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Abstract—Compressed data measurements of non-stationary
signals, which may arise from intentional signal undersampling
or missing data samples, introduce undesirable artifacts in the
rendered time-frequency (TF) representations. In particular, for
multi-component non-linear frequency modulated (FM) signals
with distinct amplitudes, such artifacts pose a great challenge
to accurately reconstruct weaker signal components. In this
paper, we develop improved TF representations that enable
accurate instantaneous frequency estimation of such signals,
achieve high energy concentration, and provide effective cross-
term and artifact mitigation. The proposed technique utilizes a
combination of iterative data interpolation in the time-lag domain
to recover missing entries and a signal-adaptive TF kernel to
suppress cross-terms and artifacts. Simulation results confirm
the effectiveness of the proposed method.

Index Terms—Frequency modulated signals, missing sample
recovery, sparse reconstruction, time-frequency representation.

I. INTRODUCTION

Time-frequency representation (TFR) is widely accepted as
the most suitable technique for the representation, charac-
terization, analysis and classification of frequency modulated
(FM) signals, which are frequently observed in many radar,
sonar, wireless communications, radio astronomy, audio, and
biomedical applications [1]–[3]. For example, radar signal
returns from maneuvering targets with different radar cross-
sections are manifested as non-linear multi-component FM
signals with a significant difference in their magnitude levels.
In that case, the identification of weaker signal components
poses a challenging scenario.

In practice, these signals are often received with compressed
measurements that may arise from either missing samples or
irregular sampling. In particular, missing observations may be
the result of multipath fading, sensor failures, noise removal,
and line-of-sight obstruction. However, irregular sampling
schemes may be adopted due to sampling frequency limita-
tions, logistical restrictions on data collections and storage, or
simply to facilitate hardware simplification [4]–[7]. Depending
upon the specific scenario, the missing samples can be either
random or appear in groups. While the artifacts due to random
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missing samples uniformly spread in the entire time-frequency
(TF) region, group missing samples render sinc-like artifact
patterns clustered around true instantaneous frequencies (IFs)
in TF regions, and thus hinder identification of true signal
signatures, specifically the weaker ones [7].

The Wigner-Ville distribution (WVD), which is the simplest
form of Cohen’s class of quadratic TF distributions [8], ex-
hibits severe cross-terms in the case of non-linear FM signals
or multi-component FM signals. Signal-adaptive TF kernels
are effective to mitigate the undesired effects of cross-terms
and artifacts [9], [10]. However, the application of these TF
kernels alone becomes insufficient when missing data appear
in groups. Utilization of compressive sensing and sparse re-
construction techniques in conjunction with signal-adaptive TF
kernels generally provides better TFR reconstruction results
[7], [11]–[14]. However, these approaches may not provide
effective auto-term identification of weaker signal components
when non-linear FM signals have large variation in their am-
plitude levels, and in the presence of group missing samples.
In such cases, the recently developed sparse reconstruction-
based TF analysis techniques [15]–[18] perform relatively
well in retrieving weaker signal components. However, these
approaches either rely on the accuracy of the underlying TFRs,
require cumbersome manual tuning of the parameters, are
sensitive to frequency quantization errors, or suffer from high
computational complexity.

The application of the missing data iterative adaptive ap-
proach (MIAA) [19] for missing data recovery in the in-
stantaneous auto-correlation function (IAF) domain was first
proposed in [20] for mono-component FM signals. This
method was extended for reliable TFR recovery of multi-
component FM signals in [7] by an iterative application
of sparse reconstruction-based orthogonal matching pursuit
(OMP) [21] in the IAF domain. However, when a non-linear
FM signal has distinct amplitude levels and clustered missing
samples, OMP-based approaches generally fail to provide an
accurate reconstruction of the weaker signal components [15].

Motivated by these observations, in this paper, we propose a
new non-parametric iterative approach that undertakes missing
data recovery in the IAF domain through data interpolation
using MIAA-based Capon spectrum estimation [22], [23], and
in conjunction with a signal-adaptive TF kernel. Unlike the
missing data iterative sparse reconstruction (MI-SR) method
[7], in which a data-dependent TF kernel is used at the end



of the iterative process, the proposed approach incorporates
signal-adaptive TF kernels in the iterative process itself to
improve TFR reconstruction performance. Compared to the
iterative adaptive missing data recovery (IA-MDR) algorithm
[24], the proposed approach exploiting an IAF averaging
operation provides improved TFR reconstruction performance
and is more suited for online implementation.

