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Blind source separation (BSS) based on spatial time-frequency distributions (STFDs) provides improved performance over blind
source separation methods based on second-order statistics, when dealing with signals that are localized in the time-frequency
(t-f) domain. In this paper, we propose the use of STFD matrices for both whitening and recovery of the mixing matrix, which
are two stages commonly required in many BSS methods, to provide robust BSS performance to noise. In addition, a simple
method is proposed to select the auto- and cross-term regions of time-frequency distribution (TFD). To further improve the BSS
performance, t-f grouping techniques are introduced to reduce the number of signals under consideration, and to allow the receiver
array to separate more sources than the number of array sensors, provided that the sources have disjoint t-f signatures. With the
use of one or more techniques proposed in this paper, improved performance of blind separation of nonstationary signals can be
achieved.
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1. INTRODUCTION

Several methods have been proposed to blindly separate
independent narrowband sources [1–8]. When the spatial
(mixing) signatures of the sources are not orthogonal, blind
source separation (BSS) methods usually employ at least two
different sets of matrices that span the same signal subspace.
One set is used for whitening purpose, whereas the other
set is used to estimate rotation ambiguity so that the spa-
tial signatures and the source waveforms impinging on a
multiantenna receiver can be recovered. Different methods
have been developed for blind source separation based on cy-
clostationarity, spectral or/and higher-order statistics of the
source signals, linear and quadrature time-frequency (t-f)
transforms.

In this paper, we focus on the blind separation of non-
stationary sources that are highly localized in the t-f do-
main (e.g., frequency modulated (FM) waveforms). Such sig-
nals are frequently encountered in radar, sonar, and acoustic
applications [9–11]. For this kind of nonstationary signals,
quadrature time-frequency distributions (TFDs) have been
employed for array processing and have been found success-
ful in blind source separations [12–16]. Among the exist-
ing methods, typically, the spatial time-frequency distribu-
tion (STFD) matrices are used for source diagonalization and

antidiagonalization, whereas the whitening matrix remains
the signal covariance matrix. The STFD matrices are con-
structed from the auto-TFDs and cross-TFDs of the sensor
data and evaluated at different points of high signal-to-noise
ratio (SNR) pertaining to the t-f signatures of the sources.
Joint diagonalization, antidiagonalization, or a combination
of both techniques can be applied, depending on t-f point
selections and the structure of the source TFD matrices.

Existing methods, however, only apply STFD matrices to
recover the data from the unitary mixture, while the covari-
ance matrices are still used in the whitening process. There-
fore, the inherent advantages of STFD, for example, SNR en-
hancement and source discrimination, are not fully utilized.
In particular, for an underdetermined problem where the
number of sources is larger than the number of array sen-
sors, signal whitening using the covariance matrix becomes
inappropriate and impractical.

Several different approaches have been proposed to re-
cover nonstationary signal waveforms based on t-f masking
followed by signal waveform synthesis or inverse t-f trans-
formations. In [17], the TFD is first averaged over different
array sensors to identify the autoterm region. This across-
sensor averaging provides significant reduction of the cross-
term TFDs. The sources are separated in the t-f domain from
the autoterms only using a vector classification approach.
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In [18], the waveform of each source signal is synthesized
from its t-f signature averaged over multiple array sensors.
By applying appropriate t-f masking to the averaged t-f sig-
natures, the autoterm of each source signal can be indepen-
dently extracted, and the corresponding waveform can be
synthesized. The approach presented in [19] considered t-f
masking on linear t-f distributions (e.g., short-time Fourier
transform and Gabor expansions) to separate signals with
disjoint t-f signatures. Because the TFD is linear, waveform
recovery is relatively simple compared to synthesis of bilinear
TFDs. There are also some BSS methods that use nonorthog-
onal joint diagonalization procedure to eliminate the whiten-
ing process [20, 21]. More detailed information about BSS
can be found in books and survey papers (e.g., [6–8]).

In this paper, we propose a source separation technique
that employs STFDs for both phases of whitening and uni-
tary matrix recovery. In essence, instead of using the covari-
ance matrix for signal whitening, we apply multiple STFD
matrices over the source t-f signatures, incorporating the t-
f localization properties of the sources in both the whiten-
ing and joint estimation steps of source separation. The pro-
posed method leads to noise robustness of subspace de-
compositions and, thereby, enhances the unitary mixture
representations of the problem. When the number of ar-
ray sensors is larger than the number of sources, t-f mask-
ing is optional. If it is possible to separate the impinging
sources into several disjoint groups in the t-f domain, then
t-f masking can be used to improve the source separation
performance by allowing the selection of subsets of sources.
As such, t-f masking allows the proposed technique to ac-
curately estimate the spatial signatures and synthesize sig-
nal waveforms in the presence of high number of sources
which exceeds the number of array sensors. These situa-
tions are often referred to as the underdetermined blind
source separation problems and have been considered in
[22–24].

