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Abstract—In this paper, we propose the exploitation of sparse
Bayesian learning in multiple-input multiple-output (MIMO)
systems to account for the multi-dimensional group sparse nature
of extended defects in guided ultrasonic wave based structural
health monitoring. The multi-dimensional group sparsity in the
underlying reconstruction problems arises due to the clustered
spatial occupancy of extended defects and the multiple-aspect
MIMO observations. Sparse Bayesian learning techniques have
been shown to provide robustness for high-resolution signal re-
construction due to their insensitivity to dictionary coherence and
have the flexibility of effective exploitation of the signal structure.
The superiority of the proposed technique over the state-of-
the-art sparse signal reconstruction techniques is demonstrated
through simulations and preliminary experiments.

Index Terms—Structure health monitoring, multiple-input
multiple-output (MIMO), group sparsity, Bayesian compressive
sensing

I. INTRODUCTION

Structural health monitoring (SHM) is a collection of
strategies and tools for automated inspection and examination
of critical structures, such as bridges and aircrafts, in order
to assess their safety and viability [1, 2]. These strategies
rely on the use of sensors integrated into the structures, with
the sensors continuously monitoring the structures for the
existence of defects and other anomalies. Ultrasonic guided
waves are emerging as a very effective tool to perform SHM
for certain mechanical structures [3, 4]. For structures that
resemble plates and shells, Lamb waves are the preferred
modality for detecting and classifying defects [5, 6]. Lamb
waves are ultrasonic guided waves that propagate through
plates with traction free surfaces [7]. These waves can prop-
agate large distances with little attenuation. Lamb waves also
interact strongly with defects, such as cracks, holes, gouges,
and corrosion [8–10]. Hence, broad areas of structures can
be efficiently and economically examined for the presence of
defects with a limited set of transducers.

Although Lamb wave based SHM is very promising, there
are many challenges that add complexities [11]. One principal
challenge is that Lamb wave propagation is multimodal in
nature. When a guided wave is instigated in a plate at a given
frequency, it can propagate as multiple modes, each with a
different wave number. These multiple modes can be separated
into symmetric (S) and anti-symmetric (A) modes. The total
number of symmetric and anti-symmetric modes present is
determined by the frequency of operation. At low frequencies,
only the fundamental symmetric (S0) and anti-symmetric
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(A0) modes co-exist. To overcome the complexity caused by
multiple modes, an operating frequency is chosen wherein the
dominant mode of propagation is either the fundamental A0

mode or the S0 mode. Another challenge is that all modes
are dispersive since the phase and group velocities of each
individual mode are a function of frequency. This challenge is
overcome by modeling the dispersion phenomenon accurately.
Finally, boundary scattering can add complexity in the received
signal. This too can be ameliorated by using background
subtraction [12].

Several techniques have been developed for imaging defects
in two dimensional plates using Lamb waves. Some success
has been achieved with methods, such as delay-and-sum
beamforming [13, 14]. However, there are issues with these
methods including poor resolution and false defects. Sparse
reconstruction approaches have recently been successfully
applied to Lamb wave based SHM. Levine et al. [15, 16]
first cast the defect imaging problem in Lamb wave based
SHM within the sparse reconstruction framework. However,
the defects examined in their work were essentially point
defects and not extended defects.

In this paper, we examine the problem of locating ex-
tended defects in an aluminum plate under multiple-input
multiple-output (MIMO) sensing with a limited number of
distributed transducers using multi-dimensional group sparse
Bayesian learning techniques [17]. The underlying problem
exhibits a multi-dimensional group sparse structure because
i) the defects have an extended spatial occupancy that is
clustered in the image domain, and ii) the MIMO sensing
methodology results in multi-aspect observations of the same
defect. Sparse Bayesian learning techniques are known to
provide robustness for high-resolution signal reconstruction
due to their insensitivity to dictionary coherence and provide
the flexibility of effective exploitation of the signal structure
[18, 19]. As such, the proposed approach leads to an effective
high-resolution imaging methodology. The superiority of the
proposed technique over the state-of-the-art sparse signal
reconstruction techniques is demonstrated through simulations
and experiments of a thin aluminum plate with an extended
defect resembling a crack.

Notations. We use lower-case (upper-case) bold characters
to denote vectors (matrices). Fx and F−1x respectively repre-
sent the Fourier Transform and inverse FT with respect to x. In
particular, IN denotes the N×N identity matrix. (·)T and (·)∗
respectively denote the transpose and complex conjugates of a
matrix or vector, p(·) denotes the probability density function
(pdf), and CN (x|a, b) implies that random variable x follows
a complex Gaussian distribution with mean a and variance b.



Furthermore, δ(x) is the Dirac delta function of x, and ‘◦’
denotes element-wise (Hadamard) multiplication.

