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Abstract—In through-the-wall radar imaging applications,
exploitation of group sparsity of the targets under multipath
propagation allows high-resolution ghost-free imaging. However,
such multipath exploitation schemes may suffer from imperfect
knowledge of the surrounding scatterers, such as interior walls.
In this paper, a novel two-stage Bayesian compressive sensing
approach is proposed for joint scene reconstruction and wall
location estimation. The proposed method is capable of not only
acquiring enhanced images by exploiting multipath propagation,
but also estimating wall locations with high accuracy. In addition,
compared to computationally demanding genetic approaches, the
proposed method achieves robust imaging with a low complexity.

Index Terms—Through-the-wall radar imaging, multipath ex-
ploitation, Bayesian compressive sensing, group sparsity.

I. INTRODUCTION

Through-the-wall radar imaging (TWRI) is an emerging
technology that attracts increasing interests due to its capabil-
ity to reveal stationary or moving targets of interest behind
an opaque obstacle [1–5]. A major challenge in TWRI is
the multipath originating from multiple reflections of electro-
magnetic waves off the targets in conjunction with the walls.
Such multipath reflections give rise to false targets or “ghosts”
at positions other than those of the actual targets. These
ghost targets clutter the imaged scene and compromise target
detection [6]. If precise prior knowledge of the room layout
is available, the additional energy contained in the multipath
returns can be used to improve the imaging performance
and target detection probability [7–9]. However, it is usually
difficult to obtain accurate locations of the interior walls
a priori in practical operational scenarios. Therefore, it is
imperative to develop robust multipath exploitation techniques
that can provide accurate imaging in the presence of wall
location uncertainties.

Earlier works were proposed to effectively mitigate the
effects of multipath propagation [3, 4]. More recent works are
based on multipath exploitation using back-projection (BP)
[6, 7] and compressive sensing (CS) [8, 10] techniques for
target signal enhancement. The latter schemes take advan-
tage of the group sparsity of the targets across the various
multipath returns. However, the underlying assumption of
perfect knowledge of the secondary scatterers remains the
basis for all of the existing approaches. An alternate approach
based on CS reconstruction without the prior knowledge of
the building layout has been proposed in [11] to suppress
the multipath return energy. A multipath exploitation scheme
that reconstructs the through-the-wall image and estimates
the wall locations under wall position uncertainties using a
nested optimization approach has been proposed in [12], but

is computationally demanding due to the non-convexity of the
minimization step for wall location estimation.

In this paper, a two-stage imaging scheme, which applies
a complex multi-task Bayesian compressive sensing (CMT-
BCS) [13] for target imaging and maximum likelihood esti-
mation for wall positions, is proposed. Bayesian compressive
sensing techniques are known to provide robustness for high-
resolution signal reconstruction compared to conventional CS
approaches due to their insensitivity to dictionary coherence
[13–17]. We assume interior walls to be either parallel or
perpendicular to the front exterior wall, with only limited
information on wall positions. We exploit the fact that the
reconstructed targets reflected from the direct path would not
suffer from wall position uncertainties. As such, a common
target support can be extracted from images obtained from the
CMT-BCS algorithm with a few hypothetical wall positions.
The accurate wall positions can then be estimated by a
maximum likelihood estimator. Finally, the additional energy
contained in the multipath returns can be used for effective
target signal enhancement. The proposed two-stage method
enables ghost-free image reconstruction of the target scene
under wall position uncertainties with a low computational
complexity. We evaluate the performance of the proposed
method using numerical simulations.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, IN denotes the
N × N identity matrix. p(·) denotes the probability density
function (pdf), and N (x|a, b) denotes that random variable
x follows a Gaussian distribution with mean a and variance
b, dx/ye denotes the modulus after x over y, and bx/yc
denotes the remainder after x over y. In addition, (·)T
denotes transpose. Re(x) and Im(x), respectively, represent
the real and imaginary parts of the complex x. ◦ denotes the
element-wise (Hadamard) multiplication, and ⊗ is a Kronecker
product.