Another important contribution of this paper is to pro-
pose a new method for selecting autoterm t-f points. Au-
toterm point selection is key in maintaining the diagonal
structure of the source TFD matrix which is the fundamen-
tal assumption of source separation via diagonalization. The
proposed method only requires the calculation of the au-
toterms of the whitened STFD matrix. It is simpler and more
effective than the methods developed in [14, 25] which re-
quire the calculation of either the norm or the eigenvalues
of the whitened STFD matrices and, therefore, rely on both
auto- and cross-terms of whitened matrix elements. With ef-
fective autoterm selections, sources in the field of view can
be disallowed from consideration by the receiver, leading to
improved subspace estimation. This paper also discusses the
selection of cross-terms.

This paper is organized as follows. Section 2 introduces
the signal model and briefly reviews STFD and the STFD-
based blind source separation methods [12–14]. In Section 3,
the new methods for auto- and cross-term t-f point selection
are addressed. Section 4 introduces the idea of t-f grouping
and proposes the use of STFD whitening matrix in the source
separation. Section 5 considers the scenarios where the num-

ber of source signals is larger than the number of array sen-
sors. Simulation results are presented in Section 6.

2. BLIND SOURCE SEPARATION BASED ON SPATIAL
TIME-FREQUENCY SIGNATURES

2.1. Signal model

In narrowband array processing, when n signals arrive at an
m-element array, the linear data model

x(t) = y(t) + n(t) = Ad(t) + n(t) (1)

is commonly used, where A is the mixing matrix of di-
mension m × n and is assumed to be full column rank,
x(t) = [x1(t), . . . , xm(t)]T is the sensor array output vector,
and d(t) = [d1(t), . . . ,dn(t)]T is the source signal vector,
where the superscript T denotes the transpose operator. n(t)
is an additive noise vector whose elements are modelled as
stationary, spatially, and temporally white, zero-mean com-
plex random processes, independent of the source signals.

The source signals in this paper are assumed to be deter-
ministic nonstationary signals which are highly localized in
the time-frequency domain. In the original source separation
method proposed in [12], the source signals are assumed un-
correlated and their respective autoterms are free from cross-
term contamination. In the proposed modification, only the
second condition is required. In addition, if the t-f signatures
of the sources are amendable to disjoint grouping, then it is
possible to separate more sources than the number of array
sensors, that is, the full column rank requirement of the mix-
ing matrix A is no longer necessary.

2.2. Spatial time-frequency distributions

The discrete form of Cohen’s class of STFD of the data snap-
shot vector x(t) is given by [12],

Dxx(t, f ) =
∞∑

l=−∞

∞∑

τ=−∞
φ(l, τ)x(t + l + τ)xH(t + l − τ)e− j4π f τ ,

(2)

where φ(l, τ) is a t-f kernel and the superscript H denotes
conjugate transpose. Substituting (1) into (2), we obtain

Dxx(t, f ) = Dyy(t, f ) + Dyn(t, f ) + Dny(t, f ) + Dnn(t, f ).
(3)

Under the uncorrelated signal and noise assumption and the
zero-mean noise property, E[Dyn(t, f )] = E[Dny(t, f )] = 0.
It follows

E
[

Dxx(t, f )
] = Dyy(t, f ) + E

[
Dnn(t, f )

]

= ADdd(t, f )AH + E
[

Dnn(t, f )
]
.

(4)

Similar to the well-known and commonly used mathe-
matical formula (see (6)), which relates the signal covariance
matrix to the data spatial covariance matrix, (4) provides the
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basis for source separation by relating the STFD matrix to the
source TFD matrix, Ddd(t, f ), through the mixing matrix A.

It was analytically shown in [26] that, when the STFD
matrices are constructed using the autoterm points with lo-
calized signal energy, the estimated subspace based on these
matrices is more robust to noise perturbation than that ob-
tained from the covariance matrices because of the enhance-
ment of the signal power. Such advantage is particularly use-
ful when the noise effect is large, and it becomes more attrac-
tive when dealing with fewer selected sources. These facts ap-
ply to the performance of blind source separation as the per-
formance is directly related to the robustness of the estimated
signal subspace.

2.3. Blind source separation

In the STFD-based blind source separation method proposed
in [12], the following data covariance matrix is used for
prewhitening:

Rxx = lim
T→∞

1
T

T∑

t=1

x(t)xH(t). (5)

Under the assumption that the source signals are uncorre-
lated to the noise, we have

Rxx = Ryy + σI = ARddAH + σI, (6)

where Rdd = limT→∞(1/T)
∑T

t=1 d(t)dH(t) is the source cor-
relation matrix which is assumed diagonal, σ is the noise
power at each sensor, and I denotes the identity matrix. It is
assumed that Rxx is nonsingular, and the observation period
consists of N snapshots with N > m.

