j=1

]

are

statistically independent and the third step is due to the
definition of conditional probability [13]. Since bj = 1 implies
that αj,d ≥ γth+ε

f (j = 2, 3), we have Pr {b2 = 1} =

Pr {b3 = 1} = e−
(γth+ε)

f . Let the first probability term of t1
in (11) be denoted by t̃1. As shown in Appendix A, t̃1 can be
expressed as

t̃1=e−γth( 3
g+

1
f )
{

e−
ε
f

3
+ s2 − s1 −

1
3
s3

}

(12)

where

sm=e−
ε
f +

∞∑

k=1

(−mγth(γth + 1))k
g−k

k!
(εf)−

k
2

×e−
ε
2f W− k

2 ,
1−k
2

(
ε
f

)

,m = [1, 2, 3], (13)

and Wλ,µ( ) is the Whittaker hypergeometric function [10].
Applying eq. (3.324.1) of [10] in (31) of Appendix A, for the
case ε = 0, sm can be expressed as

sε=0
m =2

√

mγth(γth + 1)
gf

K1

(

2

√

mγth(γth + 1)
gf

)

(14)

where K1(.) is the modified Bessel function of the second
type with order 1. We define t̃2 , Pr {γ1 ≤ γth|B2}Pr {B2}.
Since γ1 is independent of [b2 = 1] and [αs,3 < γth

g ∪ b3 = 0],
we can re-express t̃2 as

t̃2=Pr
{

γ1 ≤ γth

∣
∣
∣
∣

{

αs,1 ≥ αs,2, b1 = 1,

{αs,j}
2
j=1 ≥

γth
g

}}

Pr {B2}

=Pr
{

γ1 ≤ γth, αs,1 ≥ αs,2, b1 = 1, {αs,j}
2
j=1 ≥

γth
g

}

×Pr {b2 = 1}Pr
{

αs,3 <
γth
g

∪ b3 = 0
}

. (15)

For convenience, let the first part of t̃2 be defined as
t̃2,1 , Pr

{

γ1 ≤ γth, αs,1 ≥ αs,2, b1 = 1, {αs,j}
2
j=1 ≥ γth

g

}

.
Note that the differences between t̃2,1 and t̃1 lie only in the
facts that the event αs,1 ≥ max(αs,2, αs,3) of t̃1 takes the
form αs,1 ≥ αs,2 in t̃2,1 and the event αs,3 ≥ γth

g of t̃1 does
not appear in t̃2,1. Thus, using the methodology of Appendix
A, t̃2,1 can be readily derived. The expression for t̃2,1 is then
given by

t̃2,1=e−
γth
f e−2γth

g

{
1
2
e−

ε
f +

1
2
s2 − s1

}

(16)

Let the second part of t̃2 be defined as t̃2,2 ,

Pr {b2 = 1}Pr
{

αs,3 < γth
g ∪ b3 = 0

}

. Applying the fact that
Pr {x1 ∪ x2}=Pr {x1} + Pr {x2} − Pr {x1}Pr {x2} for sta-
tistically independent x1 and x2, noting that Pr {b2 = 1} =
Pr
{

α2,d ≥ γth
f + ε

}

, and αs,3, α2,d and α3,d are exponen-
tially distributed, we readily get

t̃2,2 = e−
γth+ε

f

[

1− e−
γth
g e−

γth+ε
f

]

. (17)

Thus, t̃2 = t̃2,1t̃2,2 is obtained. We define t̃3 ,
Pr {γ1 ≤ γth|B3}Pr {B3}. Since γ1 is independent of the

events
[

αs,j < γth
g ∪ bj = 0

]3

j=2
, we can re-express t̃3 as

t̃3=Pr
{

γ1 ≤ γth

∣
∣
∣
∣

[

b1 = 1, αs,1 ≥
γth
g

]}

Pr {B3}

=Pr
{

γ1 ≤ γth, b1 = 1, αs,1 ≥
γth
g

]
}

︸ ︷︷ ︸

t̃3,1

×Pr

{[

αs,j ≤
γth
g

∪ bj = 0
]3

j=2

}

︸ ︷︷ ︸

t̃3,2

(18)