II. SIGNAL MODEL

We consider J spatially distributed piezoelectric transducers
attached to the surface of a plate structure. The transducers
transmit in a sequential manner, i.e., when one transducer
transmits, all the other transducers act as receivers. This makes
the waveforms orthogonal by virtue of time multiplexing. A
total of L = J(J − 1)/2 unique transmitter-receiver pairs are
used for interrogating the region of interest. We divide the
region of interest into a uniform grid of M points or pixels,
where each pixel represents a potential defect location. In
general, the number of defects is typically small compared
to M . Let the transmitter of the lth pair, located at tl , be
excited by a waveform h(t) whose center frequency is chosen
such that the dominant propagating mode in the plate is the
A0 mode. The received signal at the receiver of the lth pair,
located at rl, can be expressed as,

yl(t) =

M−1∑
m=0

wil

(
a

‖tl − si‖2

)0.5(
a

‖rl − si‖2

)0.5

×F−1
{
H(f) exp

[
j2πf

‖tl − si‖2 + ‖rl − si‖2
cA0

(f)

]}
,

(1)

where H(f) is the Fourier transform of h(t), cA0
(f) is the

frequency-dependent phase velocity of the A0 mode, si is
the ith pixel location, and a is an arbitrary constant with
dimensions of length. The inverse square root dependence on
‖tl−si‖2 and ‖rl−si‖2 accounts for the attenuation due to the
geometrical spreading of the wavefront on transmit and receive
paths to the ith pixel. The parameter wil is the reflectivity of
the ith pixel corresponding to the lth transmitter-receiver pair.
If no defect is present at the ith pixel, then wil = 0, ∀l. As
such, the reflectivity vector of wl can be considered as sparse
due to much less defects in the region of interest.

An equivalent matrix-vector representation of the signals
yl(t), l = [0, 1, · · · , L − 1], is obtained as follows. The lth
received signal is sampled at times tk, k = [0, 1, · · · ,K − 1]
to obtain a K × 1 vector yl = [yl(t0), ..., yl(tK−1)]

T . Let
wl = [w1l, ..., w(M−1)l]

T be the M × 1 scene reflectivity
vector corresponding to the lth transmitter-receiver pair. Then,
using Eq. (1), we obtain the linear relation

yl = Φlwl + εl, (2)

for l ∈ [0, 1, · · · , L − 1], where the (k, i)th element of the
K ×M sensing matrix Φl is given by
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(3)

and an additive noise is considered in Eq. (2). It should be
noted that the defect share the group sparsity across the L
transmitter-receiver pairs, i.e., the supports of the defect are

approximately identical for these pairs, which implies that the
nonzero entries of wl lie in the same positions across different
values of l, whereas their reflectivities are different.

III. STRUCTURE BAYESIAN COMPRESSIVE SENSING
METHOD

To solve the group sparse reconstruction problem with L
transmitter-receiver pairs as described in Eq. (2), we exploit
the sparse Bayesian learning techniques which are known to
provide robustness for high-resolution signal reconstruction
due to their insensitivity to dictionary coherence and provide
the flexibility of effective exploitation of the signal structure.
In particular, we place the following spike-and-slab prior on
the reflectivity vector wl to enforce group sparsity across all
pairs [17, 20],

p(wl|π,β)=
M∏
i=1

[
(1− πi)δ(wil) + πiCN (wil|0, β−1i )

]
, (4)

where βi is the precision (reciprocal of the variance) of the
Gaussian distribution and πi is the prior probability of a
nonzero element in the ith pixel. It can be observed in the
above expression that a large weight πi corresponds to a high
probability that the entry takes a nonzero value, whereas a
small πi tends to generate a zero entry. It is also important
to mention that the prior probability πi defined in the ith
pixel is shared across all the transmitter-receiver pairs, thereby
encouraging group sparsity in the underlying hierarchical
Bayesian compressive sensing (BCS) framework.

To make the inference analytical, a simple reparameteriza-
tion of the spike-and-slab prior is employed. Two latent ran-
dom variables, θl and z, which respectively follow complex-
valued Gaussian and Bernoulli distributions, are introduced,
and their element-wise product θl ◦ z forms a new random
vector that follows the pdf in (4), i.e.,

p(θl, z) =

M∏
i=1

[
CN (θil|0, β−1i )

]zi Bern(zi|πi). (5)

In this case, the group sparsity is characterized by the same
zi, which takes a binary value representing whether a pixel
is zero valued, for the ith pixels across the L pairs. On the
other hand, the reflectivities θi· = [θi1, · · · , θiL], in general,
take different values for each transmitter-receiver pair.