In blind source separation techniques, there is an ambi-
guity with respect to the order and the complex amplitude of
the sources. It is convenient to assume that each source has
unit norm, that is, Rdd = I.

The first step in TFD-based blind source separations is
whitening (orthogonalization) of the signal x(t) of the ob-
servation. This is achieved by estimating the noise power1

and applying a whitening matrix W to x(t), that is, an n×m
matrix satisfying

WRyyWH = W
(

Rxx − σI
)

WH = WAAHWH = I. (7)

The whitening matrix is estimated using the signal subspace
obtained from the eigendecomposition of Rxx [12]. Let λi de-
note the ith descendingly sorted eigenvalue of Rxx and qi the
corresponding eigenvector. Then, the ith row of the whiten-
ing matrix is obtained as

wi =
(
λi − σ

)−1/2
qH
i , 1 ≤ i ≤ m. (8)

1 The noise power can be estimated only when m > n [12]. If m = n, the
estimation of the noise power becomes unavailable and σ = 0 will be
assumed.

It is clear that the accuracy of the whitening matrix esti-
mate depends on the estimation accuracy of the eigenvectors
and eigenvalues corresponding to the signal subspace. The
whitened process z(t) = Wx(t) still obeys a linear model:

z(t) = Wx(t) = WAd(t) + Wn(t) = Ud(t) + Wn(t), (9)

where U � WA is an n× n unitary matrix.
The next step is to estimate the unitary matrix U. The

whitened STFD matrices in the noise-free case can be written
as

Dzz(t, f ) = WDxx(t, f )WH = UDdd(t, f )UH. (10)

In the autoterm regions, Ddd(t, f ) is diagonal, and an esti-
mate Û of the unitary matrix U may be obtained as a joint di-
agonalizer of the set of whitened STFD matrices evaluated at
K autoterm t-f points, {Dzz(ti, fi) | i = 1, . . . ,K}. The source
signals and the mixing matrix can be, respectively, estimated

as d̂(t) = ÛHŴx(t) and Â = Ŵ#Û, where superscript # de-
notes pseudoinverse.

In [13], higher-order TFDs are used to replace the bilin-
ear TFDs used in [12]. In [14], cross-term t-f points were al-
lowed to take part in the separation process by incorporating
an antidiagonalization approach. However, the key concept
remains the same as that introduced in [12] and summarized
above.

3. AUTO- AND CROSS-TERM SELECTION

3.1. Existing methods

The selection of auto- and cross-term t-f points has been
considered in [14, 25, 27]. It is pointed out in [14] that, at
the cross-term (t, f ) points, there are no source autoterms,
that is, trace(Ddd(t, f )) = 0. It was also shown that

trace
(

Dzz(t, f )
) = trace

(
UDdd(t, f )UH

)

= trace
(

Ddd(t, f )
)≈0, (t, f )∈cross-term.

(11)

Subsequently, the following testing procedure was proposed:

if
trace

(
Dzz(t, f )

)

norm
(

Dzz(t, f )
)

< ε −→ decide that (t, f ) is cross-term,

> ε −→ decide that (t, f ) is autoterm,
(12)

where ε is a small positive real scalar. In [27], single au-
toterm locations are selected by noting the fact that Ddd(t, f )
is diagonal with only one nonzero diagonal entry. There-
fore, Dzz(t, f ) is rank one, and the dominant eigenvalue of
Dzz(t, f ) is close to the sum of all eigenvalues.

In calculating the norm or eigenvalues of an STFD ma-
trix in the above two methods, all the auto- and cross-terms
of the whitened vector z(t) are required. In the following, af-
ter reviewing the concept of array averaging, we propose a
simple alternative method for auto- and cross-term selection
which only requires the autoterm TFDs.
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3.2. Array averaging

In [18], array average in the context of TFDs is proposed. Av-
eraging of the autosensor TFDs across the array introduces
a weighing function in the t-f domain which decreases the
noise levels, reduces the interactions of the source signals,
and mitigates the cross-terms. This is achieved independent
of the temporal characteristics of the source signals and with-
out causing any smearing of the signal terms.

The TFD of the signal received at the ith array sensor,
xi(t) =

∑n
k=1 akisk(t), where aki is the ith element of mixing

vector ak, is expressed as

Dxixi(t, f ) =
n∑

k=1

n∑

l=1

akia
∗
li Ddkdl (t, f ). (13)

The averaging of Dxixi(t, f ) for i = 1, . . . ,m yields the array
averaged TFD of the data vector x(t), defined as [18],

Dxx(t, f ) = 1
m

m∑

i=1

Dxixi(t, f )

= 1
m

n∑

i=1

n∑

k=1

aHk aiDdidk (t, f )

=
n∑

i=1

n∑

k=1

βk,iDdidk (t, f ),

(14)

where

βk,i = 1
m

aHk ai (15)

is the spatial correlation between source k and source i.
The average of the TFDs over different array sensors is

the trace of the corresponding STFD matrix Dxx, up to the
normalization factor m. However, with the introduction of
the spatial signature between two source signals, it becomes
clear that βk,i is equal to unity for the same source signal
(i.e., k = i, corresponding to the autoterm t-f points), and is
smaller than unity for two different source signals (i.e., k �= i,
corresponding to the cross-term t-f points). With this fact in
mind, it becomes much simpler and more effective to select
the threshold for auto- and cross-term selection based on ar-
ray averaging.