II. SIGNAL MODEL

The signal model is formulated under the assumptions
of monostatic stepped-frequency operation and a scene of
stationary targets. N wideband transceivers are considered,
which are arranged as a uniform linear array (ULA) with
element positions xn = (n − 1)d, n = 1, · · · , N , where d
is the inter-element spacing. Let the nth transceiver transmit
a stepped-frequency signal consisting of M frequencies, fm,
m = 1, · · · ,M , which are uniformly spaced over the signal
bandwidth B. We consider a two-dimensional (2-D) image of
the target scene in the downrange and crossrange directions,
which is discretized into Nx × Ny pixels, with Nx and Ny



respectively denoting the number of pixels in crossrange and
downrange within the region of interest. Under monostatic
operation, the target returns can be expressed in terms of the
frequency index m and antenna position index n as [8],

y(m,n) =

NxNy−1∑
p=0

wp exp(−j2πfmτpn), (1)

where wp is the complex reflectivity of the pth pixel, and τpn
represents the round-trip propagation delay between the pth
pixel and the nth transceiver.

The target scene usually has sparse occupancy, i.e., most of
the Nx×Ny pixels have negligible scattering coefficients. Let
P be the scene sparsity, or the number of nonzero pixels in
the entire image with Nx×Ny pixels. All MN measurements
y(m,n) for m = 1, · · · ,M and n = 1, · · · , N are stacked into
a single column vector to obtain the measurement data vector
y = [y(1, 1), · · · , y(1, N), · · · y(M,N)]T ∈ CMN . As such,
eq. (1) takes the form

y = Φw, (2)

where the (i, l)th element of the sensing matrix Φ ∈
CMN×NxNy is given by

[Φ]il = exp(−j2πfmτln), (3)

for i ∈ {1, · · · ,MN}, m = di/Me, and n = bi/Mc, and w =
[w1, · · · , wNx×Ny ]T ∈ CNxNy represents the scene reflectivity
vector. The vectorized measurement model in eq. (2) will serve
as the linear measurement equation for the CS-based target
image reconstruction.

A. Interior Wall Multipath

In TWRI, multipath propagation corresponds to signal paths
to and from the target which involve reflections at one or
more secondary reflectors, such as walls. The dominant mul-
tipath component corresponds to a bistatic scattering scenario,
wherein the transmitted signal propagates directly to the target
and then the scattered wave travels back to the transceiver after
reflection at an interior wall or vice versa [6, 8]. If the room
geometry is known a priori, the propagation delays associated
with the various multipath returns can be readily calculated by
ray-tracing [8, 10].

The measurements corresponding to the different propaga-
tion paths are, in general, not resolvable. Therefore, assuming
one direct path and a maximum number of K − 1 multipath
returns, the forward model under multipath propagations
renders the received signal vector to be expressed as,

ỹ = Φ0w0 + Φ1(xw1
)w1 + · · ·+ ΦK−1(xwK−1

)wK−1,
(4)

where Φ0 ∈ CMN×NxNy denotes the sensing matrix for
the direct path as defined in Eq. (3), and w0 ∈ CNxNy is
the associated complex reflection coefficient vector, whereas
Φk(xwk

) and wk with k ∈ {1, · · · ,K − 1} are the respective
sensing matrix related to the kth multipath with the corre-
sponding wall location of xwk

and the associated complex
reflection coefficient vector. The elements of Φk(xwk

), k ∈

{1, · · · ,K−1} are phase terms, analogous to (3), incorporat-
ing the corresponding propagation delays. It should be noted
that the complex reflection coefficients wk, k = 0, · · · ,K−1,
share the same nonzero support across all paths, i.e., they have
the same respective positions of nonzero entries, but the exact
value of the reflectivity coefficients generally differ for each
path.