which follows due to the statistical independence of
[

b1 = 1, αs,1 ≥ γth
g

]

and
[

αs,j ≤ γth
g ∪ bj = 0

]3

j=2
and the

definition of conditional probability. Since b1 = 1 implies that
α1,d ≥ γth+ε

f , t̃3,1 can be expressed as

t̃3,1=
∫ ∞

y=γth+ε
f

Pr
{

αs,1 ≤
γth(fy + 1)
gfy − gγth

,

αs,1 ≥
γth
g

}

fα1,d(y)dy. (19)

Using similar steps as in Appendix A, t̃3,1 can be given by

t̃3,1 = e−γth( 1
g+

1
f )
(

e−
ε
f − s1

)

, (20)

where s1 is given in (13). Similarly, t̃3,2 can be written as

t̃3,2 =
[

1− e−
γth
g e−

γth+ε
f

]2
. (21)

The probability of the occurrence of E is given by

Pr {E} = Pr

{[

[αs,j ≤
γth
g

] ∪ [αj,d ≤
γth + ε

f
]
]3

j=1

}

=
[

1− e−
ε
f e−γth( 1

g+
1
f )
]3

. (22)

The outage probability (9) is then expressed as

Po,3=3t̃1e
−2

(

γth+ε
f

)

+ 6t̃2,1t̃2,2 + 3t̃3,1t̃3,2 + Pr {E}

=3e−2γth( 1
g+

1
f )
{{

1
3
e−

ε
f + s2 − s1 −

1
3
s3

}

e−
2ε
f

×e−γth( 1
g+

1
f ) + 2e−

ε
f

[

0.5s2 − s1 + 0.5e−
ε
f

]

×
[

1− e−γth( 1
g+

1
f )e−

ε
f

]}

+
[

1− e−γth( 1
g+

1
f )e−

ε
f

]2

×
{

3
(

e−
ε
f − s1

)

e−γth( 1
g+

1
f ) + 1

−e−γth( 1
g+

1
f )e−

ε
f

}

, (23)

which can be computed efficiently, since s1, s2, s3 (see (13))
converge after a few terms, especially for medium to high
values of both g and f . After these derivations for R = 3, the
outage probability expression for R = 2 is readily given by
Po,2 = 2t̃2,1e−

γth+ε
f + 2t̃3,1t̃

1/2
3,2 + Pr {E}2/3.
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Asymptotic Analysis: As shown in Appendix B, for high
SNR (i.e., g, f → ∞), (23) can be first approximated as

Po,3≈3e−2γth( 1
g+

1
f )(γth(γth + 1))2ε−1e−

ε
2f g−2f−1

×
(
1
3
e−γth( 1

g+
1
f )g−1(εf)−

1
2 e−

2ε
f W− 3

2 ,−1

(
ε
f

)

+ e−
ε
f

×
[

1− e−
ε
f e−γth( 1

g+
1
f )
]

W−1,− 1
2

(
ε
f

))

+
[

1− e−
ε
f

×e−γth( 1
g+

1
f )
]2{

3e−γth( 1
g+

1
f )γth(γth + 1)(εf)−1/2

×e−
ε
2f g−1W− 1

2 ,0

(
ε
f

)

+ 1− e−
ε
f e−γth( 1

g+
1
f )
}

. (24)

W.l.o.g., we assume that g = γ̄ and f = ηγ̄, where η > 0.
Then, after analyzing (24) and the asymptotic expressions for
W−1,− 1

2

(
ε
f

)

, W− 1
2 ,0

(
ε
f

)

, and W− 3
2 ,−1

(
ε
f

)

[14] as ε
f → 0

(i.e., f → ∞ for a given ε), we find that the term with the

lowest negative exponent of γ̄ is
[

1− e−
ε

ηγ̄ e−γth( 1
γ̄+ 1

ηγ̄ )
]3

.
Using the fact that e−x ≈ 1−x (for small x), this term can be
approximated by (ηγ̄)−3[γth(1+η)(1− ε

ηγ̄ )+ ε]3. This means
that the diversity order of 3 is achieved.