3.3. Selection based on unwhitened data

At a pure autosource (t, f ) point, where no cross-source
terms are present, the TFD at the ith sensor is

Dxixi(t, f ) =
n∑

k=1

∣∣aki
∣∣2
Ddkdk (t, f ), (16)

which is consistently positive for all values of i. Accordingly
Dxixi(t, f ) = |Dxixi(t, f )|, i = 1, . . . ,m. Define the following

criterion:2

Cx(t, f ) =
∑m

i=1 Dxixi(t, f )∑m
i=1

∣∣Dxixi(t, f )
∣∣ =

trace
(

Dxx(t, f )
)

mDxx(t, f )
, (17)

where

Dxx(t, f ) = 1
m

m∑

i=1

∣∣Dxixi(t, f )
∣∣ (18)

is the averaged absolute value of TFD, referred to as the ab-
solute average TFD at (t, f ) point.

For a pure cross-source t-f point,3 on the other hand, the
TFD is oscillating and it changes its value for different array
sensor. Therefore, provided that the spatial correlation be-
tween different sources is small, that is, aHk ai 	 1 for k �= i in
(14), we have Cx(t, f ) < α2 ≈ 0.

When Cx(t, f ) takes a moderate value between α2 and α1,
where α2 < α1, the (t, f ) point has both auto- and cross-
terms present. Such a point should be avoided in computing
the STFD matrix for unitary matrix estimation.

Therefore, the auto- and cross-term points can be identi-
fied as

Cx(t, f )
> α1 −→ decide that (t, f ) is autoterm,

< α2 −→ decide that (t, f ) is cross-term,
(19)

where we use two different threshold levels for auto- and
cross-terms to have more flexibility for different situations.
Because Cx(t, f ) is upper bounded, the value of α1 is usually
chosen to be close to unity.

It is important to note that, to avoid the inclusion of
noise-only t-f points, selection of meaningful auto- and
cross-term points should be limited only among those t-f
points where the TFD has certain strength. We use the ab-
solute average TFD to measure the TFD strength. Denote

Dxx,max = max
(t, f )

[
Dxx(t, f )

]
(20)

as the maximum value of the absolute average of TFD, then
the selection of meaningful t-f points of certain TFD strength
amounts to the following condition:

Fx(t, f ) = Dxx(t, f )
Dxx,max

>

⎧
⎨
⎩
γ1, for autoterm selection,

γ2, for cross-term selection,

(21)

2 Alternatively, the criterion can be defined as follows: |Cx(t, f )| =
|∑m

i=1 Dxixi (t, f )|/∑m
i=1 |Dxixi (t, f )| = |trace(Dxx(t, f ))|/mDxx(t, f ).

The use of absolute value allows us to exclude the cross-terms of differ-
ent signal components of the same source. The cross-component terms
of a multicomponent source signal are actually autosource terms from
the source separation perspective [28] (notice that cross-term TFD takes
both positive and negative values). The difference between the use of
Cx(t, f ) and |Cx(t, f )|will be demonstrated through numerical examples
in Section 6.

3 Although the cross-term points are not directly used in the proposed
BSS method, they can be incorporated for the purpose of BSS as well as
for direction finding [14, 29]. Therefore, the selection of cross-term and
mixed auto- and cross-term regions is an important issue in the underly-
ing topic.
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where γ1 and γ2 are the respective threshold values for auto-
and cross-term selection.

3.4. Selection based on whitened data

Although the array averaging is simple, it is likely to identify
some false autoterm locations when the spatial correlation
between the sources is high, that is, the sources have close
signatures. In this case, the performance can be improved by
averaging the whitened STFDs instead. When the array av-
eraging of the whitened STFD matrices Dzz(t, f ) is consid-
ered, as depicted in (10), the unitary matrix U becomes the
effective mixing matrix that relates an STFD matrix and its
corresponding source TFD matrix. Therefore, the whitening
amounts to force the spatial correlation between any pair of
different source signals to be zero, whereas the spatial corre-
lation of the same source remains unity. When the whitened
STFDs are used, the above autoterm selection procedure is
represented by the following equations:

Cz(t, f ) =
∑n

i=1 Dzizi(t, f )∑n
i=1

∣∣Dzizi(t, f )
∣∣ =

trace
(

Dzz(t, f )
)

nDzz(t, f )
, (22)

where

Dzz(t, f ) = 1
n

n∑

i=1

∣∣Dzizi(t, f )
∣∣. (23)