Rewrite (4) in a compact form as

ỹ = Ψ(xw)w̃ + ε, (5)

w̃ = [w0, · · · ,wK−1]T ∈ CNxNyK , (6)

wk = [w0,k, · · · , wNxNy−1,k] ∈ C1×NxNy , (7)

where Ψ(xw) = [Φ0,Φ1(xw1
), · · · ,ΦK−1(xwK−1

)] ∈
CMN×NxNyK is the joint sensing matrix, and w̃ represents
the complex reflection coefficient vector. Without loss of
generality, a measurement noise vector ε ∈ CMN is added
in (5).

Within the CS framework, we may perform sparse re-
construction using only a subset of the full measurements.
Mathematically, the data reduction operation can be expressed
as a downsampling matrix D ∈ RJ×MN acting on the full
measurements, where J � MN is the number of reduced
measurements. For stepped-frequency radar system, a binary
measurement matrix D ∈ {0, 1}J×MN is a reasonable choice
[10, 18]. As such, we acquire an undersampled measurement
vector z ∈ CJ , expressed as

z = Dỹ = DΨ(xw)w̃ + Dε = A(xw)w̃ + ε̃, (8)

with A(xw) = DΨ(xw) ∈ CJ×NxNy denotes the dictionary
matrix, and ε̃ = Dε ∈ CJ .

B. Effect of Wall Position Uncertainty

With the knowledge of precise wall positions, the return
signals traveling along each path can be coherently combined
by constructing the sensing matrices based on the true wall
locations. However, when the information of the wall locations
is inaccurate, the difference between the assumed and the
actual wall locations will cause significant degradation of the
reconstructed image [12]. That is, when the assumed delays
do not match the true propagation delays, the reflections under
multipath propagation may appear at image pixels different
from the true target locations, resulting in ghost targets,
as shown in Fig. 1. As the ghost targets from multipath
propagations may be reconstructed at different locations, they
violate the group sparsity property that relates them to the true
target positions. The presence of ghost targets also increase
the effective scene sparsity, degrading the efficiency of sparse
reconstruction techniques.

In the following section, a novel two-stage scheme which
applies the CMT-BCS approach for targets imaging and
maximum likelihood estimation for the wall uncertainty, is
proposed to jointly estimate true wall positions and acquire
high-resolution imaging.

III. PROPOSED ALGORITHM

We exploit the fact that the target reflections under the
direct paths do not depend on the interior wall positions.
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Fig. 1: Multipath propagation related to wall location.

As such, the common support occupied by the true targets
can be obtained even under assumed wall locations that are
different from the true ones, whereas the ghost targets due
to the multipath propagations will appear at diverse positions
under wall location inaccuracies.

The proposed robust imaging approach consists of two
major stages. In the first stage, multiple images with true as
well as ghost targets are obtained by utilizing the CMT-BCS
technique under a small number D of different hypothetical
wall locations. The pixels of the common nonzero support of
these images, which are considered as the true target positions
corresponding to the direct path, are then used to estimate
the wall locations through maximum likelihood estimation.
In the second stage, a high-resolution image is reconstructed
through multipath exploitation using the sensing matrix that is
constructed with the estimated wall locations. The details of
these two stages are provided below.

A. First Stage: Wall Parameter Estimation

In the first stage, we exploit the CMT-BCS algorithm to
recover the scattering vector w̃(d), which contains both true
targets and ghost targets, for the dth hypothetical wall locations
x
(d)
w = [x

(d)
w1 , · · · , x

(d)
wK−1 ], d = 1, · · · , D. As mentioned

above, the true targets corresponding to the direct paths share
the same positions across the D reconstructed images, whereas
the ghost targets appear at different positions in each image.
Therefore, we extract the scattering vector corresponding to
the true targets, w̃, based on the common support from D
sub-images.