To acquire the trackable posterior of βi, we place a Gamma
prior, which is conjugate to the Gaussian distribution, on βi,
i.e., βi ∼ Gamma(a, b), i ∈ [1, · · · ,M ], where a and b are
hyper-parameters. A Gaussian prior is placed on the additive
noise as εl ∼ CN (εl|0, α−1l IN ). In a similar manner, a
Gamma prior is placed on αl to acquire an analytical posterior
distribution, i.e., αl ∼ Gamma(c, d), l ∈ [1, · · · , L], where c
and d are hyper-parameters.

In the underlying application, the defect is likely to take
an continuous two-dimensional (2-D) structure. To incorporate
such dependency between neighboring pixels, three kinds
of sparsity patterns are introduced. As depicted in Fig. 1,
we categorize the relationship into three different clustering
patterns, i.e., Pattern 0 (“strong rejection”), Pattern 1 (“weak
rejection”), and Pattern 2 (“strong acceptance”). We define two
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Fig. 1: Examples of clustering patterns for a 2-D image. (a)
Strong rejection example with κi = 0 ; (b) Weak rejection
example with κi = 2 and ηi 6= 1 case; and (c) Strong
acceptance example with ηi = 1.

variables κi =
∑8

n=1 z̃
(i)
n and ηi =

∑4
n=1 z̃

(i)
n z̃

(i)
9−n, which

respectively represent the number of nonzero neighboring
entries and the number of nonzero diagonal pairs, where z̃(i)n is
the nth neighboring pixel with respect to the ith pixel under
test [21]. To facilitate the inference, a Beta prior, which is
conjugate to the Bernoulli distribution, with different sets of
parameters {ei, fi}2i=0, is placed on weights πi according to
the clustering patterns.

With respect to the cluster pattern in the 1-D case in
[17], it is straightforward to assign three-level cluster patterns
according to the neighboring pixel number. However, in the
underly SHM where defect exhibits a 2-D cluster structure
with a higher number of neighboring pixels. Following the
same pattern, a stepped function is introduced to assign
corresponding pattern based on each κi.

Strong rejection [Pattern 0]: This pattern is adopted when
all neighboring pixels are zero, i.e., κi = 0, as illustrated in
Fig. 1(a). In this case, the ith pixel under test would be zero
with a high probability, since the defect pixel is unlikely to be
isolated in the underlying defect imaging. We assume e0 < f0
in prior Beta(e0,f0) to encourage a small value of πi so as to
reject this pixel.

Weak rejection [Pattern 1]: When the number of nonzero
neighboring pixels κi > 0 and the nonzero diagonal pair ηi 6=
1, the probability that the ith pixel under test takes zero value is
fair, and e1 = f1 is used in the prior Beta(e1,f1) to exert non-
informative prior on πl. Fig. 1(b) shows one of such examples
where two nonzero neighboring pixels do not form a diagonal
pair.

Strong acceptance [Pattern 2]: When the number of nonzero
diagonal pair ηi is 1, the ith pixel under test would be nonzero
with a high probability so that the defect continuity can be
enforced. In this case, e2 > f2 in the prior Beta(e2,f2) is
assumed to encourage a large value of πi to accept this pixel.
Fig. 1(c) shows one of examples with a pair of nonzero
diagonal pixels.

By exploiting the hieratical spike-and-slab prior for the
group sparsity across L transmitter-receiver pairs and the
cluster pattern for the underlying structure of defect, we
acquire generative model for the clustered multi-task BCS
algorithm. A Gibbs sampler is employed to carry out the
Bayesian inference.

Utilizing the conjugate properties, we analytically acquire
the respective posterior distributions for each random variable

{z,θ,π,α,β}. The posterior probability of zi = 1 given other
variables is acquired analytically by,

p(zi = 1|−) = (1 + e−u)−1, (6)

with

u =
1

2

L∑
l=1

(
log βi − log σil + σ−1il α

2
l y

H
\ilφilφ

H
il y\il

)
+ log πi − log(1− πi), (7)

σil = (αlφ
H
il φil + βi)

−1, (8)

where y\il = yl −
∑

k 6=i φklzkθkl, and φil is the ith column
of Φl.

For zi = 1, the posterior distribution of θil can be given by,

p(θil|−) = CN (θil|σ−1il αlφ
H
il y\il, σil). (9)

For zi = 0, the value of variable θil is drawn from its prior,

p(θil|−) = CN (θil|0, β−1i ). (10)

Once both θl and z are acquired, wl = θl ◦ z is exactly
the estimated reflectivity vector in the lth transmitter-receiver
pair. The updated formulations for other random variables
{π,α,β} are provided in [17].

IV. SIMULATIONS AND EXPERIMENTS

In this section,both simulated and real data experiments are
performed to validate the effectiveness of proposed approach.