The auto- and cross-term points are identified as4

Cz(t, f )

= trace
(

Dzz(t, f )
)

nDzz(t, f )

>α3−→ decide that (t, f ) is autoterm,

<α4−→ decide that (t, f ) is cross-term.
(24)

We also use a threshold level of the averaged absolute
value of the TFD for meaningful auto- and cross-term selec-
tion. When the whitened data are used, we can define Dzz,max

in a similar manner to Dzz,max, and the associated condition
becomes

Fz(t, f ) = Dzz(t, f )
Dzz,max

>

⎧
⎨
⎩
γ3, for autoterm selection,

γ4, for cross-term selection,

(25)

where γ3 and γ4 are the respective threshold values for auto-
and cross-term selection when the whitened data are used for
this purpose.

Therefore, (24) differs from (12) only on the denom-
inator. While the computation of a matrix norm requires
all the auto- and cross-sensor terms, the computation of
the average absolute term used in the proposed method
only requires autosensor terms. Moreover, because Cz(t, f )
is upper-bounded by unity and the physical meaning of
Cz(t, f ) = 1 is very clear, it becomes much easier to deter-
mine the threshold values.

4 Similar to |Cx(t, f )|, we can also use |Cz(t, f )| for auto- and cross-term
identification.

4. MODIFIED SOURCE SEPARATION METHOD

4.1. Time-frequency grouping

In [26], the subspace analysis of STFD matrices was pre-
sented for signals with clear t-f signatures, such as frequency
modulated (FM) signals. It was shown that the offerings of
using an STFD matrix instead of the covariance matrix are
basically two folds. First, the selection of autoterm t-f points,
that is, points on the source instantaneous frequencies, where
the signal power is concentrated, enhances the equivalent in-
put SNR. Second, the difference in the t-f localization prop-
erties of the source signals permits source discrimination
and allows the selection of fewer sources for STFD matrix
construction. In the presence of noise, the consideration of
a subset of signal arrivals reduces perturbation in matrix
eigendecomposition. T-f grouping becomes essential to re-
cover the source waveforms when there is insufficient num-
ber of sensors, provided that the TFD of the different sub-
groups is disjoint.

In this section, we introduce the notion of t-f signature
grouping to process a subclass of the sources which have dis-
joint t-f signatures. The use of STFD for improved whitening
performance is considered in the next section.

With the effective selection of autoterm-only t-f points,
sources with disjoint (orthogonal) t-f supports can be clas-
sified into different groups. For example, if no < n sources
occupy t-f support Ω1 (i.e., Ddidk (t, f ) �= 0 if and only if
(t, f ) ∈ Ω1, i, k = 1, . . . ,no), and the remaining n − no
sources occupy t-f support Ω2 (i.e., Ddidk (t) �= 0 if and only
if (t, f ) ∈ Ω2, i, k = no + 1, . . . ,n), then Group 1 of the first
no sources and Group 2 of the remaining n − no are said to
be disjoint in the t-f domain if Ω1 ∩Ω2 = ∅. The number of
sources included in a t-f group can be estimated by examin-
ing the rank of the STFD matrix defined over the t-f support
of this group [17, 26].

When the number of sources does not exceed the num-
ber of array sensors, t-f grouping is optional, and we can
rely only on the autoterm points for blind source separa-
tion. In this case, we can simplify the problem by examining
only the autoterm points obtained in Section 3. When the
number of sources exceeds the number of array sensors, t-f
grouping is essential, and we must carefully consider all the
auto- and cross-term information within each group for sig-
nal synthesis. We will discuss such situations in more detail
in Section 5.

Subgrouping has been studied in, for example, [17, 22],
depending on the closeness of the spatial signatures in a
group, or on the potential function as the sum of the indi-
vidual contributions in the space of directions. In this paper,
we consider a subgroup simply as a region determined by
continued or cluttered autoterm t-f points. The subgrouping
procedure is summarized below.

(1) Compute Dzz or Dxx and the corresponding Cz(t, f )
or Cx(t, f ) function.

(2) Perform two-dimensional low-pass filtering in both
the time and frequency domains. (It is an optional operation
to reduce the cross-terms, which may show higher peak value
than the autoterms, by taking advantage of the oscillating
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nature of the cross-terms whereas the autoterms are positive
and less variant).

(3) Find the peak of the autoterm and its connected
autoterm region. A mask is then identified as the polygon
spanned by the autoterm region.

(4) Repeat this process until no significant autoterm re-
gions are identified.

In selecting the autoterm t-f points, a moderate γ1 or γ3

value can be used to ensure the selection of t-f points with
high energy localization and to reduce the set size of au-
toterm points so that the computational complexity can be
managed. It is often effective to select high SNR autoterm t-f
points that achieve local maxima [16].