IV. NUMERICAL RESULTS

In this section, we provide Monte Carlo simulations to assess
the accuracy of the analytical expressions for the outage
probability. We also compare the performance of our proposed
method with the conventional PRS [6] and opportunistic relay
selection based on full CSI (F-CSI) [7]. In all examples, we
take γth = 3 dB, σ2

j = σ2
d = σ2

n, PS = PR,j = P , and
cj,d = cs,j = c, ∀j. We vary the average SNR defined as
SNR , cP

σ2
n

by keeping σ2
n = 1. All channel coefficients are

taken to be ZMCSCG random variables with unit variance.
The outage probabilities as a function of SNR are shown in
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Fig. 1. Outage probability versus average SNR.

Fig. 1 for different R and selection methods. In this figure,
we take ε = 0.08γth for R = 2 and ε = 0.1γth for R = 3.
Fig. 1 demonstrates that there is a fine agreement between
the theoretical and simulation results of the proposed scheme,
which verifies the accuracy of the derived outage probability
expressions. Moreover, the proposed method achieves full
diversity, significantly outperforms conventional PRS scheme
and provides performance which is very close/comparable to
that of F-CSI method for R = 2/R = 3. Fig. 2 displays
theoretical outage probability for the proposed method for
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Fig. 2. Effect of ε on the outage probability (Theoretical for R = 3).

different ε and R = 3. It can be observed from Fig. 2 that the
performance degrades for both low (ε = 0) or high (ε = γth)
values of ε. In Fig. 3, we compare the simulated outage
probability of our scheme for R = 4 ( with ε = 0.25γth
for SNR <= 16 dB and ε = 0.15γth for SNR = 20
dB) with the theoretical outage probabilities of PRS and
the F-CSI method. As in Fig. 1, the performance of our
method is significantly better than that of the PRS scheme
and comparable to that of the method with F-CSI. The fact
that this performance gain over PRS scheme is achieved with
a minimal increase in system complexity makes our proposed
method attractive for practical systems.
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Fig. 3. Outage probability versus average SNR for R = 4.

V. CONCLUSIONS

We have proposed a novel method which selects the relay
with the best first-hop SNR as in the case of conventional
PRS scheme. However, this selection is made from only a
subset of relays with both the S-R and R-D links in non-
outage condition. For R <= 3, we derived outage probability
expressions and showed that the proposed method achieves full
diversity. The results show that the new method significantly
outperforms PRS and provides performance that is comparable
to that of the method with full CSI.

APPENDIX A
Substituting (1) into γ1 ≤ γth and integrating over the PDF
of α1,d, t̃1 can be expressed as

t̃1=
∫ ∞

y= γth+ε
f

Pr
{

αs,1 ≤
γth(fy + 1)
gfy − gγth

, {αs,j}
3
j=1 ≥

γth
g

,

αs,1 ≥ αs,2, αs,1 ≥ αs,3

}

fα1,d(y) dy (25)
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where fα1,d(y) is the PDF of α1,d and the event αs,1 ≥
max {αs,j}

3
j=2 is written as [αs,1 ≥ αs,2, αs,1 ≥ αs,3]. Since

{αs,j}
3
j=1 ≥ γth

g , (25) can be further expressed as

t̃1=
∫ v̄

v= γth
g

∫ ū

u= γth
g

∫ ∞

y= γth+ε
f

Pr
{

αs,1 ≤
γth(fy + 1)
gfy − gγth

,

αs,1 ≥ u, αs,1 ≥ v
}

fαs,2(u)dufαs,3(v)dvfα1,d (y)dy (26)

where fαs,2(u), fαs,3(v) are the PDFs of αs,2 and αs,3, re-
spectively, whereas, the respective upper limits of the variable
u and v are ū and v̄. It is clear that the joint probability in
(26) is not zero only for ū = v̄ = γth(fy+1)

gfy−gγth
, uyu. Note that

Pr {αs,1 ≥ u, αs,1 ≥ v} takes the following values

Pr {αs,1 ≥ u, αs,1 ≥ v} =
{

Pr {αs,1 ≥ v} , for v ≥ u
Pr {αs,1 ≥ u} , for u ≥ v . (27)