We first briefly introduce the CMT-BCS for sparse re-
construction with group sparsity [13], which will be applied
separately to each set of hypothetical wall positions. The target
reflection coefficient vector at the pth pixel can be defined for
all K paths as

wp = [wp,0, · · · , wp,K−1]T . (9)

We decompose the complex wp ∈ CK into w̌p ∈ R2K as

w̌p = [w
(R)
p,0 , · · · , w

(R)
p,K−1, w

(I)
p,0, · · · , w

(I)
p,K−1]T ,

where w(R)
p,k and w(I)

p,k are, respectively, the real and imaginary
components of the complex scattering reflectivity wp,k. A
Gaussian distribution with mean zero and pixel-dependent
variance αp, which is assumed to be independent of path k,
is placed on w̌p, i.e.,

w̌p ∼ N (w̌p

∣∣0, α−1
p I2K ). (10)

Note that this prior encourages group sparsity across K paths
through the shared parameters αp. Also, a Gaussian prior is
placed on the additive measurement noise, i.e.,

ε̌m ∼ N
(
ε̌m
∣∣0, β−1

0 I2
)
, (11)

where ε̌m = [ε̃
(R)
m , ε̃

(I)
m ]T . The posterior distribution of w̌ is

evaluated analytically based on Bayes’ rule as,

Pr(w̌ |z,A(xw),α, β0 ) = N (w̌ |µ,Σ ) , (12)

where

µ = β0ΣǍ(xw)T ž, (13)

Σ =
(
β0Ǎ(xw)T Ǎ(xw) + [Γ⊗ I2K ]−1

)−1
, (14)

Γ = diag(α1, · · · , αNxNy
), (15)

Ǎ =

[
Re(A) −Im(A)
Im(A) Re(A)

]
, (16)

with ž = [Re(z), Im(z)] ∈ R2J . Once the w̌ are acquired, the
complex scattering coefficient vector w̃ is easily calculated.

By separately applying the CMT-BCS to the data with each
set of hypothetic wall positions x

(d)
w = [x

(d)
w1 , · · · , x

(d)
wK−1 ], d =

1, · · · , D, we obtain respective complex scattering coefficient
vectors as w̃(d), d = 1, · · · , D. The common support of these
D estimated vectors is obtained as

sw̃ = support

(
D∏

d=1

w̃(d)

)
, (17)

where the support(·) function returns a binary result for each
pixel, i.e., it assumes the value 1 if the pixel takes a nonzero
value, and 0 otherwise. The estimated true target position
image is then obtained as the masked average of the D
individual images, expressed as,

ŵ =

(
1

D

D∑
d=1

w̃(d)

)
◦ sw̃. (18)

Based on the estimated target reflection coefficient vector
ŵ, a maximum likelihood metric is introduced to estimate the
wall position as,

x̂wl
= arg min

xwl

‖z−A(xwl
)ŵ‖22. (19)

B. Second Stage: High-Resolution Imaging

Once the wall parameters x̂wl
are obtained, we are able

to construct the true sensing matrix. In the second stage, the
CMT-BCS is reapplied to exploit multipath propagation, based
on the multipath dictionaries constructed from the estimated
wall locations, and acquire a high-resolution image. The
flowchart of the proposed approach is shown in Fig. 2.



Observations 
CMT-BCS



Location Location 

Ghost image Ghost image 

Image extraction with 
common support

Estimated 

Final image 

Stage-1

CMT-BCS

1wx Lwx

wx̂

)ˆ( wxACMT-BCS

Stage-2

Fig. 2: Flowchart of the proposed algorithm.