4.2. Modified source separation method

In the method proposed in [12] and summarized in Sec-
tion 2.3, STFD matrices are used to estimate the unitary ma-
trix U. However, the whitening process is still based on the
covariance matrix. An estimate of the covariance matrix is
often not as robust to noise as a well-defined STFD matrix.
Particularly, when the source signals can be separated in the
t-f domain but fail to separate in the time domain, then at
least the same number of sensors as the number of sources is
required to provide complete whitening based on the covari-
ance matrix, whereas fewer array sensors could do the job if
the STFD matrices are used. Below, we use the STFD matrix
in place of the covariance matrix Rxx for whitening [30].

Denote Dxx(t1, f1), . . . , Dxx(tK , fK ) as the STFD matrices
constructed from K autoterm points being defined over a t-f
region Ω1 and belonging to fewer no ≤ n signals. Also, de-
note, respectively, do(t) and ḋ(t) as the no and n− no sources
being present and absent in the t-f region Ω1. The n − no
sources could be undesired emitters or sources to be sep-
arated in the next round of processing. The value of no is
generally unknown and can be determined from the eigen-
structure of the STFD matrix. Using the above notations, we
obtain

x(t) = Aodo(t) + Ȧḋ(t) + n(t), (26)

where Ao and Ȧ are the m× no and the m× (n− no) mixing
matrices corresponding to do(t) and ḋ(t), respectively.

The incorporation of multiple t-f points through the
joint diagonalization or t-f averaging reduces the noise effect
on the signal subspace estimation, as discussed in [12, 26].
For example, let D̃xx be the average STFD matrix of a set
of STFD matrices defined over the same region Ω1 using a
different t-f kernel, and denote σ̂ t f as the estimation of the
noise-level eigenvalue of D̃xx. Then:

W̃D̃yyW̃H = W̃
(

D̃xx − σ̂ t f I
)

W̃H

= W̃AoD̃o
dd

(
W̃Ao

)H = I.
(27)

In (27), due to the ambiguity of signal complex amplitude
in BSS, we have assumed for convenience and without loss
of generality that the averaged source TFD matrix D̃o

dd cor-
responding to do(t) is I of no × no. Therefore, the whitening

matrix W̃ is obtained as

W̃ =
[(
λ
t f
1 − σ̂ t f

)−1/2
h
t f
1 , . . . ,

(
λ
t f
no − σ̂ t f )−1/2h

t f
no

]H
, (28)

where λ
t f
1 , . . . , λ

t f
no are the no largest eigenvalues of D̃xx and

h
t f
1 , . . . , h

t f
no are the corresponding eigenvectors of D̃xx. Note

that D̃o
dd and D̃yy are of reduced rank no instead of rank n, as

a result of the source discrimination performed through the
selection of the t-f points or specific t-f regions. Therefore,
W̃Ao = Ũ is a unitary matrix, whose dimension is no × no
rather than n× n. The whitened process z̃(t) becomes

z̃(t) = W̃x(t) = W̃Aodo(t) + W̃Ȧḋ(t) + W̃n(t)

= Ũdo(t) + W̃Ȧḋ(t) + W̃n(t).
(29)

In the t-f region Ω1, the TFD of ḋ(t) is zero and, therefore,
the averaged STFD matrix of the noise-free components be-
comes an identity matrix, that is,

D̃z̃z = W̃D̃xxW̃H = ŨD̃o
ddŨH = I. (30)

Equation (30) implies that the auto- and cross-term TFDs
averaged over the t-f region Ω1 become unity and zero, re-
spectively, upon whitening with matrix W̃. Ũ as well as the
mixing matrix and source waveforms are estimated follow-
ing the same procedure of Section 3. It is noted that, when
no = 1, source separation is no longer necessary and the
steering vector of the source signal can be obtained from the
received data at a single or multiple t-f points in the respec-
tive t-f region [31].

In the method developed in [12], the number of sources
included in the STFD matrices may be smaller than that in-
cluded in the covariance matrix, if the STFD is constructed
from a subset of signal arrivals. As such, the signal sub-
space spanned by the STFD matrices is not identical to that
spanned by the covariance matrix. For the modified method,
both sets of STFD matrices are based on the number of
sources.

Selection of the same number of sources, no, should be
done at both whitening and joint diagonalization stages, oth-
erwise mismatching of the corresponding sources will re-
sult. While our proposed modified blind source separation
method provides the mechanism to satisfy this condition, the
covariance matrix-based whitening approach does not lend
itself to avoid any mismatching.

5. SEPARATION OF MORE SOURCES THAN
THE NUMBER OF SENSORS

When there are more sources than array sensors, the mix-
ing matrix A is wide, and orthogonalization of all signal
mixing vectors becomes impossible. Therefore, even though
the mixing vector, or the spatial signature, can be estimated
for each source signal by using the source discrimination
introduced in Section 4 and choosing n0 ≤ m, the signal
waveforms remain inseparable by merely multiplying the
(pseudo) inverse of the mixing matrix to the received data
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vector. For the sources to be fully separable, they have to be
partitioned into groups such that the number of sources in
each group does not exceed the number of array sensors.