A. Simulations

The simulated setup is shown in Fig. 2, and simulation
arrangements are as follows: the square region of interest
consists of 31×31 pixels with side dimensions extending from
−150 mm to 150 mm (300 × 300 mm2). Five sensors are
located on a circle with a radius of 250 mm. The two trans-
ducers, respectively located at the 7 and 9 o’clock positions,
are chosen as transmitters, and the transducer located at the 12
o’clock position is designated as a receiver. The waveforms in
the sensing matrix Φl, generated by Eq. (3), are provided in
Fig. 3(a), and Fig. 3(b) shows the enlarged plot for the first
31 pixels. Since the measurement noise can be substantially
reduced by averaging over multiple measurements, we do not
take into consideration the effect of noise. For comparison,
several state-of-the-art algorithms, such as back-projection
(BP), block orthogonal matching pursuit (BOMP) [22], and
multi-task Bayesian compressive sensing (MT-BCS) algorithm
[18], are also applied to the simulated data.

A continuous crack consisting of 13 pixels is assumed
around the center of the circle, as shown in Fig. 4(a), and
the reflectivities follow a zero-mean complex Gaussian dis-
tribution. The corresponding received waveforms are depicted
in Fig. 4(b). It is evident that the low-resolution reconstructed
result obtained from BP algorithm, shown in Fig. 5(a), is of
poor quality due to the lack of a sufficient number of mea-
surements. Although BOMP based on the greedy algorithm has
the capability of acquiring high-resolution images, it fails to
accurately localize the extended defect in the underlying case
because of the high coherence between the waveforms in the
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Fig. 3: Waveforms in sensing matrix. (a) Waveforms for all
pixels. (b) Amplified waveforms for the first 31 pixels.
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Fig. 4: Simulated scenario and measurement waveforms. (a)
Continuous cracks. (b) Real measurement waveforms.

sensing matrix, as evident from Fig. 3. Since BCS algorithms
are capable of reconstructing sparse signals under highly
coherent sensing matrices, Figs. 5(c) and 5(d), respectively,
show significantly improved results. It is observed, however,
that the proposed algorithm preserves the continuous cracks
and suppresses the isolated pixels by exploiting both group
sparsity and cluster structure, and thus has much cleaner
background in Fig. 5(d), compared to that for MT-BCS in
Fig. 5(c).

B. Experiments

The experiment is conducted with a 1.22 m square alu-
minum plate of thickness 3.12 mm. An array of five PZT
transducers (APC International), 0.22 mm thick with a 10 mm
diameter, are arranged around a circle of radius 250 mm at the
12, 2, 4, 7, and 9 oclock positions, identical to the arrangement
assumed in the simulations (Fig. 2). A Hanning-windowed,
five-cycle burst of a 150 kHz sinusoidal signal, generated using
a National Instruments (NI) PXI 5142 Arbitrary Waveform
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Fig. 5: Reconstructed results. (a) Result obtained from BP. (b)
Result obtained from OMP. (c) Result obtained from MT-BCS.
(d) Result obtained from the proposed approach.
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Fig. 6: SHM experiment setup. (a) Experiment scene. (b)
Experimental measurement waveforms.

Generator, is used to excite the transmitting transducers. In
order to reduce noise, measurements are averaged over 5000
collections in LabView via an NI PXI 5105 Digitizer operating
at a sampling rate of 1 MHz. Both the PXI 5142 and 5105
are housed in an NI PXI 8108 Embedded Controller. A 50
mm wide, 50 mm high and 2.8 mm thick steel plate is
glued on the surface at (50, 0) mm location in range and
azimuth and occupies three diagonal pixels, thereby emulating
an extended defect. The experimental scene is shown in Fig.
6(a), and the received waveforms are provided in Fig. 6(b). The
reconstructed defect images based on the BP and the proposed
approach are shown in Figs. 7(a) and 7(b), respectively. It is
observed that the reconstructed result based on BP completely
fails, whereas the proposed algorithm correctly acquires the
location of the defect while preserving its continuous structure
by exploiting both group sparsity and cluster structure.

V. CONCLUSION

In the paper, we focus on imaging of extended defects
in thin-walled structures using guided ultrasonic waves in
structural health monitoring (SHM) for a multiple-input
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Fig. 7: Reconstructed result in the experiment. (a) Recon-
structed result obtained from BP. (b) Reconstructed result
obtained from the proposed algorithm.

multiple-output (MIMO) system. The imaging of defects is
formulated as a sparse reconstruction problem. A structure-
aware Bayesian compressive sensing algorithm was exploited
to acquire high-resolution defect images by exploiting both
the group sparsity in MIMO systems and cluster structure
of the extended defect. Simulation and experimental results
demonstrate the superiority of the proposed algorithm over
several state-of-the-art approaches.
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