Due to (27), t̃1 in (26) can be expressed as t̃1 = I1+I2, where

I1=
∫ ∞

y=γth+ε
f

∫ uyu

u= γth
g

∫ uyu

v=u
Pr
{

αs,1 ≤
γth(fy + 1)
gfy − gγth

,

αs,1 ≥ v
}

fαs,3(v)dvfαs,2 (u)dufα1,d(y)dy,

I2=
∫ ∞

y=γth+ε
f

∫ uyu

v= γth
g

∫ uyu

u=v
Pr
{

αs,1 ≤
γth(fy + 1)
gfy − gγth

,

αs,1 ≥ u
}

fαs,2(u)dufαs,3(v)dvfα1,d(y)dy. (28)

Since {αs,j}
3
j=1 are identically distributed, it is clear from

the limits of the integrals I1 and I2 that I1 = I2. Thus, it is
sufficient to solve one of the integrals in (29). With the variable
substitution ȳ = y− γth

f in I1, we get uyu = γth
gf

(

f + γth+1
ȳ

)

.
Then, solving the integration w.r.t. to the variables u and v,
and after some lengthy but straightforward steps, we obtain

I1=e−
3γth

g

∫ ∞

ε
f

{
1
6
+

1
2

[

e−
2γth γ̃th

gfȳ − e−
γth γ̃th
gfȳ

]

−
1
6
e−

3γth γ̃th
gfȳ

}

fα1,d

(

ȳ +
γth
f

)

dȳ (29)

where γ̃th = γth + 1. Solving integration over ȳ in (29), we
obtain I1. It follows that t̃1 = I1 + I2 = 2I1. Thus, t̃1 can be
expressed as

t̃1 = e−γth( 3
g+

1
f )
[
1
3
e−

ε
f + s2 − s1 −

1
3
s3

]

(30)

where
sm =

∫ ∞

ε
f

e−ȳe−
mγth γ̃th

gfȳ dȳ, m = [1, 2, 3]. (31)

The integral in (31) can be expressed in terms of Whittaker
hypergeometric functions [10]. Using series expansion for an
exponential function, we can re-express sm as

sm = e−
ε
f +

∞∑

k=1

(−mγthγ̃th)k
(gf)−k

k!

×
∫ ∞

ε
f

e−ȳ ȳ−kdȳ. (32)

Applying eq. (3.381.6) of [10], sm can be expressed as in (13).

APPENDIX B
Substituting the expressions for s1 and s2, and after some
simple steps, we can express 0.5e−

ε
f + 0.5s2 − s1 as

0.5e−
ε
f + 0.5s2 − s1=

∞∑

k=2

2k−1 − 1
k!

(−γth(γth + 1))k(εf)−
k
2

×e−
ε
2f W− k

2 ,
1−k
2

(
ε
f

)

g−k. (33)

Similarly, the term r , 1
3e

− ε
f + s2 − s1 − 1

3s3 can be given
by

r=
∞∑

k=3

2k − 1− 3k−1

k!
(−γth(γth + 1))kε−

k
2

×e−
ε
2f W− k

2 ,
1−k
2

(
ε
f

)

f− k
2 g−k. (34)

On the other hand, e−
ε
f − s1 takes the form

e−
ε
f − s1=−

∞∑

k=1

1
k!
(−γth(γth + 1))kε−

k
2 e−

ε
2f

×W−k
2 ,

1−k
2

(
ε
f

)

g−kf− k
2 . (35)

Substituting (33)-(35) into (23) and then considering only the
terms that dominate the outage probability at high SNR (i.e.,
e, f → ∞), we obtain (24).
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