For this purpose, it is important to emphasize that, while
the same grouping procedure described in Section 4.1 can be
used to construct the masks, special consideration should be
taken to solve the underdetermined source separation prob-
lems. For the scenario discussed in Section 4.1, where the
number of sources is less than the number of sensors, we only
need to select several autoterm t-f points that provide suffi-
cient information for the estimation of the mixing matrix of
the sources. It was not required for the selected autoterm re-
gion to contain the full source waveform information. When
we consider the situation with more source signals than the
number of array sensors, however, the selected autoterm re-
gions must contain as much as possible the full information
of the signal waveforms. In particular, the regions with mixed
auto- and cross-terms of the sources of the interested group
should be included for this purpose.

We consider to achieve this purpose by constructing
proper t-f masks. The mask at the kth t-f group, denoted as
Mk(t, f ), should include the autoterm of the signals in this
group and the cross-term among them, whereas the auto-
and cross-terms of the signals not included in the group,
and the cross-terms between in-group and out-group signals,
should be excluded. Fortunately, as the cross-terms are lo-
cated between autoterms, a group region is usually bounded
by the signatures of its autoterm components. Cross-terms
located between two groups can be simply considered as
cross-group terms and thus can be removed for this purpose.
To preserve the waveform information, a relatively small
value of γ should be chosen. It is also noted that perfect
prewhitening using the covariance matrix cannot be realized
with the number of array sensors smaller than the number of
sources.

Once the sources are successfully partitioned into sev-
eral groups, the masked TFD, Dxixi(t, f )Mk(t, f ), at the ith
sensor is used to synthesize the (mixed) signal waveforms at
the kth group [32–34]. The method proposed in Section 4 is
then applied to each group, and Û(k) and Ŵ(k) correspond-
ing to the kth group can be obtained. Notice that, because

the synthesized signal x̃(k)
i (t) is phase blind, the phase infor-

mation should be recovered by projecting the original signal

xi(t) onto the signal subspace that x̃(k)
i (t) spans, that is,

x(k)
i = x̃(k)

i

[(
x̃(k)
i

)H
x̃(k)
i

]−1(
x̃(k)
i

)H
xi, (31)

where the underbar is used to emphasize the fact that each
variable used here is a vector constructed over a period of
time, for example, t = 0, . . . ,T . The source signals are recov-
ered at the kth group from

d̂(k)(t) = (Û(k))HŴ(k)x(k)(t), (32)

where x(k)(t) = [x(k)
1 (t), . . . , x(k)

n(k) (t)]T , with n(k) denoting the
number of sources at the kth subgroup.

6. SIMULATION RESULTS

6.1. Autoterm selection and grouping

In the first part of our simulations, we consider a three-
element linear array with a half-wavelength spacing. Three
source signals are considered. The first two are windowed
single-component chirp signals, whereas the third one is a
windowed multicomponent chirp signal. All the chirp com-
ponents have the same magnitude. Therefore, the third sig-
nal with two chirp components has three dB higher SNR.
The data length is 256. For simplicity, the three signals arrive
from respective directions-of-arrival of 45, 15, and −10 de-
grees, although a structured mixing matrix is not assumed.
The WVDs of the three signals are plotted in Figures 1(a)–
1(c). The WVD of the mixed signal at the first array sensor is
shown in Figure 1(d) with input SNR = 5 dB.

In Figure 2, the results of pure autoterm selection are
illustrated. While both plots show clear identification of
the autoterm regions, the orthogonalization result is much
“cleaner”. From these results, we can form two disjoint
groups with one including sources 1 and 2, and the other
including only source 3. For comparison, we have shown the
results based on Cx(t, f ) and Cz(t, f ) as well as their abso-
lute value counterparts. The use of Cx(t, f ) and Cz(t, f ) al-
lows the exclusion of cross-terms with large negative values,
whereas their absolute value counterparts do not discrimi-
nate the negative cross-term values.

In Figure 3, the results of pure cross-term selection are
illustrated. It is noted that the cross-terms between sources
1 and 2 are cross-source terms, whereas the cross-terms
between the two components of source 3 are autosource
terms. When comparing the use of Cx(t, f ) and Cz(t, f )
with their absolute value counterparts, the difference is
very evident. Results based on Cx(t, f ) and Cz(t, f ) include
cross-component terms of source 3, whereas such cross-
component terms are clearly removed in the results obtained
from |Cx(t, f )| and |Cz(t, f )|. Therefore, the later results are
closer to the actual situation. As for the effect of orthogonal-
ization, it is evident that the orthogonalization reduces the
cross-term components in general. The results obtained be-
fore orthogonalization are closer to the real situation.