IV. SIMULATION RESULTS

The simulation parameters are selected as follows. A 40-
element monostatic ULA with an inter-element spacing of 2.5
cm and a stepped-frequency signal, consisting of 200 equally
spaced frequency steps from 1 GHz to 2 GHz, are used for
imaging. The origin of the coordinate system is chosen to be
at the center of the array. The front wall is located at 1 m
downrange and its effects on signal propagation are assumed
to have been perfectly compensated [1, 4]. We consider two
interior walls, i.e., the left and the right walls, which are
respectively located at xw1 = −1.92 m and xw2 = 1.93 m
crossrange, respectively. The sparse scene is assumed to have
4 point targets, as shown in Fig. 3(a). The distance between
two adjacent discretized image pixels along both crossrange
and downrange is 0.075 m. The received signal comprises
the direct returns and the multipath returns via secondary
reflections at the two interior walls, yielding a total of K = 3
paths. The scattering coefficients for the direct paths are drawn
from CN (0, 1), and the signal amplitudes of the multipath
returns are assumed to decay with the distance. Additive
complex white Gaussian noise is added to the measurements
with a signal-to-noise ratio (SNR) of 10 dB. Only 25%
frequencies are randomly selected at each antenna location
for the CS-based imaging, whereas the full data set is used
when applying the conventional back-projection algorithm.

Figs. 3(b)–3(d) show the reconstructed results of CMT-
BCS with D = 3 sets of hypothetical wall locations. The
true target positions are represented by green circles in each
image. For the three cases, the hypothetical wall locations
{xw1

, xw2
} are chosen as {−2.10, 1.90} m, {−2.08, 1.95} m,

and {−1.95, 2.05} m, respectively. These values are chosen to
span approximately half-wavelength at the lowest frequency
for each wall position. Due to the inaccurate hypothetical
wall locations, the assumed time delays do not match the
true propagation delays for the paths involving secondary
reflections and, as such, yield ghost targets that appear to be
away from the true target positions. On the other hand, the true
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Fig. 3: Ground truth and three images obtained from CMT-BCS
for three sets of hypothetical wall locations. (a) Original scene. (b)
CMT-BCS result with xw1 = −2.10 m and xw2 = 1.90 m. (c) CMT-
BCS result with xw1 = −2.08 m and xw2 = 1.95 m. (d) CMT-BCS
result with xw1 = −1.95 m and xw2 = 2.05 m.

targets are correctly estimated in these reconstructed images
because the direct paths are not affected by the wall location
errors.

Based on these reconstructed images, the true target posi-
tions are estimated as those that share a common support, as
discussed earlier. The maximum likelihood metric in eq. (19) is
then used to estimate the true wall locations, as shown in Fig.
4, with a step size of 0.01 m for both side walls. We acquire
the estimated left and right wall locations as xw1

= −1.94 m
and xw2

= 1.93 m, respectively. Although the peaks in Fig. 4
appear to be periodic because of the wrapped phase, we are
still able to acquire the wall location estimates with a high
accuracy by using the maximum likelihood metric.

Subsequently, we construct the sensing matrix based on the
estimated wall positions, and the CMT-BCS is reapplied to
achieve the image shown in Fig. 5(a). Although the estimated
wall locations are slightly biased, the time-delay deviations
based on the estimated wall locations correspond to less
than a pixel interval, thereby enabling acquisition of a ghost-
free high-resolution image. To demonstrate the advantages of
the proposed approach over the conventional through-the-wall
imaging, we also show the results from the BP algorithm in
Fig. 5(b). It is clear that, due to lack of proper multipath
mitigation or exploitation, the resulting images are highly
cluttered, even when the full data set is used for the BP-based
imaging.

V. CONCLUSION

In this paper, a novel two-stage Bayesian compressive
sensing approach was developed to perform through-the-wall
radar imaging in the presence of interior wall multipath under
inaccurate wall location information. In the first stage, we
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Fig. 5: Results in different approaches. (a) Proposed approach. (b)
BP with partial data set. (c) BP with full data set.

generate several images with a small number of sets of hypo-
thetical wall positions using the complex multi-task Bayesian
compressive sensing approach, and the common support of the
imaged scene is considered as the true positions of the targets.
The wall positions are then estimated through maximum
likelihood estimation. In the second stage, the CMT-BCS
algorithm is used again to obtain the high-resolution image
that exploits both direct and multipath propagation signals.

Simulation results are provided to validate the performance
and superiority over conventional imaging techniques.
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