Using an appropriate combination of data interpolation in
the IAF domain and signal-dependent TF kernel, the proposed
approach provides improved TFRs of multi-component FM
signals with an accurate high-resolution IF estimation, im-
proved energy concentration and effective cross-terms/artifacts
mitigation from compressed observations, in four important
steps. The proposed technique works well for both random as
well as group missing samples, and is particularly useful when
the FM signal comprises multiple non-linear components with
distinct amplitude levels, which demonstrate high proximity
in the TF domain. The effectiveness of the proposed approach
is verified through simulation results.

Notations. A lower (upper) case bold letter represents a vec-
tor (matrix). (·)T, (·)∗, and (·)H, respectively, define transpose,
complex conjugation, and conjugate transpose (Hermitian).
Fx(·) and F−1

x (·), respectively, define the discrete Fourier
transform (DFT) and inverse DFT (IDFT) with respect to x.
IP represents a P × P identity matrix.

II. QUADRATIC TF REPRESENTATIONS

A. Signal Model

Consider a K-component discrete-time FM signal, given by

s(t) =

K∑
k=1

sk(t), t = 1, ..., T. (1)

The kth signal component is expressed as

sk(t) = ak exp(2πφk(t)), t = 1, ..., T, (2)

where ak (a1 ≥ ... ≥ aK) and φk(t), respectively, denote the
amplitude and time-varying phase of the kth signal component.

Let a N × T binary sampling matrix Λ maps the signal
s = [s(1), ..., s(T )]T, sampled using the Nyquist criterion,
into the observed signal r consisting of a total number of
N compressed observations that follow an irregular sampling
scheme. Then, the observed signal r is represented as

r = Λs. (3)

We assume that a total number of N̄ = T − N missing
observations are clustered into B mutually non-overlapping
groups, which are randomly distributed over time. The bth
group contains N̄b missing samples. Then, N̄ =

∑B
b=1 N̄b.

B. Joint Variable Domain Representations

The WVD of the observed signal is the one-dimensional
(1-D) DFT of the respective IAF with respect to lag, τ , as

Wrr(t, f) = Fτ [Crr(t, τ)] =
∑
τ

Crr(t, τ)e−4πfτ , (4)

where the IAF of r(t) is defined as

Crr(t, τ) = r (t+ τ) r∗ (t− τ) . (5)

Similarly, the ambiguity function (AF) is obtained by taking
the 1-D DFT of the respective IAF with respect to time, t, as

Arr(θ, τ) = Ft[Crr(t, τ)] =
∑
t

Crr(t, τ)e−2πθt, (6)

where θ is the frequency shift.

C. Signal-Adaptive TF Kernels

Signal-adaptive TF kernels [9], [10] effectively suppress
cross-terms and missing data induced-artifacts. In this paper,
we use the radially Gaussian kernel function-based adaptive
optimal kernel (AOK) [9] as the signal-adaptive TF kernel,
obtained as a solution to the following optimization problem:

max
Φ

∫ 2π

0

∫ ∞
0

|A(α,ψ)Φ(α,ψ)|2α dα dψ

subject to Φ(α,ψ) = exp
(
− α2

2σ2(ψ)

)
,

1

4π2

∫ 2π

0

σ2(ψ) dψ ≤ β,

(7)

where A(α,ψ) is the time-localized, short-time ambiguity
function defined in the polar coordinate, Φ(α,ψ) is a Gaus-
sian kernel function, ψ = arctan(τ/θ) is a radial angle,
α =

√
θ2 + τ2 is a radius, σ(ψ) is the spread function that

determines the spread of the Gaussian kernel at angle ψ, and
parameter β > 0 controls the volume of the kernel.

After converting the kerneled AF in the polar coordinate
system, Ă(α,ψ) = A(α,ψ)ΦOPT(α,ψ), to the rectangu-
lar coordinate system, Ă(θ, τ), the corresponding reduced-
interference TFR can be obtained by taking the two-
dimensional DFT of the kerneled AF, as

PAOK(t, f) = F−1
θ {Fτ [Ă(θ, τ)]}. (8)

III. PROPOSED METHOD

In this section, we describe the proposed non-parametric
iterative approach to achieve improved TFRs of multi-
component FM signals that have distinct amplitude levels and
contain compressed observations.