6.2. Source separation

The performance of source separation is evaluated by using
the mean rejection level (MRL), defined as [12],

MRL =
∑

p �=q
E
∣∣∣
(

Â#A
)
pq

∣∣∣
2
, (33)

where Â is the estimate of A. A smaller value of the MRL
implies better source separation performance. An MRL lower
than −10 dB is considered satisfactory [12].

Figure 4 shows that the MRL versus the input SNR of the
three sources. The curves are calculated by averaging 100 in-
dependent trials with different noise sequences. The dashed
line corresponds to method [12] where the covariance matrix
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(d) Mixed signal

Figure 1: WVDs of the three source signals and the mixed signal at the first sensor with input SNR = 5 dB.

Rxx is used for whitening, and the solid line corresponds to
the modified method where the averaged STFD matrix D̃xx is
used instead. The dashed-doted line shows the results using
the proposed method and the three signals are partitioned
into two groups, where the first group contains the first two
sources, and the second group contains the third source sig-
nal. In the proposed method, the average of spatial pseudo-
Wigner-Ville distributions (SPWVDs) of window size 33 is
applied to estimate the whitening matrix. For the estimation
of the unitary matrix for both methods, the spatial Wigner-
Ville distribution (SWVD)5 matrices using the entire data
record are computed. The number of points used to per-
form the joint diagonalization for unitary matrix estimation
is K = 32 for each signal, and the points are selected at the t-f
autoterm locations. Figure 4 clearly shows the improvement
when STFDs are used in both phases of source separations,
specifically for low SNRs. To satisfy the −10 dB MRL, the

5 The method proposed here is not limited to use specific TFDs and the
SPWVD and SWVD are chosen for simplicity. Other TFDs can also be
used.

required input SNR is about 12.1 dB for the method devel-
oped in [12], and is about 2.4 dB and 5.1 dB for the modified
method with and without t-f grouping. The advantages of us-
ing the proposed method, particularly with the t-f grouping,
are evident from the results shown in this figure.

6.3. Separation of more sources than
the number of sensors

In the second part of simulation, we use the same parameters
used in Section 6.1, but the number of sensors is now only
2. The input SNR is fixed to 5 dB. In this case, covariance
matrix-based method cannot whiten the three-source data
vector. To separate the three signal arrivals using the pro-
posed method, we need to partition the t-f domain so that
the maximum number of sources contained in each group
does not exceed two. In this example, we construct a mask
that contains the first two sources and the procedure de-
scribed in Section 5 is followed.

Figure 5 illustrates the construction of the masks. We de-
termine the autoterm regions based on unwhitened criterion
function Cx(t, f ) where, as we explained earlier, a small value
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(a) Without orthogonalization, based on Cx(t, f ) (α1 = 0.9,
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(c) Without orthogonalization, based on |Cx(t, f )| (α1 =
0.9, γ1 = 0.2)
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(d) With orthogonalization, based on |Cz(t, f )| (α3 = 0.9,
γ3 = 0.2)

Figure 2: Selected autoterm regions.

of γ = 0.05 is used, which coincides with the threshold level
for noise reduction in [17]. The estimated result of the au-
toterm regions is depicted in Figure 5(a). Figure 5(b) shows
the two masks constructed from the mask construction pro-
cess illustrated in Section 4.1, one includes sources 1 and 2,
whereas the other includes source 3. Source separation and
waveform recovery are performed within each masked region
separately.

From the discussion in Section 5, we know that the per-
formance index alone, when the number of sources exceeds
the number of sensors, does not explain how the separated
signal waveforms are close to the original source waveforms.
For this reason, we plot in Figure 6 the WVDs of the two sep-
arated signals (source 1 and source 2). They are very close to
the original source TFDs. The MRL, computed from the spa-
tial signatures of the selected two sources averaged for 200
independent trials, is −19.5 dB, compared to −20.5 dB cor-
responding to the case in which only the two source signals

are present and, therefore, no mask is applied. The WVD of
source 3 estimate is also included for reference. Note that the
estimation of source 3 does not require separation because it
is the only source in the group. It is reconstructed from mask-
ing, waveform synthesis at each sensor, and the combining of
the synthesized waveforms at the sensors.

7. CONCLUSION

In this paper, we have addressed several important issues
in STFD-based BSS problems. First, a simple method for
auto- and cross-term selection was introduced which re-
quires only the autosensor TFDs. Second, the STFD-based
BSS method has been modified to use multiple STFD ma-
trices for prewhitening. Third, t-f grouping and masking for
source discrimination are introduced for performance im-
provement and to separate more sources than the number of
sensors.
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Figure 3: Selected cross-term regions.
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(a) Estimated autoterm region based on Cx(t, f ) (α2 =
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Figure 5: Construction of mask (m = 2, n = 3, SNR = 5 dB).
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Figure 6: WVD of separated and reconstructed signals through masking (m = 2, SNR = 5 dB).
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