A. Problem Formulation

Let a K-sparse Q × 1 TF vector x(t) denote the column
of underlying TFR Wrr at the tth time instant, where Q
represents the total number of frequency grid points with
fq, q = 1, ..., Q, being the corresponding frequencies. As
most of the elements of the vector x(t) are zero or assume
very small values, we usually have K � Q. In this paper,
we choose the WVD (4) as the example of the underlying
TFR. Let D define the T × Q 1-D IDFT matrix. Then, the
corresponding T × 1 IAF vector y(t) is represented as

y(t) = Dx(t), t = 1, ..., T. (9)

Most of the operations in this section are performed at each
time instant t, unless otherwise specified. Hence, for nota-
tional simplicity, we omit superscript (t) from the subsequent
expressions of x(t) and y(t).

Let P and P̄ = T − P , respectively, represent the total
number of observed and missing IAF entries. Using the P ×T



masking matrix Ψr and the P̄ × T masking matrix Ψm, we
can extract the observed and missing entries of y into two
components as

yr = Ψry, ym = Ψmy, (10)

where vectors yr = [yr1 , yr2 , ..., yrP ]T and ym = [ym1 , ym2 ,
..., ymP̄

]T, respectively, contain P measured and P̄ missing
IAF entries. Similarly, the rows of D corresponding to the
elements of yr and ym are, respectively, extracted using the
P×Q matrix Dr = ΨrD and the P̄×Q matrix Dm = ΨmD.
Then, (9) can be related to the observed IAF entries as

yr = Drx. (11)

B. Proposed Technique

The proposed technique comprises the following four steps:
1) Iterative adaptive estimation of the spectral amplitudes

from the available data and missing data recovery in the
IAF domain for each time instant t;

2) Application of signal-adaptive TF kernel to obtain re-
duced interference TFR and associated IAF;

3) Averaging of the IAFs obtained at the end of the first two
steps; and

4) Update of original missing IAF entries using the entries
of the IAF obtained from the previous step.

In the following, we describe these key steps of the proposed
method.

Initialization:
The outer iteration counter, i, is set to 1. The IAF vector

of the observed entries, the corresponding IDFT matrix, and
the corresponding data extraction matrix are, respectively,
initialized as y

[0]
r = yr, D

[0]
r = Dr, and Ψ

[0]
r = Ψr. Similarly,

the IAF vector of the missing entries, the corresponding
IDFT matrix, and the corresponding data extraction matrix
are, respectively, initialized as y

[0]
m = ym, D

[0]
m = Dm, and

Ψ
[0]
m = Ψm. Note that the magnitudes of all the elements of

y
[0]
m are almost zero (with the values smaller than 10−15). The

total number of available IAF entries is initialized as P [0] = P ,
which represents the length of y

[0]
r .

Iterative spectral amplitudes estimation and missing sam-
ples recovery:

The inner iteration counter, j, is set to 1. Let x[i;j]
q define the

complex-valued spectral amplitude of x[i;j] corresponding to
frequency fq at the [i; j]th iteration. The covariance matrix of
the available IAF entries is initialized as R

[i;j−1]
r = IP [i−1] .

The spectral amplitude corresponding to fq is estimated as
[22], [23],

x̂[i;j]
q =

(d
[i−1]
rq )H(R

[i;j−1]
r )

−1

y
[i−1]
r

(d
[i−1]
rq )H(R

[i;j−1]
r )−1d

[i−1]
rq

, ∀q, (12)

where d
[i−1]
rq represents the qth column of D

[i−1]
r corre-

sponding to frequency fq . Define S[i;j]
q = |x̂[i;j]

q |2. Then, the
covariance matrix of the available IAF entries is updated as

R[i;j]
r =

Q∑
q=1

S[i;j]
q d[i−1]

rq (d[i−1]
rq )H. (13)

The inner iteration counter, j, is incremented by one, and
the values of x̂[i;j]

q and R
[i;j]
r are iteratively updated until

either the maximum number of iterations, jf , is reached or
|x̂[i;j]
q − x̂[i;j−1]

q | is less than a predefined threshold ξ.
Based on S

[i;jf ]
q and the corresponding covariance matrix

R
[i;jf ]
r , the missing IAF entries are recovered using the fol-

lowing minimum mean square error (MMSE) estimator [19],

ŷ[i]
m =

Q∑
q=1

S[i;jf ]
q (d

[i−1]
rq )H(R[i;jf ]

r )
−1

y[i−1]
r d[i−1]

mq , (14)

where d
[i−1]
mq is the qth column of D

[i−1]
m corresponding to

frequency fq . Then, the IAF vector ŷ
[i]
1 is obtained as

ŷ
[i]
1 = (Ψ

[i−1]
m )T(Ψ[i−1]

m (Ψ
[i−1]
m )T)−1ŷ[i]

m

+ (Ψ
[i−1]
r )T(Ψ[i−1]

r (Ψ
[i−1]
r )T)−1y[i−1]

r . (15)

The operations (12)–(15) are repeated for all time instants.
Let Ŷ

[i]
1 denote the T×T IAF matrix obtained by horizontally

concatenating ŷ
[i]
1 for all time instants.

Application of signal-adaptive TF kernel:
In the second stage, we apply the AOK [9] as the signal-

adaptive TF kernel in order to mitigate the undesired effects
of the cross-terms and artifacts from the respective TFR
for further performance enhancement. Note that the AOK is
optimized in the AF domain (7), where the AF is obtained
from Ŷ

[i]
1 based on the 1-D Fourier transform relationship

(6) between them. The corresponding TFR is obtained using
(8) for each time slice. Denote x̂[i] as the column of TFR
obtained using AOK at the tth time instant. The corresponding
IAF vector y

[i]
2 is obtained by taking a 1-D IDFT of x̂[i] with

respect to frequency f .

IAF averaging:
The interpolated IAF obtained after the first stage improves

the estimation of auto-components in the respective TFR.
However, TFR obtained using that result suffers from cross-
terms and poor recovery performance of weaker signal com-
ponents due to low energy of the interpolated IAF entries
around the center values of the lag along the time axis. On
the contrary, the IAF obtained from the AOK possesses high
energy of IAF entries around the center values of τ along
the time axis, which helps improve energy concentration and
suppress cross-terms in the respective TFR.

In the third stage and based on the above observations, we
average the IAFs obtained from the first two stages to combine
the advantages offered by both, represented as

ŷ
[i]
3 =

1

2

(
ŷ

[i]
1 + ŷ

[i]
2

max |ŷ[i]
1 |

max |ŷ[i]
2 |

)
. (16)

The IAF averaging operation in (16) provides superior TFR
reconstruction results to [24], in which the interpolated IAF
from the first stage is simply replaced by the IAF obtained
using the signal-adaptive TF kernel. Note in (16) that the
energy levels of the IAFs obtained after the first two stages are
different. Therefore, in order to make the averaging effective,
the energy levels of the second stage-IAF are mapped to the
energy levels of the IAF obtained from the first stage in (16).
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Fig. 1 The original signal without missing samples (SNR 15 dB):
(a) Real part; (b) WVD.

Update of original missing IAF entries:
We observe that, in order to ensure that missing data

recovery and TF kernel do not introduce estimation bias in the
subsequent iterations, it is important to retain the IAF entries
associated with the observed signal. It is ensured by this fourth
stage. The resulting updated IAF is obtained as

ŷ[i] = (Ψ
[0]
m )T(Ψ[0]

m (Ψ
[0]
m )T)−1Ψ[0]

m ŷ
[i]
3

max |y[0]
r |

max |ŷ[i]
3 |

+ (Ψ
[0]
r )T(Ψ[0]

r (Ψ
[0]
r )T)−1y[0]

r . (17)

Note in (17) that the energy levels of the IAF vector ŷ
[i]
3 are

mapped to the energy levels of the initial IAF y
[0]
r . The entries

of ŷ[i] with amplitudes below a certain threshold ζ are marked
as missing. The corresponding IAF vector of the missing
entries, the IDFT matrix, and the data extraction matrix are,
respectively, defined as y

[i]
m , D

[i]
m , and Ψ

[i]
m . Similarly, the IAF

vector of the observed entries, the corresponding IDFT matrix,
data extraction matrix, and the total number of available IAF
entries are, respectively, defined as y

[i]
r , D

[i]
r , Ψ

[i]
r , and P [i].

The outer iteration counter, i, is incremented by one and the
entire procedure is repeated until either the maximum number
of iterations, if , is reached or the norm error between two
subsequent signal estimates falls below a predefined threshold
value, i.e.,

||x̂[i] − x̂[i−1]||22 < ε. (18)

The final reduced interference TFR is obtained by horizontally
concatenating x̂[if ] for all time instants, i.e.,

WRID = [x̂
[if ]
1 , ..., x̂

[if ]
T ]. (19)

IV. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed method,
we consider a two-component non-linear FM signal with
distinct amplitude levels of closely separated signatures in the
TF domain, given by

s(t) = exp(2πφ1(t)) + 0.4 exp(2πφ2(t)), t = 1, ..., T,
(20)

where the phase laws of the two components are given by

φ1(t) = 0.15t− 0.12t2/T + 0.14t3/T 2,

φ2(t) = 0.25t− 0.15t2/T + 0.15t3/T 2.
(21)

T and the signal-to-noise ratio (SNR) are, respectively, chosen
to be 128 and 15 dB.

Fig. 1 shows the real part of the original signal waveform
without missing samples and the corresponding WVD. As seen
in Fig. 1(b), for this two-component non-linear FM signal,
the WVD exhibits severe cross-terms between components,
even without any missing samples. As a result, the weaker
component cannot be clearly identified.

Fig. 2(a) shows the real part of the observed signal that
contains a total of 48 (i.e., 37.5%) group missing samples,
clustered into 12 groups that are randomly distributed over
time. The number of missing samples in each group varies
from 2 to 6. The position of missing samples are shown in
red color in Fig. 2(a). The true IFs are provided in Fig. 2(h)
for comparison purposes.

The group missing samples create convolutive sinc function-
like patterns of artifacts that are concentrated near the true IFs
in the TF region and misguide the identification of the true IFs.
These patterns are clearly visible in the WVD depicted in Fig.
2(b). Figs. 2(c)–2(f), respectively, provide TFR reconstruction
results obtained with the application of the MIAA in the IAF
domain [20], the AOK [9], MISR applied to the kerneled
IAF [7], and adaptive local filtering-based directional time-
frequency distribution (ALF-DTFD) [15] to the observed sig-
nal. It is seen that, while all techniques are generally successful
in retrieving the IFs of the stronger signal component, they
either exhibit excessive cross-terms and artifacts that hinder
identification of true signal signatures (e.g., MIAA in Fig. 2(c))
or provide erroneous results of the weaker signal component,
specifically, when these components share high proximity in
the TF domain. As clearly seen in Fig. 2(d), signal-adaptive
TF kernel (e.g., AOK in this case) alone cannot mitigate all
artifacts due to burst missing samples.

As evident from Fig. 2(g), the proposed method provides
superior TFR reconstruction results with high resolution of the
estimated signal components and improved energy concentra-
tion of the underlying TFR. The proposed method effectively
suppresses cross-terms and artifacts from the TFR and, at
the same time, preserves the auto-term TF distributions. The
achieved TFR benefits from the suitable combination of data
interpolation in the IAF domain and the cross-term suppression
capabilities of signal-adaptive TF kernel. For the considered
scenario, three iterations of the proposed method are applied
with the AOK volume is chosen as 3.

Usually, 2 to 5 iterations of the proposed method are
sufficient to reconstruct the desired high-resolution TFR.
The significant improvement in terms of auto-component
reconstruction and cross-terms/artifacts mitigation is observed
within the initial 2 to 3 iterations, as most of the missing
entries are updated by this time. Beyond that, each additional
iteration provides less significant improvements in terms of
energy enhancement and IF estimation accuracy.

V. CONCLUSIONS

In this paper, we proposed a new non-parametric iterative
approach that effectively combines missing samples recovery
in the IAF domain and an application of signal-adaptive TF
kernel to achieve improved TFRs of multi-component FM
signals with compressed observations. The proposed method
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Fig. 2 TFRs obtained using different methods on the observed
signal with 37.5% group missing samples (SNR 15dB): (a) Real part
of the observed signal (with missing data positions marked in red
color); (b) WVD; (c) MIAA applied to IAF; (d) AOK (volume 3);
(e) MI-SR applied to the kerneled IAF; (f) ALF-DTFD; (g) Proposed
method; (h) True IFs (for comparison).

provides accurate high-resolution estimation of signal auto-
term signatures and effective cross-term/artifact mitigation. In
particular, the proposed approach is effective in reconstruct-
ing the TFR of the weaker signal components when multi-
component signals contain group missing samples and have
non-linear, closely separated signatures with distinct amplitude
levels. Simulation results confirmed the superiority of the
proposed technique over state-of-the-art techniques.
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